用户名: 密码: 验证码:
锂离子电池层状复合正极材料的制备与改性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池具有输出电压高、能量密度高、循环寿命长、自放电率低等众多优点,因此其在便携式电子设备、移动通讯等领域获得广泛应用,并被认为是最有希望成为电动汽车大功率的动力电池。目前LiCoO_2仍占据锂离子电池正极材料市场的主导地位,但由于其自身缺陷及资源限制,迫切需要开发一种新型的正极材料。锂离子电池层状复合正极材料LiNi_xCo_yMn_(1-x-y)O_2具有价格低廉、结构稳定、比容量高等优点,这使它被认为是最佳的LiCoO_2替代品之一,但制备困难,振实密度低,高倍率放电性能差等缺点限制了其商品化的进程。因此,提高层状复合正极材料的振实密度以及电化学性能特别是其在高倍率充放电条件下的循环性能是相关科研工作者的研究目标。本文概述了锂离子电池及其正极材料的研究进展,重点介绍了层状正极材料LiNi_xCo_yMn_(1-x-y)O_2的研究现状,作者通过改进制备方法,优化材料中钴镍锰配比,元素体相掺杂以及表面包覆等手段实现了对锂离子电池层状正极材料LiNi_xCo_yMn_(1-x-y)O_2的改性。主要研究内容和实验结论包括以下几个方面:
     首先,对层状材料LiNi_xCo_yMn_(1-x-y)O_2部分合成方法进行了工艺优化。使用低热固相法,溶胶凝胶法,水热法制备了正极材料LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2,利用X射线粉末晶体衍射(XRD) ,扫描电子显微镜(SEM)以及恒流充放电测试等手段分析了所得材料的微观结构,形貌以及电化学性能,确定了各方法的最优合成工艺,研究表明低热固相法中高温煅烧后600℃回火2h所得材料性能最优,溶胶凝胶法中以草酸为配体且配比是1:2时所得材料性能最优,水热法的最佳合成工艺为160℃水热反应12h。其次,对层状材料LiNi_xCo_yMn_(1-x-y)O_2进行了钴镍锰配比优化研究。使用优化的低热固相法,溶胶凝胶法,水热法等合成系列锂离子电池层状正极材料LiNi_xCo_(1-2x)Mn_xO_2 (x=n, n/9, n/10, n/11, n/12, n/13, n/14, n/15, n/16, n/17),采用X射线衍射等表征手段和充放电等电化学性能测试手段,实现各系列材料中钴镍锰配比的优化。结果表明,LiCo_(5/9)Ni_(2/9)Mn_(2/9)O_2,LiCo_(4/10)Ni_(3/10)Mn_(3/10)O_2,LiCo_(5/11)Ni_(3/11)Mn_(3/11)O_2等材料表现出优异的结构,形貌和电化学性能。
     再次,对层状材料LiNi_xCo_yMn_(1-x-y)O_2进行了掺杂改性研究。使用各种合成方法制备材料LiNi_(1/3)Co_(1/3-y)Mn_(1/3)M_yO_2-zNz (M:一种或几种金属阳离子,N:一种或几种阴离子;y和z为0,0.01,0.02,0.04,0.06,0.08,0.10等不同配比),实现了在阳离子位置上(Co原子位置)掺入一种或几种金属阳离子(Al,Cr, Fe,Zr,La),或在阴离子位置上(氧原子位置)掺入一种或几种阴离子(F,Cl,Br),或在阴阳离子位置上共掺入一种或几种离子,研究了掺杂对其结构,形貌以及电化学性能的影响。结果表明,掺杂材料的结晶度和粒度的均匀性均有提高,掺杂材料的倍率性能和循环性能均有明显提升。
     最后,对层状材料LiNi_xCo_yMn_(1-x-y)O_2进行了包覆改性研究。在正极材料LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2表面实现了C和Al2O3的单层和双层包覆,考察了包覆方法,包覆材料和包覆量对产物结构,形貌和电化学性能的影响。XRD,SEM和电化学性能测试等分析手段表明,适量的无机氧化物,单质等材料包覆可以降低极化度,改善材料的循环稳定性,倍率性能,进一步改善材料的电化学性能。
Lithium-ion batteries, with the advantages as high voltage, high energy density, good cycling property, low self discharge, have been widely used in mobile communication devices, portable electronics and military equipments. At the moment, LiCoO_2 still dominates the lithium-ion batteries cathode material market, but owing to its own shortcomings and resource constraints, there is an urgent need to develop a new cathode material. Due to its low cost, good structure stability, and high specific capacity, the layered multiple cathode material of LiNi_xCo_yMn_(1-x-y)O_2 has been regarded as one of the most promising alternative material for LiCoO_2. However, some problems, including hard to synthesize, low tap density and low rate capability, restrict the procedure of its commercial availability. The improvement of tap density and electrochemical properties, especially its cyclability at high rate, is the main research target of scientists. In this paper, the researches on lithium-ion batteries and its cathode material especially the layered cathode material LiNi_xCo_yMn_(1-x-y)O_2 in recent years were analyzed. Some modification method such as improved synthesis methods, doping and coating were carried out by author to improve the tap density and electrochemical performances of them. The main contents and results of this study were described below:
     First of all, some synthesis methods for LiNi_xCo_yMn_(1-x-y)O_2 were mended. Cathode material powders of layered LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 were synthesized using the method of low-heat solid-state reaction, sol-gel method and hydrothermal method. The evolution of the structural properties and electrochemical performances of LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 were investigated by X-ray diffraction (XRD), scanning electronic microscopy (SEM) and galvanostatic charge and discharge cycle. It was found that the optimum parameters for temper of low-heat solid-state reaction technique were 600℃and 2h, the optimal chelating agent in sol-gel method was oxalic acid and the optimal ratio was 1:2, the optimum conditions for hydrothermal reaction was 160℃and 12h.
     And secondly, the content ratios of Co, Ni, Mn of LiNi_xCo_yMn_(1-x-y)O_2 were optimized. Improved low-heat solid-state reaction method, sol-gel technique and hydrothermal method were used to prepare the several series of layered cathode material LiNixCo1-2xMnxO_2 (x=n, n/9, n/10, n/11, n/12, n/13, n/14, n/15, n/16, n/17) for lithium-ion batteries, the content ratio of Co, Ni, Mn of various series materials was ameliorated via XRD, SEM, galvanostatic charge and discharge test. The results implied that the materials LiCo_(5/9)Ni_(2/9)Mn_(2/9)O_2, LiCo_(4/10)Ni_(3/10)Mn_(3/10)O_2, LiCo5/11Ni3/11Mn3/11O_2 and so on exhibited outstanding structural properties and electrochemical performances.
     Afterwards, LiNi_xCo_yMn_(1-x-y)O_2 materials were modified by doping. LiNi_(1/3)Co_(1/3-y)Mn_(1/3)M_yO_2-zNz were prepared using low-heat solid-state reaction method, sol-gel technique, hydrothermal method and so on, with one or more cation (Al, Cr, Fe, Zr, La) and/or anion (F, Cl, Br) doped in the cation (Co) and anion (O) site. The effects of doping on the structure, morphology and electrochemical performances were investigated. XRD tests exhibited that the formation of moliclinic structure improved. SEM results implied the uniformity of particles size was increased. The charge-discharge tests showed that the appropriate doping could greatly improve the performances of the as-prepared materials in rate ability and cycle capability.
     Finally, the layered LiNi_xCo_yMn_(1-x-y)O_2 materials were modified via surface coating. Cathode materials LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 were coated with C and Al2O3. The effects of method, raw material and amount on the structure, morphology and electrochemical performances were investigated. The XRD, SEM and electrochemical evaluation results showed that coating with proper amount of inorganic oxide and elemental could reduce the polarization, improve cyclic stability and high-rate ability of material.
引文
[1].焦元红.化学电源的发展及应用.郧阳师范高等学校学报,2006,26(3):26-28.
    [2].王高军,苏光耀,高德淑.锂离子电池正极材料Li1.02V3O8的合成及性能研究.电池工业,2006,11(2):100-103.
    [3].陈景贵.跨入新世纪的中国新型绿色电池工业.电源技术,2000,24(1):2-7.
    [4].夏熙.迈向21世纪的化学电源.电池,2000,30(3):95-97.
    [5].胡行仁.世界电池市场综述.电池,2000,30(3):112-115.
    [6].Kim J, Amine K. A comparative study on the substitution of divalent,trivalent and tetravalent metal ions in LiNi1-xMxO2(M=Cu2+, Al3+ and Ti4+). Journal of Power Sources,2002,104:33-35.
    [7].刘建睿,王猛,尹大川等.锂离子电池正极材料LiV3O8的低温合成研究.无机材料学报,2002,17(3):617-620.
    [8].陈猛,潘思仲.锂离子电池正极材料LiNi1-xCoxO2的合成及性能.电子元件与材料,2007,26(12):14-17.
    [9].赵健,杨维芝,赵佳明.锂离子电池的应用开发.电池工业,2000,5 (1):31-36.
    [10].杨绮琴,方北龙,童叶翔.应用电化学.广州:中山大学出版社,2001.
    [11].田春霞.电动汽车用先进电池的现状及发展.电池,2000,30(2):83-85.
    [12].孙春文.锂离子电池的研究进展.现代化工,1999,19(6):12-14.
    [13].安平,其鲁.锂离子二次电池的应用和发展.北京大学学报(自然科学版),2006,42(z1):2-43.
    [14].赵培正,赵林治,杨书廷.聚合物锂离子二次电池.河南师范大学学报(自然科学版),2002,30(3):54-57.
    [15].张华香.锂钒氧化物Li1+xV3O8的合成与电化学性能研究[硕士学位论文].福州:福建师范大学出版社,2004.
    [16].王新喜,宫志刚,尹燕华.锂离子电池的研究进展.舰船防化,2005,30(1):15-19.
    [17].杜菲,王春忠,陈岗.锂离子二次电池正极材料研究现状及发展.新材料产业,2005,67(7):45-49.
    [18].杜远东,任尚坤,马兴科.锂离子二次电池正极材料的研究.商丘师范学院学报,2002,18(5):9-11.
    [19].甘雄.锂离子电池正极材料的研究进展.北教育学院学报,2004,21(5):22-24. [ 20 ].冯夏至,李相哲.锂离子电池正极材料的性能研究.电池工业,2009,14(1):21-25.
    [21].易惠华,戴永年,代建清.锂离子电池正极材料的现状与发展.云南化工,2005,32(1):39-42.
    [22].赵灵智,汝强.锂离子电池材料的研究现状.广州化工,2009,37(4):3-14.
    [23].马荣骏.锂离子电池及其正极材料的研究进展.有色金属,2008,60(1):1-6.
    [24].Mixushma K, Jones P C, Wisema P J, et al. LixCoO2(0    [25].麦立强,邹正光,陈寒元.锂离子电池正极材料的研究进展.材料导报,2000,14(7):32-35.
    [26].唐致远,李建刚,薛建军等.锂电池正极材料LiMn2O4的改性与循环寿命.化学通报,2000,63(8):10-14.
    [27].阮艳莉,唐致远,韩恩山.锂离子电池正极材料LiMn2O4的合成与晶体结构.无机化学学报,2005,21(2):232-236.
    [28].唐致远,冯季军,徐国祥.尖晶石LiMn2O4的多元掺杂改性研究.化学学报,2003,61(8):1316-1318.
    [29].唐致远,周征,冯季军.尖晶石LiMn2O4的制备与改性.电池,2002,32(z1):61-62. [ 30 ].刘恩辉,李新海,何则强等. LiV3O8的合成与电化学性能.电池,2004,34(3):164-165.
    [31].廖春发,郭守玉,陈辉煌.锂离子电池正极材料的制备研究现状.江西有色金属,2003,17(2):34-38.
    [32].Feng J J, Liu X Z, Zhang X M, et al. Effects of Synthesis Methods on Li1+xV3O8 as Cathodes in Lithium-Ion Batteries. Journal of The Electrochemical Society,2009,156(9):A768-A771.
    [33].Rayet N, Goodennough J B, Bener S, et al. Approaching theoretical capacity of a LiFePO4 at room temperature at high rates. The Electrochemical Society and the Electrochemical Society of Japan Meeting,1999,99(2):17-22.
    [34].Chung S Y, Blocking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storge electrode. Nature Material,2002,2(4):123-128.
    [35].熊学,戴永年,陈海清等.包覆碳对LiFePO4正极材料性能的影响.湖南有色金属,2009,25(1):29-32.
    [36].Yamada A, Chung S C. Crystal chemistry of the olivine-type Li(MnyFe1-y)PO4 as possible 4V cathode materials for lithium-ion batteries. Journal of The Electrochemical Society,2001,148(8):A960-A967.
    [37].刘建,刘景.锂离子电池正极材料研究进展.佛山陶瓷,2003(11):39-42.
    [38].Liu M, Viscos J, De Jongh I C. Electrode kinetics of organo disulfidecathode for storage bdtteries. Journal of The Electrochemical Society,1990,137(3):750-759. [ 39 ].Gorkovenko, Alexander, Skotheim. Electrioactive, energy-storing, highlycro-sslinke- d,poly-sulfide-containing organic polymers and methods for making same. (P)USP:6201100,2001.
    [40].杨焰,刘桥,李国英.聚合物锂离子电池正极材料替代品的研究.中南林业科技大学学报,2008,32(6):36-42. [ 41 ].Trinida F, Montemayor M C, Fatas E. Perfomance study of Zn/ZnCl2,NH4Cl/pdyaniline/carbon battery. Journal of The Electrochemical Society,1991,138(11):3186-3189.
    [42].吴川,吴峰,陈实等.锂离子电池正极材料研究进展.电池,2000,30(1):36-38.
    [43].赵铭姝,翟玉春,田彦文.固相分段法制备锂离子电池正极材料LiMn2O4的实验.过程工程学报,2001,1(4):402-407.
    [44].康慨,戴受惠,万玉华.固相配位化学反应发合成LiMn2O4的研究.功能材料,2000,31 (3):283-285.
    [45].叶世海,吕江英,高学平.球磨促进高温固相反应合成尖晶石相LiMn2O4.电源技术,2002,26(3):151-153.
    [46].吴宇平,万春荣,李阳兴.用溶胶-凝胶法制备锂离子蓄电池材料.电源技术,2000,24(2):112-115.
    [47].宋顺林,席晓丽,王志宏.冷冻干燥技术制备超微LiNi0.8Co0.2O2粉及其表征.功能材料,2008,3(39):449-452.
    [48].刘伶,孙克宁,杨同勇等.层状LiNixCoyMn1-x-yO2正极材料的制备及改性研究进展.稀有金属快报,2008,27(1):7-11.
    [49].禹筱元,胡国荣,刘业翔.层状LiNixCoyMn1-x-yO2的合成及改性进展.电池, 2006,36(1):64-66.
    [50].刘兴福,王德民,韩广欣.高倍率LiCoxNiyMnzO2锂离子电池的研究.电池工业,2010,15(1):146-148.
    [51].Belharouak I, Sun Y K, Liu J, et al. LiNi1/3Co1/3Mn1/3O2 as a Suitable Cathode for High Power Application. Journal of Power Sources,2003,132(2):247-252.
    [52].叶尚云,张平伟,乔芝郁.层状Ni-Mn基锂离子电池正极材料进展.稀有金属,2005,29(3): 328-338.
    [53].Belharouak I, Sun Y K, Liu J, et al. LiNi1/3Co1/3Mn1/3O2 as a Suitable Cathode for High Power Application. Journal of Power Sources,2003,132(2):247-252. [ 54 ].Whitield P S, Davidson I J, Cranswick L M D, et al. Local atomiccharacterization of LiNi1/3Co1/3Mn1/3O2 cathode material. Solid State Ionics,2005(5-6),176: 463-471. [ 55 ].Shaju K M, Subba Rao G V, Chowdari B V R. Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries. Electrochimica Acta, 2002,48(2):145-151.
    [56].Cho T H, Park S M, Yoshio M, et al. Effect of synthesis condition on the structural and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 prepared by carbonate co-precipitation method. Journal of Power Sources,2005,142(1-2):306-312.
    [57].Lu Z H, Macneil D D, Dahn J R, et al. Growth of filamentous carbon from lithium and cesium bromide doped Ni/SiO2 catalysts. Solid State letters,2001,4(11):A191-A194. [ 58 ].Kobayashi H, Arachi Y, Kamiyama T, et al. Investigationon Lithium De-intercalation Mechanism for LiNi1/3Co1/3Mn1/3O2. Journal of Power Sources,2005,146(1):640-644.
    [59].Fey G T K, Shiu R F. LiNi0.8Co0.2O2 cathode materials synthesized by the maleic acid assisted sol-gel method for lithium batteries. Journal of Power Sources,2002,103(2): 265-272.
    [60].李鹏,韩恩山,檀柏衫等.正极材料LiNi0.5Co0.1Mn0.45O2的制备与性能.应用化学,2005,22(3):304-307.
    [61].Zhao Y, Wang J. Solvation of LiBF4 in carbonate based mixed solvents:a volumetric study. Journal of Molecular Liquids,2006,128(1-3):65-70.
    [62].苏玉长,谢维,禹萍等.锂离子电池正极材料LiNi0.70Co0.20Mn0.10O2软化学合成及结构与性能.粉末冶金材料与工程,2005,10(3):149-154.
    [63].Li D C, Muta T, Zhang L Q, Yoshio M, Noguchi H. Effect of synthesis method on the electrochemical performance of LiNi1/3Co1/3Mn1/3O2. Journal of Power Sources,2004,132, (1-2):150-155 .
    [64].唐爱东,王海燕,黄可龙等.锂离子电池正极材料层状Li-Ni-Co-Mn-O的研究.化学进展, 2007,19(9): 1313-1321.
    [65].Liu D, Wang Z, Chen L. Comparison of Structure and Electrochemistry of Al and Fe doped LiNi1/3Co1/3Mn1/3O2. Electrochim Acta,2006,51(20):4199-4203.
    [66].Lu Z R, Yang L. Thermal behavior and decomposition kinetics of six electrolyte salts by thermal analysis. Journal of Power Sources,2006,156(2):555-559.
    [67].Matsumoto K, Hagiwara R. Anomalously large formula unit volume and its effect on the thermal behavior of LiBF4. Journal of Physical and Chemical B, 2006,110(5):2138-2141.
    [68].Kageyama M, Li D, Kobayakawa K, et al. Structural and Electrochemical Properties of LiNi1/3Co1/3Mn1/3O2-xFx Prepared by Solid State Reaction. Journal of Power Sources,2006,157(2):494-500. [ 69 ].Cho J, KimT J, Kim J, et al. Surface Modification of Spherical LiNi0.8Co0.1Mn0.1O2. Journal of The Electrochemical Society, 2004,151(11):A1889-A1904.
    [70].Zhi Y, Li X H, Wang Z X, et al. Surface Modification of Spherical LiNi1/3Co1/3Mn1/3O2 with Al2O3 Using Heteroge - neous Nucleation Process. Transactions of Nonferrous Metals Society of China,2007,176(2):1319-1323.
    [71].Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001,414:359-367. [ 72 ].吕罡,刘心宇,敖敏.锂离子电池正极材料的研究进展.电工材料,2006,133(1):30-34.
    [73].张世超.锂离子电池关键材料的现状与发展.新材料产业,2004,15(2):32-40.
    [74].Feng J J, Liu X Z, Liu X Z, et al. Hydrothermal Synthesis and Properties of LiV3-xMnxO8 as Cathode Material for Lithium ion Batteries. Acta Physico-Chimica Sinica,2009,25(8):1490-1494.
    [75].张卫华,王建华,郑丽敏等.固相配位化学反应研究LVⅢ2,2-对苯二甲硫基二乙酸与醋酸铜在低热温度下的固相化学反应.化学学报,1994,52(3):280-284.
    [76].贾殿赠,杨立新,夏熙. Cu(OAc)2·H2O与1-苯基-3-甲基-4-苯甲酰基吡唑啉酮-5(HPMBP)的固相配位化学反应.化学学报,1998,56(2):154-159.
    [77].何其庄,王伟鸣,杨小飞等.低热固相法合成稀土三元混配配合物.上海师范大学学报(自然科学版). 2004,33(3):58-62.
    [78].刘祥哲,冯季军,刘晓贞. LiNi1/3Co1/3Mn1/3O2的低热固相合成与性能.济南大学学报(自然科学版). 2010,24(4):364-367.
    [79].唐新村,何莉萍,陈宗璋等.低热固相反应法在多元金属复合氧化物合成中的应用.无机化学学报,2002,18(6):591-595.
    [80].于凌燕,仇卫华,连芳等.锂离子电池正极材料Li[Li0. 167Mn0. 583Ni0. 25]O2的合成与性能研究.电化学,2008,14(2):135-139.
    [81].唐新村,何莉萍,陈宗璋等.低热固相反应法制备锂离子电池正极材料LiCoO2.功能材料,2002,33(2):190-193.
    [82].唐新村,何莉萍,陈宗璋等.低热固相反应法在多元金属复合氧化物合成中的应用.无机材料学报,2003,18(2):313-319.
    [83].刘桥生.锂离子电池正极材料LiMn2O4的合成及其改性研究[硕士学位论文].上海:华南理工大学,2010. [ 84 ].Whittingham M S. Lithium batteries and cathode materials. Chemical Reviews,2004,104 (10):4271-4302.
    [85].刘业翔.能源转换与储能装置的若干关键电极材料.电池,2005,35(3):196-198.
    [86].CHO T H, PARK S M. Effect of synthesis condition on the structural and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 prepared by carbonate co-precipitationmethod. Journal of PowerSources,2005,142(10):306-309.
    [87].杨平.基于镍钻锰前驱体的锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2的制备与改性研究[博士学位论文].湖南:中南大学出版社,2009.
    [88].李黎明.锂离子电池正极材料Li2FeSiO4/C的合成与改性研究[硕士学位论文].湖南:中南大学出版社,2010.
    [89].黄原君,苏光耀,雷钢铁等.多元复合正极材料LiNi1/3Co1/3Mn1/3O2的研究进展.材料导报,2006,20(F05):285-287.
    [90].Feng J J, Liu X Z, Liu X Z, et al. Hydrothermal Synthesis of LiV3-xAlxO8 and Its Performance as Positive Electrode Material for Lithium-ion Batteries. Chinese Journal of Inorganic chemistry,2009,25(8):1379-1383.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700