用户名: 密码: 验证码:
拔毒生肌散的毒性特点及方中炉甘石对汞毒性的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
应用红粉、轻粉、朱砂等含汞成分中药及其制剂治疗慢性难愈性皮肤溃疡是中医外科的特色之一。但因其含有汞、铅等重金属成分,加之没有明确的使用剂量和周期,存在较大的安全性隐患,使该类传统外用制剂的临床应用和推广受到了限制。本研究选择来源于古代外科名方“生肌散”的拔毒生肌散(Badu Shengji San,BDSJS)为代表药物,研究其毒性特点,以为临床安全用药提供基础研究数据。目前,国内对含汞外用制剂反复用药后的毒性特点尚无报道。
     国外最新研究发现ZnCl2对HgCl2引起的乳鼠肾损伤具有保护作用。提示,锌对汞诱发的肾损伤具有一定的保护作用。本课题前期研究已证明汞是BDSJS的主要毒性成分,肾脏是其主要毒性靶器官,且方中的配伍药味能够减轻汞所致的肾损伤。在配伍药味中,炉甘石(煅)的主要成分是氧化锌。由此我们在前期研究基础上进行推论,认为以锌为主要成分的炉甘石可能是BDSJS中汞成分的减毒药味。基于以上认识,本研究以含汞成分的红粉作为染毒药物,观察炉甘石对破损皮肤大鼠肾损伤的影响,探讨其对汞代谢方面的可能影响及其机制。目前,国内对炉甘石及锌降低汞毒性及其配伍减毒机制尚无报道。
     本论文包括两个部分:BDSJS的毒性特点和方中炉甘石对汞毒性的影响。
     1BDSJS的毒性特点研究
     1.1对破损皮肤大鼠反复给药汞成分在体内的蓄积情况研究
     目的
     观察BDSJS反复给药后汞成分在大鼠体内的蓄积情况,明确BDSJS的安全剂量、用药周期及毒性可逆程度。
     方法
     采用破损皮肤大鼠模型,分别以高、中、低剂量的100、50、25mg/kg BDSJS涂敷于大鼠背部破损皮肤给药区,敷药后固定24h,每日给药1次,连续给药4周。检测给药4周、停药4周及停药8周大鼠血、尿、肾皮质中的汞含量,观察汞成分在破损皮肤大鼠体内的蓄积情况,并以肾早期损伤指标尿视黄醇结合蛋白(RBP)、N-乙酰-p-D-氨基葡萄糖苷酶(NAG)和β2-微球蛋白(β2-MG)含量、肝肾功能、凝血时间及肾组织形态学变化为肾毒性指标,评价汞蓄积是否可造成肾组织的损伤及其严重程度。
     结果
     与破损皮肤对照组比较,用药4周BDSJS高、中、低剂量组大鼠的血汞、尿汞、肾汞含量均明显升高,且升高呈剂量依赖性;停药4周,BDSJS各组大鼠的血汞含量均已恢复至正常水平,尿汞含量下降80-90%,肾汞含量下降50%以上;停药8周, BDSJS各组大鼠尿汞均恢复至正常水平,肾汞下降70%以上,但仍有一定蓄积。
     BDSJS高剂量组给药4周,在肾汞含量为(47.99±15.66)ng/g,血汞含量为(72.06±18.03)ng/g,尿汞含量为(1278.84±711.82)ng/mL时,大鼠出现肾脏系数和β2-MG含量的明显升高,肾组织病理检查见少数大鼠出现肾小管上皮细胞肿胀;停药4周,肾汞含量为(20.43±5.09)ng/g,尿汞含量为(82.70±25.83)ng/mL,血汞含量为(5.59±0.94)ng/mL(基本恢复正常水平)时,肾脏系数、尿P2-MG及肾组织形态基本恢复正常;停药8周,虽肾组织中汞仍有一定蓄积,含量为(18.60±12.35)ng/g,但尿β2-MG及肾组织形态恢复正常。中、低剂量组大鼠在给药4周,血汞分别为(38.44±28.72)ng/g和(26.63±18.67)ng/g,尿汞分别为(380.80±119.32) ng/mL和(239.53±110.34)ng/mL,肾汞含量分别为(31.27±11.21)μg/g和(11.93±3.12)μg/g,但肾脏系数及尿P2-MG未见明显差异。
     结论
     BDSJS连续外敷4周,可造成汞在破损皮肤大鼠血液及肾脏中的蓄积,主要蓄积在肾脏;血中汞的清除较快,停药4周基本恢复到正常水平;停药8周,BDSJS中、低剂量组大鼠尿汞恢复至正常水平,肾脏中汞的清除超过70%,但仍有一定蓄积;BDSJS高剂量100mg/kg可造成肾小管的轻度损伤,但其损伤是可逆的,停药4周后可基本恢复,中剂量50mg/kg为其安全剂量。
     1.2BDSJS对慢性皮肤溃疡患者汞成分在机体内的蓄积情况研究
     目的
     采用动物安全性评价得出的安全剂量和用药周期,观察慢性下肢疮疡患者以BDSJS外敷治疗4周及停药后汞在体内的蓄积情况,为制定临床安全剂量和给药周期提供依据。
     方法
     入组患者每日给药1次,或视患者创面情况隔日换药1次,以0.28mg/cm2/d的剂量治疗4周,测定患者治疗前、治疗4周、停药2周及停药6周的血汞及尿汞含量,并以血清ALT、AST、BUN、Cr、尿NAG及β2-MG为毒性观察指标,评价汞蓄积对患者肝、肾功能指标的影响。
     结果
     外敷BDSJS治疗慢性皮肤溃疡,患者在用药4周血汞含量为(8.10±14.81)ng/mL,尿汞含量为(11.51±17.75)ng/mL,与治疗前比较,血汞含量有升高趋势,尿汞含量明显升高;停药2周和停药6周,患者血汞及尿汞含量未见明显升高。
     与治疗前比较,治疗4周、停药2周及停药6周,血清中ALT、AST、BUN、Cr及尿β2-MG含量未见明显升高;治疗4周,患者尿NAG含量明显升高,停药2周,尿NAG含量有升高趋势,停药6周,尿NAG含量未见明显升高。
     结论
     慢性难愈性下肢溃疡患者20例,患处外敷BDSJS,以0.28mg/cm2/d剂量用药4周,在患者尿中检测到汞含量明显升高,血汞含量有升高趋势;停药6周,患者血汞及尿汞基本恢复至正常水平。但治疗期及停药期BDSJS均未造成肝肾功能的明显异常,提示,汞在机体内短时间蓄积(血汞含量低于8.1ng/mL,尿汞低于含量11.5ng/mL)不会导致肾损伤。该研究结果进一步证实,动物安全性实验得出的安全剂量和周期对临床用药具有指导作用。
     1.3对不同皮肤损伤条件大鼠的肾毒性差异
     目的
     比较BDSJS对不同皮肤损伤条件大鼠的肾毒性差异。
     方法
     采用BDSJS的毒性剂量,以肾脏系数、尿RBP、NAG含量及肾组织的病理形态为肾毒性观察指标,比较其对破损皮肤和疮疡皮肤两种不同皮肤损伤条件大鼠的肾毒性差异。
     结果
     与破损皮肤对照组比较,破损皮肤+BDSJS240mg/kg组大鼠的尿NAG、RBP含量明显升高,破损皮肤+BDSJS120mg/kg组大鼠的尿NAG. RBP含量有升高趋势,但未见显著性差异。
     与溃疡皮肤组比较,溃疡皮肤+BDSJS240及溃疡皮肤+BDSJS120mg/kg组大鼠的尿NAG、RBP含量均见明显升高。
     与相同给药剂量的破损皮肤组大鼠比较,疮疡皮肤模型大鼠给予BDSJS240mg/kg与120mg/kg,大鼠的肾脏系数、尿RBP含量均明显升高,肾组织病理学检查见肾小管扩张及上皮细胞出现肿胀、脱落或呈空泡变等明显病变。
     结论
     相同给药剂量下,BDSJS对疮疡皮肤大鼠的肾毒性高于其对破损皮肤大鼠的肾毒性。提示,临床应用含汞制剂应高度重视创面深度对药物吸收和汞蓄积的影响。
     2炉甘石对BDSJS中汞成分毒性的影响
     2.1炉甘石对红粉所致破损皮肤大鼠肾毒性的影响
     目的
     探讨炉甘石对破损皮肤大鼠汞染毒所致肾损伤有无保护作用。
     方法
     采用破损皮肤大鼠模型,以BDSJS的红粉作为汞染毒药物,以肾脏系数、尿NAG、 RBP含量及肾病理组织形态学为毒性评价指标,探讨炉甘石对汞引起的肾毒性是否具有减毒作用。
     结果
     与破损皮肤对照组比较,连续给药2周,红粉24mg/kg(累计剂量336mg/kg)剂量组大鼠的肾脏系数和尿NAG、RBP含量明显升高;等剂量炉甘石组大鼠的肾脏系数、尿NAG、RBP含量均无明显改变;红粉+炉甘石组大鼠的肾脏系数及尿NAG含量明显升高,RBP含量有升高趋势;与等剂量的红粉组比较,红粉+炉甘石组大鼠的肾脏系数有降低趋势。
     与破损皮肤对照组比较,给药1周,红粉20mg/kg(累计剂量140mg/kg)可导致大鼠的肾脏系数明显升高,尿NAG有升高趋势,红粉+炉甘石组大鼠的肾脏系数明显升高,尿NAG含量有下降趋势。与等剂量的红粉组比较,红粉+炉甘石组大鼠肾脏系数有降低趋势,NAG含量明显下降。
     结论:炉甘石对汞具有一定的减毒作用,但其减毒作用与汞的用量及使用周期有关。
     2.2炉甘石对汞代谢的影响
     目的
     探讨炉甘石对汞代谢的影响及其机制。
     方法
     以破损皮肤大鼠为模型,以BDSJS中的红粉为汞染毒药物,测定血汞、尿汞、肾汞含量,采用颈动脉插管技术,观察不同时间点血汞浓度的变化,同时采用超滤法测定血浆蛋白结合率,以探讨炉甘石对血汞吸收、肾汞蓄积、尿汞排泄的影响及其机制;以GSH、MDA、T-SOD、Cu-ZnSOD及ATP含量为指标,观察炉甘石对破损皮肤大鼠汞染毒大鼠自由基代谢的影响。
     结果
     血、尿、肾组织的汞含量:红粉24mg/kg连续用药2周(累计剂量336mg/kg)及20mg/kg用药1周(累计剂量140mg),可造成破损皮肤大鼠血汞、尿汞及肾汞含量升高;红粉累计剂量336mg/kg时,等剂量的炉甘石对红粉组大鼠的血汞、尿汞、肾汞含量无明显影响;红粉累积剂量为140mg/kg时,等剂量的炉甘石可使红粉组大鼠血汞含量下降,尿汞、肾汞含量有升高趋势。
     不同时间点炉甘石对血汞浓度的影响:单次给药后,红粉组及红粉+炉甘石组大鼠的血汞浓度逐渐增加,红粉组大鼠去药8h血汞浓度达到最高值;炉甘石组大鼠去药4h血汞达到最高值,此后血汞水平逐渐下降。
     血浆蛋白结合率:在大鼠及正常人血浆中,与汞25ng/L组比较,汞25ng/L+锌组的血浆蛋白结合率有下降趋势;在人血清白蛋白(HSA)中,与汞25ng/L组比较,汞25ng/L+锌组的血浆蛋白的结合率明显下降。提示,在低剂量范围内,锌可能通过与汞竞争结合白蛋白,降低汞的血浆蛋白结合率。
     对自由基代谢的影响:与破损皮肤对照组比较,红粉20mg/kg组大鼠肾组织的MDA水平和Na+K+-ATPase活力水平明显升高,SOD、GSH水平未见明显改变;与红粉组比较,红粉+炉甘石组大鼠的肾组织MDA水平和Na+K+-ATPase活力水平明显下降,T-SOD及Cu-ZnSOD水平有升高趋势,GSH无明显改变。
     结论
     炉甘石对汞具有一定的减毒作用,其机制可能是通过竞争机制降低汞与血浆白蛋白的结合,从而降低血汞浓度,加速尿汞排泄;同时锌还可通过降低汞引起大鼠肾组织MDA含量、提高SOD含量,参与自由基的代谢,保护肾组织的氧化损伤而发挥减毒作用。
     2.2锌对肾小管上皮细胞汞毒性损伤的影响
     目的
     从体外角度探讨锌对人近端肾小管上皮细胞(HK-2)汞毒性损伤的作用及其机制。
     方法
     以氯化汞(HgCl2)及氯化锌(ZnCl2)作为汞离子和锌离子的供体,采用MTT及LDH释放率法筛选HgCl2和ZnCl2的作用浓度,并以此为基础借助高内涵成像分析技术,以细胞数、DNA含量、线粒体膜电位及细胞膜通透性为指标,探讨不同剂量的锌对汞染毒HK-2细胞的毒性作用。
     结果
     与对照组细胞比较,HgCl210、20、30μmol/L能够明显降低细胞数、增加DNA含量、线粒体膜电位、细胞膜通透性,并具有剂量依赖性;HgCl20.0μmol/L可导致HK-2细胞的膜电位明显升高,对DNA含量、细胞数及通透性均无明显影响;ZnCl20.1μmol/L对HK-2细胞的细胞数、DNA含量、线粒体膜电位及通透性均无明显影响。
     与对照组细胞比较,ZnCl210、20μmol/L能够明显抑制HgCl210、20μmol/L引起的DNA含量的异常增高,增强细胞线粒体膜电位及通透性的增高;HgCl20.01μmol/L+ZnCl20.1μmol/L可致细胞数明显下降,细胞线粒体膜电位和膜通透性明显升高。
     结论
     HgCl2可造成HK-2细胞损伤;一定剂量的ZnCl2能够拮抗HgCl2引起的细胞DNA含量升高,但同时可造成细胞膜通透性及线粒体膜电位的升高。因此,在细胞水平,ZnCl2可能对HgCl2不具有直接减毒作用。
Badu Shengji San (BDSJS) as one of external preparations containing mercury,which has been used for thousands of years in TCM (tradational Chinese medicine) has a unique curative effect on the treatment of chronic refractory skin ulcer. However,mercury is an extremly toxic metal and can accumulate in human bodies,which has potential danger in clinical application. It is significant to research the accumulation and alleviation of the toxicity of mercury of BDSJS as a typical external preparations containing mercury for clinical safe utilization.
     Our previous studies had proved that mercury was the main toxic component of BDSJS and kidney was its toxic target organ,however,compatible herbs could reduce the toxicity of mercury. Calamine which is another major component of BDSJS is made of zinc oxide and zinc can reduce blood mercury content and protect renal injury induced by mercury in recent study. Therefore, we hypothesized that calamine may be the most important mineral drug that may attenuate the toxicity of mercury. So the aim of this article was to clarify the accumulation characteristics of mercury of BDSJS and to expound the effects and mechanisms of calamine on the toxicity of mercury.
     To clarify the accumulation characteristics of mercury in BDSJS, damaged-skin rats were treated with BDSJS0,25,50,100mg/kg/d for4weeks. Rats were sacrificed after the last dose, recovery4weeks and recovery8weeks respectively. The consentration of mercury in blood,urine and renal cortex, coefficient of kidney and pathological changes,urinary NAG and β2-MG, biochemical indexes of hepatic and renal function were detected.Our results showed that administration of BDSJS for4weeks could cause the accumulation of mercury in blood and mainly in kidney; blood and urinary mercury recovered after suspended for4weeks and8weeks respectively; more than70%mercury were removed in renal after8weeks; BDSJS100mg/kg could damage renal tubule, but it was reversible and could recover after suspended for4weeks.We had found that BDSJS50mg/kg was a safe dose for rats.
     According to the result above,we calculated the dose range of human beings and evaluated the accumulation and toxicity of mercury of patients suffered from chronic skin ulcer who were treated with BDSJS for4weeks. The concentration of mercury in blood,urine,urinary NAG and β2-MG, biochemical of hepatic and renal function were detected after the last dose, recovery2weeks and recovery6weeks respectively. Our results showed that treatment of BDSJS for4weeks, blood mercury concentration revealed a rising trend, urine mercury concentration increased obviously;serum ALT,AST, BUN,Cr,urinary β2-MG had no obvious changes; the concentration of NAG in urine increased obviously; after suspended for6weeks, the concentration of mercury and NAG recovered to normal in urine.
     We also compared the difference of nephrotoxicity induced by BDSJS between ulcerous and damaged-skin rats which were two different skin conditon models. We took the pathological kidney coefficient, urine RBP and NAG and renal pathological changes as indexes. Our results showed that,with the same dose, renal toxicity of BDSJS on ulcer-skin rats were worse than that on the damaged-skin rats,which suggested that doctors should pay attention to the difference of absorption and accumulation of mercury according to different wounds depth.
     To expound the effects and mechanisms of calamine on the toxicity of mercury, several experiments in vivo and in vitro were carried out.
     In vivo experiments, skin-damaged rats were respectively treated with hydrargyri oxydum rubrum,which is a herb of BDSJS containg mercury and hydrargyri oxydum rubrum added calamine.After the last dose, rats were sacrificed, the concentration of mercruy in kidney, blood and urine, urinary NAG and RBP and renal MDA、T-SOD、CuZn-SOD and GSH were measured.We also observed the activities of ATPase. The result showed that after administration of hydrargyri oxydum rubrum20mg/kg/d for1week, equivalent calamine had a partial protective effect on renal toxicity and could reduce the blood mercury concentration and increase urinary excretion of mercury and decrease MDA level significantly,compared with the rats in hydrargyri oxydum rubrum group. We also observed the effect of equivalent calamine on mercury concentration of blood at different time in damaged-skin rat in single does adminstration of hydrargyri oxydum rubrum. The results showed that blood mercury concentration in rats of hydrargyri oxydum rubrum and hydrargyri oxydum rubrum added calamine groups increased gradually after the treatment,and after withdrawal drug8hous and4hours reached the hightest respectively.
     In order to clarify the mechanism that calamine decresed the mercury concentration in bood, plasma protein binding rates by ultrafiltration were carried out. The results showed that compared with25ng/L mercury group, protein binding rate in25ng/L Hg+Zn group had a decreased trend in plasma of rat and human plasmas; but the protein binding rate in mercury(25ng/L)+zinc group decreased obviously in human serum albumin. So, the plasma protein binding rate of mercury would decrease as a rusult of the competition of zinc.
     In vitro experiments, we explored the effect of zinc ion on the toxicity of mercury by cultivating the human renal proximal tubular epithelial cells (HK-2), with the changes of mitochondrial membrane potential, DNA content, nucleus area, cell membrane permeability and cell number by Cellomics High Content Imaging Analysis (HCS) method.Our results showed that, comprared with the same dose of mercury, the combination of zinc and mercury could significantly inhibit the increase of DNA content,and increase the level of mitochondrial membrane potential and cell membrane permeability.So,zinc may have no protective effect on the toxicity of mercury to HK-2cells.
     In conclusion, calamine can alleviate the toxicity of mercury to some extent, the mechanism may be related to decreasing the concentration of blood by competing with mercury in binding to serum albumin, accelerating the excretion of mercury in urine and zinc can also protect renal damage induced by oxidative stress of mercury by reducing the content of MDA and increasing the level of SOD in renal tissue.
引文
[1]Peixoto NC, Pereira ME. Effectiveness of ZnC12 in protecting against nephrotoxicity induced by HgC12 in newborn rats[J]. Ecotoxicol Environ Saf,2007,66 (3):441-446.
    [2]路艳丽,贺蓉,彭博,等.拔毒生肌散中配伍药味对汞、铅成分毒性的影响[J].中国中药杂志,2011,(15):2118-2123.
    [3]Bridges CC, Zalups RK. Transport of inorganic mercury and methylmercury in target tissues and organs[J]. J Toxicol Environ Health B Crit Rev,2010,13 (5):385-410.
    [4]Zalups RK, Koropatnick J. Temporal changes in metallothionein gene transcription in rat kidney and liver:relationship to content of mercury and metallothionein protein[J]. J Pharmacol Exp Ther,2000,295 (1):74-82.
    [5]Inbaraj BS, Wang JS, Lu JF, et al. Adsorption of toxic mercury(II) by an extracellular biopolymer poly(gamma-glutamic acid)[J]. Bioresour Technol,2009,100 (1): 200-207.
    [6]董建勋,王乐平,李建荣,等.朱红膏毒性靶器官及安全用药范围研究[J].中华中医药杂志,2011,(06):1293-1295+1449.
    [7]何炜,李积胜.微量元素锌对汞暴露大鼠学习记忆的影响[J].武警医学,2006,(03).
    [8]Adam KR. The effects of dithiols on the distribution of mercury in rabbits[J]. Br J Pharmacol Chemother,1951,6 (3):483-491.
    [9]Ashe WF, Largent EJ, Dutra FR, et al. Behavior of mercury in the animal organism following inhalation[J]. AMA Arch Ind Hyg Occup Med,1953,7 (1):19-43.
    [10]Rashid M, Arumugam TV, Karamyan VT. Association of the novel non-AT1, non-AT2 angiotensin binding site with neuronal cell death[J]. J Pharmacol Exp Ther, 2010,335 (3):754-761.
    [11]Zalups RK. Early aspects of the intrarenal distribution of mercury after the intravenous administration of mercuric chloride [J]. Toxicology,1993,79 (3): 215-228.
    [12]Zalups RK. Influence of 2,3-dimercaptopropane-l-sulfonate (DMPS) and meso-2,3-dimercaptosuccinic acid (DMSA) on the renal disposition of mercury in normal and uninephrectomized rats exposed to inorganic mercury [J]. J Pharmacol Exp Ther,1993,267 (2):791-800.
    [13]Zalups RK, Barfuss DW. Transport and toxicity of methylmercury along the proximal tubule of the rabbit[J]. Toxicol Appl Pharmacol,1993,121 (2):176-185.
    [14]Zalups RK, Barfuss DW. Intrarenal distribution of inorganic mercury and albumin after coadministration[J]. J Toxicol Environ Health,1993,40 (1):77-103.
    [15]Zalups RK, Cherian MG, Barfuss DW. Mercury-metallothionein and the renal accumulation and handling of mercury[J]. Toxicology,1993,83 (1-3):61-78.
    [16]Zalups RK, Knutson KL, Schnellmann RG. In vitro analysis of the accumulation and toxicity of inorganic mercury in segments of the proximal tubule isolated from the rabbit kidney[J]. Toxicol Appl Pharmacol,1993,119 (2):221-227.
    [17]Friberg L, Odeblad E, Forssman S. Distribution of two mercury compounds in rabbits after a single subcutaneous injection; a radiometric and autoradiographic study of the distribution of mercuric chloride and phenylmercuric acetate[J]. AMA Arch Ind Health,1957,16 (2):163-168.
    [18]Chan HM, Satoh M, Zalups RK, et al. Exogenous metallothionein and renal toxicity of cadmium and mercury in rats[J]. Toxicology,1992,76 (1):15-26.
    [19]Zalups RK, Cherian MG. Renal metallothionein metabolism after a reduction of renal mass. II. Effect of zinc pretreatment on the renal toxicity and intrarenal accumulation of inorganic mercury[J]. Toxicology,1992,71 (1-2):103-117.
    [20]Madsen KM. Mercury accumulation in kidney lysosomes or proteinuric rats[J]. Kidney Int,1980,18 (4):445-453.
    [21]Madsen KM, Hansen JC. Subcellular distribution of mercury in the rat kidney cortex after exposure to mercuric chloride[J]. Toxicol Appl Pharmacol,1980,54 (3): 443-453.
    [22]Zhang Z, Guo X, Qian X, et al. Fluorescent imaging of acute mercuric chloride exposure on cultured human kidney tubular epithelial cells[J]. Kidney Int,2004,66 (6):2279-2282.
    [23]Final Report on Carcinogens Background Document for Formaldehyde[J]. Rep Carcinog Backgr Doc,2010, (10-5981):i-512.
    [24]Xu SZ, Zeng B, Daskoulidou N, et al. Activation of TRPC cationic channels by mercurial compounds confers the cytotoxicity of mercury exposure[J]. Toxicol Sci, 2012,125 (1):56-68.
    [25]Ballatori N, Miles E, Clarkson TW. Homeostatic control of manganese excretion in the neonatal rat[J]. Am J Physiol,1987,252 (5 Pt 2):R842-847.
    [26]Kerper LE, Ballatori N, Clarkson TW. Methylmercury transport across the blood-brain barrier by an amino acid carrier[J]. Am J Physiol,1992,262 (5 Pt 2): R761-765.
    [27]Zalups RK, Lash LH. Binding of mercury in renal brush-border and basolateral membrane-vesicles[J]. Biochem Pharmacol,1997,53 (12):1889-1900.
    [28]Zalups RK, Lash LH. Depletion of glutathione in the kidney and the renal disposition of administered inorganic mercury[J]. Drug Metab Dispos,1997,25 (4):516-523.
    [29]Camerino D, Buratti M, Rubino FM, et al. [Evaluation of the neurotoxic and nephrotoxic effects following long-term exposure to metallic mercury in employed at a chlorine/sodium-hydroxide plant][J]. Med Lav,2002,93 (3):238-250.
    [30]Essa AM, Macaskie LE, Brown NL. Mechanisms of mercury bioremediation[J]. Biochem Soc Trans,2002,30 (4):672-674.
    [31]Korbas M, Macdonald TC, Pickering IJ, et al. Chemical form matters:differential accumulation of mercury following inorganic and organic mercury exposures in zebrafish larvae[J]. ACS Chem Biol,2012,7 (2):411-420.
    [32]Martey CA, Vetrano AM, Whittemore MS, et al. Mechanisms of growth inhibition in keratinocytes by mercurio-substituted 4',5'-dihydropsoralens[J]. Biochem Pharmacol, 2002,63 (11):2001-2009.
    [33]Plows D, Briassouli P, Owen C, et al. Ecdysone-inducible expression of oncogenic Ha-Ras in NIH 3T3 cells leads to transient nuclear localization of activated extracellular signal-regulated kinase regulated by mitogen-activated protein kinase phosphatase-1[J]. Biochem J,2002,362 (Pt 2):305-315.
    [34]Rush SA, Borga K, Dietz R, et al. Geographic distribution of selected elements in the livers of polar bears from Greenland, Canada and the United States[J]. Environ Pollut,2008,153 (3):618-626.
    [35]Iioka H, Moriyama I, Kyuma M, et al. [Human placental glutathione transport mechanism][J]. Nihon Sanka Fujinka Gakkai Zasshi,1987,39 (5):725-730.
    [36]Iioka H, Moriyama I, Kyuma M, et al. The study of placental L-ascorbate (vitamin C) transport mechanism (using microvillous membrane vesicles)[J]. Nihon Sanka Fujinka Gakkai Zasshi,1987,39 (5):837-841.
    [37]Rodin AE, Crowson CN. Mercury nephrotoxicity in the rat.1. Factors influencing the localization of the tubular lesions[J]. Am J Pathol,1962,41:297-313.
    [38]Zalups RK, Barfuss DW. Diversion or prevention of biliary outflow from the liver diminishes the renal uptake of injected inorganic mercury[J]. Drug Metab Dispos, 1996,24 (4):480-486.
    [39]Zalups RK, Barfuss DW. Nephrotoxicity of inorganic mercury co-administrated with L-cysteine[J]. Toxicology,1996,109 (1):15-29.
    [40]Gritzka TL, Trump BF. Renal tubular lesions caused by mercuric chloride. Electron microscopic observations:degeneration of the pars recta[J]. Am J Pathol,1968,52 (6):1225-1277.
    [41]Cattani I, Zhang H, Beone GM, et al. The role of natural purified humic acids in modifying mercury accessibility in water and soil[J]. J Environ Qual,2009,38 (2): 493-501.
    [42]郑双来周建华.氯化汞致vero细胞DNA损伤及锌和硒拮抗作用的研究[J].苏州大学学报(医学版),2005,(04).
    [43]Hoshino ACH, Ferreira HP, Malm O, et al. A systematic review of mercury ototoxicity[J]. Cadernos De Saude Publica,2012,28 (7):1239-1247.
    [44]连祥霖.锌对汞、铜致甲状腺毒性的拮抗作用[J].福建医学院学报,1993,(02).
    [45]武如峰,冯兆良,吴玉梅.锌对汞致甲状腺毒性拮抗作用的初步研究[J].卫生毒理学杂志,1990,(02).
    [46]姜华,李宁,于江,等.锌硒对汞致大鼠听力损伤影响的研究[J].微量元素与健康研究,2011,(02).
    [47]Zeng J, Ye H, Hu Z. Application of the hybrid complexation-ultrafiltration process for metal ion removal from aqueous solutions[J]. J Hazard Mater,2009,161 (2-3): 1491-1498.
    [48]Miller CL, Mason RP, Gilmour CC, et al. Influence of dissolved organic matter on the complexation of mercury under sulfidic conditions[J]. Environ Toxicol Chem, 2007,26 (4):624-633.
    [49]Ekstrand J, Nielsen JB, Havarinasab S, et al. Mercury toxicokinetics--dependency on strain and gender[J]. Toxicol Appl Pharmacol,2010,243 (3):283-291.
    [50]Zalups RK, Veltman JC. Renal glutathione homeostasis in compensatory renal growth[J]. Life Sci,1988,42 (21):2171-2176.
    [51]Zalups RK. Molecular interactions with mercury in the kidney[J]. Pharmacol Rev, 2000,52(1):113-143.
    [52]Huang CF, Hsu CJ, Liu SH, et al. Ototoxicity induced by cinnabar (a naturally occurring HgS) in mice through oxidative stress and down-regulated Na(+)/K(+)-ATPase activities[J]. Neurotoxicology,2008,29 (3):386-396.
    [53]Hazelhoff MH, Bulacio RP, Torres AM. Gender related differences in kidney injury induced by mercury[J]. Int J Mol Sci,2012,13 (8):10523-10536.
    [54]Pamphlett R, Ewan KB, McQuilty R, et al. Gender differences in the uptake of inorganic mercury by motor neurons[J]. Neurotoxicol Teratol,1997,19 (4):287-293.
    [55]Bridges CC, Joshee L, Zalups RK. MRP2 and the DMPS-and DMSA-mediated elimination of mercury in TR(-) and control rats exposed to thiol S-conjugates of inorganic mercury[J]. Toxicol Sci,2008,105 (1):211-220.
    [56]Kong B, Csanaky IL, Aleksunes LM, et al. Gender-specific reduction of hepatic Mrp2 expression by high-fat diet protects female mice from ANIT toxicity[J]. Toxicol Appl Pharmacol,2012,261 (2):189-195.
    [57]Wang D, Wei YH, Zhou Y, et al. Pharmacokinetic variation of ofloxacin based on gender-related difference in the expression of multidrug resistance-associated protein (Abcc2/Mrp2) in rat kidney[J]. Yao Xue Xue Bao,2012,47 (5):624-629.
    [58]刘眉,阳晓,余学清.有机阴离子转运蛋白在药物肾脏转运中的作用[J].国际内科学杂志,2009,(02):109-111+120.
    [59]Bridges CC, Bauch C, Verrey F, et al. Mercuric conjugates of cysteine are transported by the amino acid transporter system b(0,+):implications of molecular mimicry[J]. J Am Soc Nephrol,2004,15 (3):663-673.
    [60]Bridges CC, Zalups RK. Homocysteine, system b0,+ and the renal epithelial transport and toxicity of inorganic mercury[J]. Am J Pathol,2004,165 (4): 1385-1394.
    [61]Zalups RK, Barfuss DW, Lash LH. Disposition of inorganic mercury following biliary obstruction and chemically induced glutathione depletion:dispositional changes one hour after the intravenous administration of mercuric chloride [J]. Toxicol Appl Pharmacol,1999,154 (2):135-144.
    [62]Parks LD, Zalups RK, Barfuss DW. Heterogeneity of glutathione synthesis and secretion in the proximal tubule of the rabbit[J]. Am J Physiol,1998,274 (5 Pt 2): F924-931.
    [63]Zalups RK, Parks LD, Cannon VT, et al. Mechanisms of action of 2,3-dimercaptopropane-1-sulfonate and the transport, disposition, and toxicity of inorganic mercury in isolated perfused segments of rabbit proximal tubules[J]. Mol Pharmacol,1998,54 (2):353-363.
    [64]Zalups RK, Barfuss DW. Participation of mercuric conjugates of cysteine, homocysteine, and N-acetylcysteine in mechanisms involved in the renal tubular uptake of inorganic mercury[J]. J Am Soc Nephrol,1998,9 (4):551-561.
    [65]Zalups RK, Barfuss DW. Small aliphatic dicarboxylic acids inhibit renal uptake of administered mercury[J]. Toxicol Appl Pharmacol,1998,148 (1):183-193.
    [66]Zalups RK, Minor KH. Luminal and basolateral mechanisms involved in the renal tubular uptake of inorganic mercury [J]. J Toxicol Environ Health,1995,46 (1): 73-100.
    [67]Shimomura A, Chonko AM, Grantham JJ. Basis for heterogeneity of para-aminohippurate secretion in rabbit proximal tubules[J]. Am J Physiol,1981,240 (5):F430-436.
    [68]Pritchard JB. Coupled transport of p-aminohippurate by rat kidney basolateral membrane vesicles[J]. Am J Physiol,1988,255 (4 Pt 2):F597-604.
    [69]Kojima R, Sekine T, Kawachi M, et al. Immunolocalization of multispecific organic anion transporters, OAT1, OAT2, and OAT3, in rat kidney [J]. J Am Soc Nephrol, 2002,13 (4):848-857.
    [70]Motohashi H, Sakurai Y, Saito H, et al. Gene expression levels and immunolocalization of organic ion transporters in the human kidney [J]. J Am Soc Nephrol,2002,13 (4):866-874.
    [71]Zalups RK, Barfuss D. Accumulation of inorganic mercury along the renal proximal tubule of the rabbit[J]. Toxicol Appl Pharmacol,1990,106 (2):245-253.
    [72]Barfuss DW, Robinson MK, Zalups RK. Inorganic mercury transport in the proximal tubule of the rabbit[J]. J Am Soc Nephrol,1990,1 (6):910-917.
    [73]Zalups RK, Aslamkhan AG, Ahmad S. Human organic anion transporter 1 mediates cellular uptake of cysteine-S conjugates of inorganic mercury[J]. Kidney Int,2004, 66(1):251-261.
    [74]Aslamkhan AG, Han YH, Yang XP, et al. Human renal organic anion transporter 1-dependent uptake and toxicity of mercuric-thiol conjugates in Madin-Darby canine kidney cells[J]. Mol Pharmacol,2003,63 (3):590-596.
    [75]Zalups RK, Ahmad S. Homocysteine and the renal epithelial transport and toxicity of inorganic mercury:role of basolateral transporter organic anion transporter 1[J]. J Am Soc Nephrol,2004,15 (8):2023-2031.
    [76]Tanaka-Kagawa T, Naganuma A, Imura N. Tubular secretion and reabsorption of mercury compounds in mouse kidney [J]. J Pharmacol Exp Ther,1993,264 (2): 776-782.
    [77]Kim SH, Bark H, Choi CH. Mercury induces multidrug resistance-associated protein gene through p38 mitogen-activated protein kinase[J]. Toxicol Lett,2005,155 (1): 143-150.
    [78]Schaub TP, Kartenbeck J, Konig J, et al. Expression of the MRP2 gene-encoded conjugate export pump in human kidney proximal tubules and in renal cell carcinoma[J]. J Am Soc Nephrol,1999,10 (6):1159-1169.
    [79]Schaub TP, Kartenbeck J, Konig J, et al. Expression of the conjugate export pump encoded by the mrp2 gene in the apical membrane of kidney proximal tubules [J]. J Am Soc Nephrol,1997,8 (8):1213-1221.
    [80]Leslie EM, Deeley RG, Cole SP. Multidrug resistance proteins:role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense[J]. Toxicol Appl Pharmacol,2005,204 (3):216-237.
    [81]Sugawara N, Lai YR, Sugaware C, et al. Decreased hepatobiliary secretion of inorganic mercury, its deposition and toxicity in the Eisai hyperbilirubinemic rat with no hepatic canalicular organic anion transporter [J]. Toxicology,1998,126 (1):23-31.
    [82]Terlouw SA, Graeff C, Smeets PH, et al. Short- and long-term influencess of heavy metals on anionic drug efflux from renal proximal tubule[J]. J Pharmacol Exp Ther, 2002,301 (2):578-585.
    [83]Bridges CC, Joshee L, Zalups RK. Multidrug resistance proteins and the renal elimination of inorganic mercury mediated by 2,3-dimercaptopropane-l-sulfonic acid and meso-2,3-dimercaptosuccinic acid[J]. J Pharmacol Exp Ther,2008,324 (1): 383-390.
    [84]Zalups RK, Cherian MG. Renal metallothionein metabolism after a reduction of renal mass. I. Effect of unilateral nephrectomy and compensatory renal growth on basal and metal-induced renal metallothionein metabolism[J]. Toxicology,1992,71 (1-2): 83-102.
    [85]Zalups RK, Lash LH. Effects of uninephrectomy and mercuric chloride on renal glutathione homeostasis[J]. J Pharmacol Exp Ther,1990,254 (3):962-970.
    [86]Addya S, Chakravarti K, Basu A, et al. Effects of mercuric chloride on several scavenging enzymes in rat kidney and influence of vitamin E supplementation[J]. Acta Vitaminol Enzymol,1984,6 (2):103-107.
    [87]Chung AS, Maines MD, Reynolds WA. Inhibition of the enzymes of glutathione metabolism by mercuric chloride in the rat kidney:reversal by selenium[J]. Biochem Pharmacol,1982,31 (19):3093-3100.
    [88]Fukino H, Hirai M, Hsueh YM, et al. Effect of zinc pretreatment on mercuric chloride-induced lipid peroxidation in the rat kidney[J]. Toxicol Appl Pharmacol, 1984,73 (3):395-401.
    [89]Gstraunthaler G, Pfaller W, Kotanko P. Glutathione depletion and in vitro lipid peroxidation in mercury or maleate induced acute renal failure[J]. Biochem Pharmacol,1983,32 (19):2969-2972.
    [90]Anner BM, Moosmayer M, Imesch E. Mercury blocks Na-K-ATPase by a ligand-dependent and reversible mechanism[J]. Am J Physiol,1992,262 (5 Pt 2): F830-836.
    [91]Messer RL, Lockwood PE, Tseng WY, et al. Mercury (II) alters mitochondrial activity of monocytes at sublethal doses via oxidative stress mechanisms[J]. J Biomed Mater Res B Appl Biomater,2005,75 (2):257-263.
    [92]Lund BO, Miller DM, Woods JS. Studies on Hg(II)-induced H2O2 formation and oxidative stress in vivo and in vitro in rat kidney mitochondria[J]. Biochem Pharmacol,1993,45 (10):2017-2024.
    [93]Liu P, He K, Li Y, et al. Exposure to mercury causes formation of male-specific structural deficits by inducing oxidative damage in nematodes[J]. Ecotoxicol Environ Saf,2012,79:90-100.
    [94]Mahboob M, Shireen KF, Atkinson A, et al. Lipid peroxidation and antioxidant enzyme activity in different organs of mice exposed to low level of mercury [J]. J Environ Sci Health B,2001,36 (5):687-697.
    [95]Lund BO, Miller DM, Woods JS. Mercury-induced H2O2 production and lipid peroxidation in vitro in rat kidney mitochondria[J]. Biochem Pharmacol,1991,42 Suppl:S181-187.
    [96]Weinberg JM, Harding PG, Humes HD. Mitochondrial bioenergetics during the initiation of mercuric chloride-induced renal injury. I. Direct effects of in vitro mercuric chloride on renal mitochondrial function[J]. J Biol Chem,1982,257 (1): 60-67.
    [97]Jung KY, Uchida S, Endou H. Nephrotoxicity assessment by measuring cellular ATP content. I. Substrate specificities in the maintenance of ATP content in isolated rat nephron segments[J]. Toxicol Appl Pharmacol,1989,100 (3):369-382.
    [98]Jung KY, Endou H. Nephrotoxicity assessment by measuring cellular ATP content. Ⅱ. Intranephron site of ochratoxin A nephrotoxicity[J]. Toxicol Appl Pharmacol, 1989,100 (3):383-390.
    [99]Son MH, Kang KW, Lee CH, et al. Potentiation of arsenic-induced cytotoxicity by sulfur amino acid deprivation (SAAD) through activation of ERK1/2, p38 kinase and JNK1:the distinct role of JNK1 in SAAD-potentiated mercury toxicity[J]. Toxicol Lett,2001,121(1):45-55.
    [100]Hao C, Hao W, Wei X, et al. The role of MAPK in the biphasic dose-response phenomenon induced by cadmium and mercury in HEK293 cells[J]. Toxicol In Vitro,2009,23 (4):660-666.
    [101]陈敏,高晓钦,荆俊杰,等.氯化汞染毒小鼠各脏器中汞和微量元素的测定及分析[J].光谱实验室,2000,(05):525-527.
    [102]赵永娇,何颖华,智建文,等.中医祛腐生肌法治疗慢性难愈性创面研究现状[J].北京中医药,2010,(06):466-469.
    [103]Peixoto NC, Rocha LC, Moraes DP, et al. Changes in levels of essential elements in suckling rats exposed to zinc and mercury[J]. Chemosphere,2008,72 (9): 1327-1332.
    [104]Franciscato C, Moraes-Silva L, Duarte FA, et al. Delayed biochemical changes induced by mercury intoxication are prevented by zinc pre-exposure[J]. Ecotoxicol Environ Saf,2011,74 (3):480-486.
    [105]Zieminska E, Toczylowska B, Stafiej A, et al. Low molecular weight thiols reduce thimerosal neurotoxicity in vitro:modulation by proteins[J]. Toxicology,2010,276 (3):154-163.
    [106]Afonne OJ, Orisakwe OE, Obi E, et al. Nephrotoxic actions of low-dose mercury in mice:protection by zinc[J]. Arch Environ Health,2002,57 (2):98-102.
    [107]金泰廙 夏元洵.氯化高汞对离体肾细胞毒性作用的研究——Ⅱ营养物质对肾细胞的保护作用[J].中华劳动卫生职业病杂志,1984,2(03):162-163.
    [108]Moraes-Silva L, Bueno TM, Franciscato C, et al. Mercury chloride increases hepatic alanine aminotransferase and glucose 6-phosphatase activities in newborn rats in vivo[J]. Cell Biol Int,2012.
    [109]Franciscato C, Goulart FR, Lovatto NM, et al. ZnC12 exposure protects against behavioral and acetylcholinesterase changes induced by HgC12[J]. Int J Dev Neurosci,2009,27 (5):459-468.
    [110]连祥霖郑颂毅.锌对氯化汞免疫毒性的影响及其机理[J].环境与健康杂志,1999,(05):266-268.
    [111]Orisakwe OE, Afonne OJ, Nwobodo E, et al. Low-dose mercury induces testicular damage protected by zinc in mice[J]. Eur J Obstet Gynecol Reprod Biol,2001,95 (1):92-96.
    [112]张淑萍,陶红,瓮占平,等.锌对染汞孕鼠及胚胎毒性保护作用的探讨[J].山东医药,2010,(01).
    [113]Strubelt O, Kremer J, Tilse A, et al. Comparative studies on the toxicity of mercury, cadmium, and copper toward the isolated perfused rat liver[J]. J Toxicol Environ Health,1996,47 (3):267-283.
    [114]曹功明,卢建雄.锌对动物抗氧化作用的研究进展[J].黑龙江畜牧兽医,2010,1:19-20.
    [115]周丽玲.缺锌对大鼠脂质过氧化及抗氧化系统的影响[J].江苏预防医学,2006,12(17):55-57.
    [116]杨海波,徐兆发.氧化应激在汞对肾损伤机制中作用的研究进展[J].环境卫生学杂志,2011,1(3):39-42.
    [117]徐乐焱,邱炳源,袁兰,等.锌金属硫蛋白抗甲基汞对细胞膜构象的影响[J].中国公共卫生学报,1997,(02):55-56.
    [118]王达,朱京慈.锌7-金属硫蛋白对深Ⅱ度烧伤创面脂质过氧化反应的影响[J].中国组织工程研究与临床康复,2009,13(12):1313-1316.
    [119]ThonalleyP., VasakM. Possible role form etallothioneinin protection against radiation-induced oxidative tress kinetic sand mechanisms of reaction with superoxideand hydroxylradicals [J]. BiochbiophysActa,& & & 1985, (827):36-44.
    [120]陈春,周启星.金属硫蛋白作为重金属污染生物标志物的研究进展[J].农业环境科学学报Journal of Agro-Environment Science,2009,28 (3):425-432.
    [121]赵金垣,王世俊.汞的慢性肾脏毒性研究的进展[J].国外医学(卫生学分册),1985,(05):263-268.
    [122]陈娜,郝家胜,王莹,等.铜、铅、镉、锌、汞和银离子复合污染对水螅的急性毒性效应[J].生物学杂志,2007,(03).
    [123]Di Giusto G, Anzai N, Ruiz ML, et al. Expression and function of Oat1 and Oat3 in rat kidney exposed to mercuric chloride[J]. Arch Toxicol,2009,83 (10):887-897.
    [124]Bridges CC, Joshee L, Zalups RK. MRP2 and the handling of mercuric ions in rats exposed acutely to inorganic and organic species of mercury [J]. Toxicol Appl Pharmacol,2011,251 (1):50-58.
    [125]Lungkaphin A, Chatsudthipong V, Evans KK, et al. Interaction of the metal chelator DMPS with OAT1 and OAT3 in intact isolated rabbit renal proximal tubules[J]. Am J Physiol Renal Physiol,2004,286 (1):F68-76.
    [126]Rodiger M, Zhang X, Ugele B, et al. Organic anion transporter 3 (OAT3) and renal transport of the metal chelator 2,3-dimercapto-l-propanesulfonic acid (DMPS)[J]. Can J Physiol Pharmacol,2010,88 (2):141-146.
    [127]Aleo MF, Morandini F, Bettoni F, et al. Endogenous thiols and MRP transporters contribute to Hg2+ efflux in HgCl2-treated tubular MDCK cells[J]. Toxicology, 2005,206(1):137-151.
    [128]Satoh M, Nishimura N, Kanayama Y, et al. Enhanced renal toxicity by inorganic mercury in metallothionein-null mice[J]. J Pharmacol Exp Ther,1997,283 (3): 1529-1533.
    [129]袁继丽,刘成海,张悦,等.氯化汞诱导大鼠肾间质纤维化的脂质过氧化损伤机制研究[J].中国中西医结合肾病杂志,2008,9(5):403-407.
    [130]沈金灿,黄志勇,庄峙厦,等.Hg2+在大鼠组织器官中的分布及其存在形态研究[J].光谱学与光谱分析Spectroscopy and Spectral Analysis,2005,25 (10): 1688-1692.
    [131]赵立强.汞对肾脏早期损害诊断指标的研究进展[J].现代预防医学,2003,(01):66-67+70.
    [132]钟丽萍,秦小珍,李美雄.628例美白化妆品使用人员尿汞含量分析[J].广西医学,2009,31(4):570-580.
    [133]职业性汞中毒诊断标准[J].GBZ89—2002.
    [134]郑徽,金银龙.汞的毒性效应及作用机制研究进展[J].卫生研究,2006,35(5):663-666.
    [135]冯亚静,高利华,段丽菊,等.锌对染氟大鼠生精细胞Bcl-2和Bax蛋白表达的影 响[J].郑州大学学报(医学版),2011,(01):48-51.
    [136]徐旭,汤立达.FDA和EMEA批准7种肾损伤生物标志物正式使用[J].药物评价研究,2010,33(5):347-350.
    [137]Dieterle F, Perentes E, Cordier A, et al. Urinary clusterin, cystatin C, beta2-microglobulin and total protein as markers to detect drug-induced kidney injury[J]. Nat Biotechnol,2010,28 (5):463-469.
    [138]赵立强,游全程,顾华强,等.铅作业工人肾损害早期指标研究[J].中国工业医学杂志,2003,(02):82-83+86.
    [139]熊建辉,赵健,徐莎,等.RBP对肾脏早期损害的诊断价值[J].医学理论与实践,2010,(08):905-907.
    [140]郭永铁.尿pH值对尿β2-微球蛋白检测的影响及其对策[J].检验医学,2010,25:231.
    [141]赵立强,游全程.汞对肾脏早期损害诊断指标的研究进展[J].现代预防医学,2003,30(1):66-69.
    [142]周信基,袁捷,D.Salisburg C.用原子吸收分光光度计自动湿化法测定动物组织中七种元素[J].国外畜牧科技,1986,(03).
    [143]薛建国.生肌散类方用药特点探讨[J].中医外治杂志,1995(6):34-35.
    [144]张德凤.祛腐生肌散治疗褥疮32例[J].河北中医,2003,25(10):743-744.
    [145]阙华发.慢性皮肤溃疡的中医诊治[J].环球中医药,2010,3(2):96-100.
    [146]张德凤.祛腐生肌散治疗褥疮32例[J].河北中医,2003,25(10):743-744.
    [147]常文青,赵冬雨.祛腐生肌散治疗糖尿病溃疡120例临床观察[J].武警医学院学报,2005,14(1):48-49.
    [148]徐晓文,徐晓明.祛腐生肌散治疗难愈性切口感染临床观察[J].现代中西医结合杂志,2004,13(10):1288-1289.
    [149]蔡刚强,焦连亭.早期肾损伤标志物检测及应用[J].检验医学与临床,2005,2(3):124-127.
    [150]丁训诚,刘春芳,董竞武,等.锌对铅、汞引起溶血的保护作用[J].卫生毒理学杂志,1988,(02).
    [151]朱秋鸿,黄金祥,孙道远,等.职业接触汞生物限值的研制[J].中国工业医学杂志,2007,20(4):249-250.
    [152]连祥霖林嗣豪.硒、锌、铝对汞中毒拮抗作用的比较[J].中国工业医学杂志,1998,(01).
    [153]Sundberg J, Ersson B, Lonnerdal B, et al. Protein binding of mercury in milk and plasma from mice and man--a comparison between methylmercury and inorganic mercury [J]. Toxicology,1999,137 (3):169-184.
    [154]高健,徐兆发,田智,等.N-乙酰半胱氨酸对汞致大鼠肾皮质线粒体能量代谢损伤的影响[J].环境与健康杂志,2010,(01):45-47.
    [155]苏晓华,王孝铭,朱世军,等.大鼠心肌缺血再灌线粒体跨膜电位及ATPase合成活性的变化[J].中国病理生理杂志,1996,(02):190-193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700