用户名: 密码: 验证码:
自检测压电微传感器灵敏度优化及并行探测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上世纪九十年代以来,锆钛酸铅(PZT)薄膜压电微悬臂梁在扫描探针显微技术中的应用,开启了压电微传感器在纳米探测领域的研究。由于PZT薄膜较高豹压电系数和机电耦合系数,基于PZT薄膜的压电微传感器集自驱动和和自检测为一体,在构建结构紧凑的并行工作系统方面具有独特优势,在高密度信息存储、并行加工等领域具有广阔的应用前景。然而高质量PZT压电薄膜的快速制备技术仍然是目前限制基于PZT薄膜的压电微传感器大规模工业化生产和实现商业化应用的主要因素;受到PZT薄膜性能和器件加工因素影响,压电微传感器的灵敏度仍有待提高;同时,在小型化和集成化过程中,器件尺寸的减小使压电微传感器的压电信号输出越来越微弱,给压电微传感器阵列的并行检测带来了困难。本文正是针对这一背景,围绕PZT压电薄膜微传感器的力探测和并行质量检测,在高质量PZT压电薄膜的快速制备、压电微传感器的灵敏度优化和微弱压电信号的并行检测技术等方面展开研究。
     压电微传感器的灵敏度提高,依赖于PZT薄膜的性能提高、器件结构优化和加工技术。在高性能PZT薄膜的快速制备方面,我们研究了基于镍酸镧种子层的高性能PZT薄膜快速制备技术。以钙钛矿结构的LNO薄膜诱导PZT薄膜的择优取向生长,改善了快速热处理对PZT薄膜性能的影响。在器件结构优化和加工技术方面,从压电微悬臂梁的基本理论出发,分析了压电微传感器的结构参数与灵敏度的关系,研究了基于PZT薄膜的压电微传感器制备工艺,分析了工艺参数对器件性能的影响。以差动电荷放大电路为基础,研究了微弱压电信号的并行检测技术。并在此基础上,实现了压电微传感器的并行质量检测与图像扫描。
     围绕自检测压电微传感器的灵敏度优化和并行探测技术,本博士论文完成的研究工作可以概括为以下几点:
     (1)高性能PZT压电薄膜的快速制备与器件加工技术研究。以溶胶-凝胶法制备的钙钛矿结构的导电氧化物镍酸镧薄膜作为种子层,诱导PZT薄膜沿(100)晶向择优取向生长,抑制由于快速升温导致的PZT薄膜(111)晶向的产生,并利用快速热处理方法制备了介电性能与压电性能优异的PZT薄膜。这种方法兼顾了PZT压电薄膜的快速制备与性能改进,为PZT薄膜器件的批量制备提供了坚实基础。通过对器件加工技术的研究,掌握了影响PZT压电微传感器性能的关键工艺,总结了加工中常见的问题,为基于PZT压电薄膜的各种微传感器的加工制备提供了实验指导。
     (2)微弱压电信号的检测技术。运用压电微悬臂梁相关理论,分析了高谐振频率的PZT压电微悬臂梁的信号特征。设计了差动电荷放大原理的检测电路,选取合适的运算放大器芯片,将微弱的压电信号变化提取并进行放大。重点分析了输出的噪声特征和产生机理,研究并实现了对噪声的抑制,有效的提高了电路的检测灵敏度。在此基础上,在自制的PZT压电性能测试系统上,对PZT压电微悬臂梁的频率特性和力-距离曲线进行了测量。
     (3)基于PZT微悬臂梁的谐振式自检测微传感器阵列。在测量了PZT压电微悬臂梁的性能,分析了微悬臂梁阵列特征的基础上,对压电微传感器阵列的并行工作模式以及并行驱动-并行检测实现方法进行了研究。同时探讨了以PZT压电微悬臂梁阵列构建并行图像扫描系统中探针-样品逼近、位置调节等问题。最终,以自驱动-自检测的压电微传感器阵列为基础,构建了多探针的谐振式压电微传感器并行质量检测系统。该系统具有体积小、结构紧凑等优点。
     (4)致动型PZT压电薄膜器件的加工与优化。对基于PZT压电薄膜的变形镜致动器的结构进行了分析,优化了结构参数和驱动方式。在致动器小型化的同时,使致动器在变形能力和驱动能力两个方面得到提高。改进了压电薄膜致动型全光纤相位调制器的数学模型,计算得到了压电系数以d_(31)对致动器性能的影响。利用该模型对基于PZT压电薄膜的全光纤相位调制器的结构进行了优化。利用溶胶-电雾化方法在光纤表面制备了PZT压电薄膜,并对薄膜的微观结构和表面质量进行了分析,为基于PZT压电薄膜的全光纤相位调制器的制备奠定了基础。
Piezoelectric PZT (Lead Zirconate Titanate) microcantilever, sensitive to nano-scale deflection, has been successfully used as self-sensing probes in SPM systems since 1990s. PZT film with high piezoelectric constant and electromechanical coupling coefficient, which is the key material of self-sensing and self-actuated piezoelectric microsensors, has shown the potential in constructing compact parallel detection systems such as ultra-high-density storage, parallel-fabrication plasma devices, et al. However, the preparation of high quality PZT thin film is rather time-consuming, which limits its mass production and commercial application. As the self-sensing function of piezoelectric microsensors is based on the detection of piezoelectric charge output of the PZT layer, it is necessary to enchance the sensitivity of miniaturized piezoelectric microsensors. Additionally, the difference between microsensors makes it difficult to realize parallel-driving and parallel-measuring. Therefore, we focused on the sensitivity enchancing and parallel detection technique with piezoelectric microsensors, and research on the rapid preparation of high quality PZT thin film, the fabrication of piezoelectric microsensors with optimized parameters, parallel detection technique of weak piezoelectric signal.
     To enchance the performance of piezoelectric microsensors, the properties of PZT thin film and the parameters in fabrication should be enhanced and optimized. Perovskite LaNiO_3 film was introduced as the seed layer in PZT film preparation with rapid heat treatment. The relationship between sensitivity and structure parameters of piezoelectric microsensors was concluded from the basic microcantilever theory. The processing parameters in fabrication were studied. Differential charge amplifiers were modified for parallel detection. Self-sensing and self-actuated piezoelectric PZT microcantilever array for parallel-detection mass sensors with pictogram sensitivity was realized.
     The research work of this dissertation can be summarized as follows: (1) Fast preparation of high performance PZT film and fabrication of PZT film based micro devices. Perovskite conductive oxide LNO films were prepared by Sol-Gel mothed as the seed layer to induce the growth of preferred (100) orientation of PZT films and reduce (111) orientation. Finally the acquired PZT films have good dielectric and piezoelectric property. Problems in the fabrication of PZT thin film based devices were presented, and key factors were emphasized.
     (2) Detection and measurement of weak signals. Signal characteristics of high resonance frequency PZT cantilevers are analyzed with the theory of piezoelectric micro-cantilevers. Differential charge amplifier is used to extract and amplify the weak signal. Key factors that influencing the output of the amplifier are analyzed. By choosing appropriate operational amplifier chips and adding adjustable resistance and capacitance in the circuit, phase error is eliminated.
     (3) Piezoelectric micro-sensor based resonant mass sensors array. To increase detection efficiency, parallel working system is contructed with the self-sensing and self-actuating PZT cantilevers. A number of key issues are investigated such as working mode, parallel exciting and parallel sensing mothed, probe-sample approach method and position adjustment. Additionally, micro piezoelectric PZT cantilevers working in liquid environment have been investigated.
     (4) The fabrication and optimization of PZT thin film actuators. PZT thin film based deformable mirror actuators are analyzed. While miniaturized, it is optimized in deformable and driving ability. Mathematical model of piezoelectric all-fiber phase modulator was improved and effect of piezoelectric coefficient d_(31) was calculated. It is applied to the optimization of structure parameters of the modulator. Sol-ESD method is applied to prepare PZT thin films on the surface of optical fiber. It is suitable for nonplanar PZT thin film fabrication.
引文
[1].干福熹.信息材料[M].天津大学出版社.2000.天津.
    [2].田中哲郎[日].压电陶瓷材料[M].科学出版社.1982.北京.
    [3].P.Muralt.PZT thin films for microsensors and actuators:Where do we stand?[C].IEEE transactions on ultrasonics,ferroelectrics,and frequency control,Vol.47,2000.
    [4].O.Auciello,I.A.Kingon and S.B.Krupanidhi.Sputter synthesis of ferroelectric films and heterostructures[J].MRS Bulletin,1996,21(6):25-30.
    [5].G.Velu,T.Haccart and D.Remiens.Growth and properties of PbTiO_3/Pb(Zr,Ti)O_3heterostructures deposited by sputtering on Si substrates[J].Integrated Ferroelectrics,1999,23(1):1-14.
    [6].O.Shigeru,M.Toshihiro,M.Toshiharu,et al.Preparation of Pb(Zr_(0.52),Ti_(0.48))O_3 films by laser ablation[J].Jpn,J.Appl.Phys,1990,29(1):133-136.
    [7].H.Kidoh,T.Ogawa,H.Yashima,et al.Influence of laser fluence on structural and ferroelectric properties of lead-zirconate-titanate thin films prepared by laser ablation[J].Jpn.J.Appl.Phys,1991,30(9)B:2167-2169.
    [8].M.Motamedi.Acoustic sensor technology[C].IEEE MTT-S International,Microwave Symposium Digest,1994,1:521-524.
    [9].T.Itoh,T.Suga.Development of a force sensor for atomic force microscopy using piezoelectric thin films[J].Nanotechnology,1993,4:218-224.
    [10].C.Lee,T.Itoh,R.Maeda,et al.Smart force sensors for scanning force microscope using the micromachined piezoelectric PZT cantilevers[C].IEEE Int.Electron Devices Meeting,IEDM 96:545-548.
    [11].Z.Shen,W.Shih and Wei-Heng Shih.Self-exciting,self-sensing PbZr0.53Ti0.47O3/SiO2piezoelectric microcantilevers with femtogram/Hertz sensitivity[J].Applied Physics Letters,2006,89:023506.
    [12].P.Hauptmann.Resonant sensors and applications[J].Sens.Actuators,A,1996,25 27:371 377.
    [13].A.Lugstein,E.Bertagnolli,C.Kranz,et al.Integrating micro-and nanoelectrodes into atomic force microscopy cantilevers using focused ion beam techniques[J]. APL, 2002, 81:349 351.
    [14]. T. Hsu. MEMS and Microsystem Design and Manufacture[M]. Mc Graw-Hill. 2002. New York.
    [15]. K. Petersen. From microsensors to microinstrumentation[J]. Sens. Actuators, A, Phys., 1996, 56:143 149.
    [16]. P. Grabiec, K. Domanski,P. Janus, et al. Microsystem technology as a road from macro to nanoworld[J]. Bioelectrochemistry, 2005,66(1-2):23-28.
    [17]. H. Craighead. Nanoelectromechanical systems[J]. Science, 2000,290:1532.
    [18]. Okawa Y, Aono M. Materials science nanoscale control of chain polymerization[J]. Nature, 2001,409:683-684.
    [19]. T. Ando, T. Uchihashi, N. Kodera, et al. Batch Fabrication of Sharpened Silicon NitrideTips[J]. Jpn. J. Appl. Phys., 2003,42:4844-4847.
    [20]. T. Fukuma, K. Kobayashi, K. Matsushige, et al. True atomic resolution in liquid by frequency-modulation atomic force microscopy[J]. Appl. Phys. Lett., 2005,86:193108.
    [21]. M. Aono, C. Jiang, T. Nakayama, et al. How to measure the nanoscale physical-properties of materials?[J]. Oyo Buturi, 1998,67:1361.(in Japanese).
    [22]. I. Shiraki, F. Tanabe, R. Hobara, et al. Independently driven four-tip probes for conductivity measurements in ultrahigh vacuum[J]. Surf. Sci., 2001,493:633.
    
    [23]. T. Kanagawa, R. Hobara, I. Matsuda, et al. An anisotropy measurement of quasi-one-dimensional surface state conductance by rotational square micro four-point probe method[J]. Phys. Rev. Lett. 2003,91:036805.
    [24]. H. Okino, I. Matsuda, R. Hobara, et al. In situ resistance measurements of epitaxial cobalt silicide nanowires on Si(110)[J]. Appl. Phys. Lett., 2005,86:233108.
    [25]. M. Ishikawa, M. Yoshimura, and K. Ueda. Development of Four-Probe Microscopy for Electric Conductivity Measurement[J]. Jpn. J. Appl. Phys., 2005,44 :1502-1503.
    [26]. K. Takami, M. Akai-Kasaya, A. Saito, et al. Construction of Independently Driven Double-Tip Scanning Tunneling Microscope[J]. Jpn. J. Appl. Phys., 2005,44 :L120.
    [27]. O. Kubo, Y. Shingaya, M. Nakaya, et al. Epitaxially grown WOx nanorod probes for sub-100 nm multiple-scanning-probe measurement[J]. Appl. Phys. Lett., 2006, 88:254101.
    [28]. Y. Miyato, K. Kobayashi, K. Matsushige, et al. Potential Measurements of Carbon Nanotube FETs by Kelvin Probe Force Microscopy[J]. Jpn. J. Appl. Phys., 2005,44:1633.
    [29]. G. Horowitz and M. E. Hajlaoui. Grain size dependent mobility in poly crystalline organic field-effect transistors[J]. Synth. Met., 2001,122(1):185-189.
    [30]. T. Kelley and C. Frisbie. Gate-Voltage Dependent Resistance of a Single Organic Semiconductor Grain Boundary[J]. J. Phys. Chem. B, 2001,105:4538.
    [31]. M. Nonnenmacher, M. O'Boyle, and H. Wickramashinge. Kelvin probe force microscopy[J]. Appl. Phys. Lett., 1991,58:2921.
    
    [32], S. Kitamura and M. Iwatsuki. Observation of 7×7 Reconstructed Structure on the Silicon (111) Surface using Ultrahigh Vacuum Noncontact Atomic Force Microscopy [J]. Jpn. J. Appl. Phys., 1995,34:L145-L148.
    [33]. Y. Martin and H. Wickramasinghe. Magnetic imaging by "force microscopy" with 1000 A resolution[J]. Appl. Phys. Lett., 1987,50:1455.
    [34]. E. Betzig and J. Trautman. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit[J]. Science, 1992,257:189-195.
    [35]. G. Binnig, H. Rohrer, C. Gerber, et al. Surface Studies by Scanning Tunneling Microscopy [J]. Phys. Rev. Lett., 1982,49:57-61.
    [36]. G. Binnig, C. Quate, and C. Gerber. Atomic Force Microscope[J]. Phys. Rev. Lett., 1986, 56:930.
    [37]. H. Koyama, F. Oohira, M. Hosogi, et al. Multiprobe SPM System Using Optical Interference Patterns[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(2): 415-422.
    [38]. C. Lee, T. Itoh, and T. Suga. Self-excited piezoelectric PZT microcantilevers for dynamic SFM—with inherent sensing and actuating capabilities [J]. Sens. Actuators A, 1999, 72:179.
    [39]. N. Saton, E. Tsunemi, Y. Miyato, et al. Multi-Probe Atomic Force Microscopy Using Piezoelectric Cantilevers[J]. Japanese Journal of Applied Physics, 2007, 46(8)B:5543 5547.
    [40]. H. Pozidis, P. Bachtold, J. Bonan, et al. Scanning Probes Entering Data Storage: From Promise to Reality[C]. IEEE Conference on Emerging Technologies - Nanoelectronics. Singapore, 2006:39-44.
    [41].Benjamin W.Chui.Microcantilevers for Atomic Force Microscope Data Storage[M].Kluwer Academic Publishers.1999.
    [42].H.Jonathon Mamin,Robert P.Ried,Bruce D.Terris,et al.High-Density Data Storage Based on the Atomic Force Microscope[J].Proceeding of the IEEE,1999,87(6):1012-1027.
    [43].William P.King,Thomas W.Kenny,Kenneth E.Goodson,et al.Design of Atomic Force Microscope Cantilevers for Combined Thermomechanical Writing and Thermal Reading in Array Operatin[J].J.Microelectromech.Syst.2002,11(6):765-774.
    [44].G.Binnig,M.Despont,U.Drechsler,et al.Ultrahigh-density Atomic Force Microscopy Data Storage with Erase Capability[J].Appl.Phys.Lett.,1999,74(9):1329-1331.
    [45].P.Vettiger,G.Cross,M.Despont,et al.The "Millipede"-Nanotechnology Entering Data Storage[J].IEEE Transactions on Nanotechnology,2002,1(1):39-55.
    [46].Y.Kim,H.Nam,S.Cho,et al.PZT Cantilever Array Integrated with Piezoresistor Sensor for High Speed Parallel Operation of AFM[J].Sensors and Actuators A,2003,103:122-129.
    [47].C.Lee,H.Nam,Y.Kim,et al.Microcantilevers Integrated with Heaters and Piezoelectric Detectors for Nano Data-Storage Application[J].Appl.Phys.Lett.,2003,83(23):4839-4841.
    [48].H.Nam,Y.Kim,C.Lee,et al.Integrated Nitride Cantilever Array with Si Heaters and Piezoelectric Detectors for Nano-Data-Storage Application[C].18th IEEE International Conference on Micro Electroc Mechanical Systems.Miami Beach,Florida,USA,2005:247-250.
    [49].赵钢.基于SPM的超高密度信息存储关键技术研究[D].中国科学技术大学博士学位论文,2007.
    [50].王海.基于并行探针驱动的扫描等离子体加工技术的研究[D].中国科学技术大学博士学位论文,2005.
    [51].吴亚雷,刘爽,刘芳等.基于锆钛酸铅薄膜的变形镜微致动器[J].纳米技术与精密工程,2008,6(2):142-145.
    [52].C.Lindensmith.Terrestrial Planet Finder:technology development plans[C].Proc.SPIE,2004,5487:1226-1233.
    [53].D.Boroson,A.Biswas,and B.Edwards.MLCD:Overview of NASA's mars laser communications demonstration system[C].Proc.SPIE,2004,5338:16-29.
    [54]. E. Yang, D. Wiberg. A wafer-scale membrane transfer process for the fabrication of optical quality, large continuous membranes[J]. Journal of Microelectromechanical Systems, 2003, 12(6): 804-815.
    [55]. C. Divoux, J. Charton, W. Schwartz, et al. A novel electrostatic actuator for micro deformable mirrors: fabrication and test[C]. Proc. Int. Conf. Solid State Sensors, Actuators, Microsystems, 2003:488 491.
    [56]. A. Simonov, S. Hong, G. Vdovin. Piezoelectric deformable mirror with adaptive multiplexing control[J]. Optical Engineering, 2006,45(7): 070501.
    [57]. A. Bhatti, H. Al-Raweshidy, G. Murtaza. Numerical modeling of a fiber-optic phase modulator using piezoelectric polymer coating[J]. Photonics Technology Letters, 1999, 11(7):812-814.
    [58]. A. Bhatti, H. Al-Raweshidy, G. Murtaza. Broadband frequency response of an all-fiber acousto-optic phase modulator using Aluminum Nitride (AIN) coating[J]. Microwave and Optical Technology Letters, 2000,25(2): 124-125.
    [59]. G. Yi, M. Sayer, Z. Wu, et al. Piezoelectric lead zirconate titanate coatings on metallic wires[J]. Electronics Letters, 1989,25(14):907-908.
    [60]. G. Yi, M. Sayer, C. Jen, et al. Coaxial thin film transducers based on PZT[C]. Ultrosonics Symposium, 1989:1231-1235.
    [61]. O. Lisboa, D. Barrow, M. Sayer, et al. Optical fiber phase modulator using coaxial PZT films[J]. Electronics Letters, 1995,31(17):1491-1492.
    [62]. D. Barrow, O. Lisboa, C. K. Jen, et al. In-line phase modulators using coaxial thick lead zirconate titanate coated optical fibers[J]. J. Appl. Phys. 79(6):3323-3329.
    [63]. G. Fox, C. Muller, M. Kuhn, et al. Piezoelectric fiber optic modulators and micro-tubes[C]. SPIE, 2641:55-61.
    [64]. G. Fox, C. Muller, N. Setter. Sputter deposited piezoelectric fiber coatings for acousto-optic modulators[J]. J. Vac. Sci. Technol. A, 1996,14(3):800-805.
    [65]. D. Costantini, H. Limberger, R. Salathe. All-fiber phase modulator based on lead zirconate titanate thin-film coating[J]. Applied Physics Letters, 2001,78(15):2193-2195.
    [66]. J. Lacey, S. Trolier-Mckinstry. Hard and soft lead zirconate titanate thin films deposited on flat and curved surfaces by pulsed laser deposition[C]. IEEE International Symposium on Applications of Ferroelectrics, 1996,2:18-21.
    [67].C.Kaya,F.Kaya,B.Su,et al.Structural and functional thick ceramic coatings by electrophoretic deposition[J].Surface & Coatings Technology,2005,191:303-310.
    [68].K.Yasumura,T.Stowe,E.Chow,et al.Quality factors in micron-and submicron-thick cantilevers[J].J.Microelectromech.Syst.,2000,9(1):117-125.
    [69].T.Gabrielson.Mechanical-thermal noise in micromachined acoustic and vibration sensors[C].IEEE Trans.Electron Devices,1993,40:903 909.
    [70].R.Pedrak,T.Ivanov,K.Ivanova,et al.Micromachined atomic force microscopy sensor with integrated piezoresistive sensor and thermal bimorph actuator for high-speed tapping-mode atomic force microscopy phase-imaging in higher eigenmodes[J].J.Vac.Sci.Technol.B,2003,Vol.21(6):3102-3107
    [71].F.Biom,S.Bouwstra,M.Elwenspoek,et al.Dependence of the quality factor of micromachined silicon beam resonators on pressure and geometry[J].J.Vac.Sci.Technol.B,1992,10:19-26.
    [72].倪振华.振动力学[M].西安交通大学出版社.1989.西安.
    [73].褚家如.压电探针原子力显微镜及超光滑表面纳米级微观形貌研究[D].中国科学技术大学博士学位论文,1997.
    [74].T.Ono and M.Esashi.Effect of ion attachment on mechanical dissipation of a resonator[J].Appl.Phys.Lett.2005,87(4):044105.
    [75].K.Yasumura,T.Stowe,E.Chow,et al.Quality factors in micro-and submicro-thick cantilevers[J].J.Microelectromechan.Syst.,2000,9(1):117-125.
    [76].G.Sauerbrey.Verwendung yon Schwingquarzen zur Wagung dunner.Schichten und zur Mikrowagung[J].Z.Phys.A,1959,155:206-222.(in German).
    [77].G.Binnig,C.F.Quate,and C.Gerber.Atomic Force Microscope[J].Phys.Rev.Lett.56,930(1986).
    [78].T.Albrecht,P.Grutter,D.Horne,et al.Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity[J].J.Appl.Phys.,1991,69:668.
    [79].N.Lavrik,M.Sepaniak and P.Datskos.Cantilever transducers as a platform for chemical and biological sensors[J].Rev.Sci.Instrum.,2004,75(7):2229 2253.
    [80].J.Lu,T.Ikehara,T.Kobayashi,et al.Quality Factor of PZT Thin Film Transduced Micro Cantilevers[C].DTIP of MEMS & MOEMS,Italy,2006.
    [81].N.Yazdi,F.Ayazi,and K.Najafi.Micromachined inertial sensors[C].Proceedings of the IEEE,1998,86(8):1640-1659.
    [82].W.Cady.Piezoelectricity[M].Dover Publications.1946.New York.
    [83].孙慷,张福学.压电学[M].国防工业出版社.1984.北京.
    [84].李远,秦自楷,周志刚.压电与铁电材料的测量[M].科学出版社.1984.北京.
    [85].张福学.现代压电学[M].科学出版社.2001.北京.
    [86].http://www.ansys.com/industries/microsystems.asp
    [87].http://www.coventor.com/mems/applications/index.html
    [88].W.Liu,Z.Feng,R.Liu,et al.The influence of preamplifiers on the piezoelectric sensor'sdynamic property[J].Rev.Sci.Instrum.,2007,78:125107.
    [89].C.Lee,T.Itoh,R.Maeda,et al.Characterization of micromachined piezoelectric PZT force sensors for dynamic scanning force microscopy[J].Rev.Sci.Instrum.,1997,68(5):2091-2100.
    [90].I.Kimura,Y.Nishioka,S.Kikuchi,et al.The mass production technology of Pb(Zr,Ti)O3piezoelectric thin film by radio frequency magnetron sputtering[J].Journal of the Vacuum Society of Japan,2006,49(3):174-176.
    [91].A.Pierre:Introduction to sol-gel processing[M].Kluwer Academic Publishers,1998,Boston.
    [92].B.Tuttle and R.Schwartz.Solution deposition of ferroelectric thin films[j].Mars Bulletin,1996:49-54.
    [93].D.Bimie,R.Vogt,M.Orr,et al.Coating uniformity and device applicability of spin coated sol-gel PZT films[J].Microeleetronic Engineering,1995,29:189-192.
    [94].H.Kozuka.On Ceramic Thin Film Formation from Gels:Evolution of Stress,Cracks and Radiative Striations[J].Journal of the Ceramic Society of Japan,2003,111(9):624-632.
    [95].鲁健.PZT铁电薄膜的溶胶-电雾化制备研究[D].中国科学技术大学博士学位论文,2004.
    [96].Z.Wang,J.Chu,R.Maeda et al.Effect of bottom electrodes on microstructures and electrical properties of sol-gel derived Pb(Zr_(0.53),Ti_(0.47))O_3 thin films[J].Thin Solid Films,2002,416(1-2).
    [97].Y.Tu and S.Milne.Processing and characterization of Pb(Zr,Ti)O_3 films,up to 10 um thick,produced from a diol sol-gel route[J].J.Mater.Res.,1996,11(10):2556-2564.
    [98].H.Kozuka,M.Kajimura,K.Katayama,et al.Deposition of crack-free BaTiO_3 and Pb(Zr,Ti)O_3 films over 1μm thick via single-step dip-coating[C].Materials Research Society Symposium-Proceedings,606:187-192.
    [99].屈新萍,丁爱丽,罗维根等.Pt/Ti电极的扩散行为及其对铁电薄膜的影响[J].无机材料学报,1996,23(3):499-502.
    [100].H.Kozuka,M.Kajimura,T.Hirano et al.Crack-free thick ceramic coating films via nonrepetitive dip-coating using polyvinylpyrrolidone as stress-relaxing agent[J].Journal of Sol-Gel Science and Technology,2000,19:205-209.
    [101].D.A.Barrow,T.E.Petroff,R.P.Tandon et al.Characterization of thick lead zirconate titanate films fabricated using a new sol gel based process[J].J.Appl.Phys,1997,81:876-881.
    [102].陈超,褚家如,鲁健等.高取向PZT厚膜的0-3复合法制备[J].微纳电子技术,2003,40(7-8):499-502.
    [103].T.Kobayashi,M.Ichiki,J.Tsaur,et al.Effect of multi-coating process on the orientation and microstructure of lead zirconate titanate(PZT)thin films derived by chemical solution deposition[J].Thin Solid Films,489:74-78.
    [104].T.Ren,L.Zhang,L.Liu,et al.Silicon-based PbTiO_3/Pb(Zr,Ti)O_3/PbTiO_3 sandwich structure[J].Jpn.J.Appl.Phys.,2001,40:2363.
    [105].I.Kim and H.Kim.Characterization of highly preferred Pb(Zr,Ti)O_3 thin films on La_(0.5)Sr_(0.5)CoO_3 and LaNi_(0.6)Co_(0.4)O_3 electrodes prepared at low temperature[J].Jpn.J.Appl.Phys.,2001,40:2357.
    [106].R.Ramesh,W.Chan,B.Wilkens,et al.Fatigue and retention in ferroelectric Y-Ba-Cu-O/Pb-Zr-Ti-O/Y-Ba-Cu-O heterostructures[J].Appl.Phys.Lett.,1992,61:1537.
    [107].R.Ramesh,J.Lee,T.Sands,et al.Oriented ferroelectric La-Sr-Co-O/Pb-La-Zr-Ti-O/La-Sr-Co-O heterostructures on[001]Pt/SiO_2 Si substrates using a bismuth titanate template layer[J].Appl.Phys.Lett.,1994,64:2511.
    [108].C.Lin,P.Friddle,C.Ha,et al.Effects of thickness on the electrical properties of metalorganic chemical vapor deposited Pb(Zr,Ti)O_3(25 100 nm)thin films on LaNiO_3buffered Si[J].J.Appl.Phys.,2001,90:1509.
    [109].G.Wang,D.Rmiensa,C.Soyera,et al.The effect of LaNiO_3 bottom electrode thickness on ferroelectric and dielectric properties of(100)oriented PbZr_(0.53)Ti_(0.47)O_3 films[J].Journal of Crystal Growth,2005,284(1):184-189.
    [110].K.Yoon,J.Sohn,B.Lee,et al.Effect of LaNiO_3 interlayer on dielectric properties of (Ba_(0.5)Sr_(0.5))TiO_3 thin films deposited on differently oriented Pt electrodes[J].Appl.Phys.Lett.,2002,81(26):5012-5014.
    [111].J.Zhai,H.Chen.Ferroelectric properties of Bi_(3.25)La_(0.75)Ti_3O_(12)thin films grown on the highly oriented LaNiO_3 buffered Pt/Ti/SiO_2/Si substrates[J].Appl.Phys.Lett.,2003,82(3):442-444.
    [112].A.Li,C.Ge,P.Lu,et al.Preparation of perovskite conductive LaNiO_3 films by metalorganic decomposition[J].Appl.Phys.Lett.,1996,68:13471349.
    [113].A.Wold,B.Post,and E.Banks.Rare Earth Nickel Oxides[J]J.Am.Chem.Soc.,1957,79:4911.
    [114].C.Jong and J.Gan.Crystallization of Sr_(0.5)Ba_(0.5)Nb_2O_6 Thin Films on LaNiO_3 Electrodes by RF Magnetron Reactive Sputtering[J].Jpn.J.Appl.Phys.,2000,39:545-550.
    [115].D.Taylor and D.Birnie.A Case Study in Striation Prevention by Targeted Formulation Adjustment:Aluminum Titanate Sol-Gel Coatings[J].Chem.Mater.2002,14:1488-1492.
    [116].H.Seidel,et al.Antistrophic Etching of Crystalline Silicon in Alkaline Solutions,Orientation Dependence and Behavior of Passivation Layers[J].J.Electrochem.Soc.,1990,137(11):3612-3632.
    [117].王代华,周德高,刘建胜等.PVDF压电薄膜振动传感器及其信号处理系统[J].压电与声光,1999,21(2):122-126.
    [118].黄贤武,郑筱霞.传感器原理与应用[M].电子科技大学出版社.1999,成都.
    [119].李磊.基于压电悬臂梁的SFM反馈控制与信号检测系统研制[D].中国科学技术大学硕士学位论文,2004.
    [120].Precision Low Noise CMOS Rail-to-Rail Input/Output Operational Amplifiers AD8605/AD8606/AD8608,Analog Devices Inc.
    [121].董成富,苏弘,李小刚等.一种新型的8路电荷灵敏前置放大器[J].核技术,2005,28(7):554-556.
    [122].D.Bimie,R.Vogt,M.Orr,et al.Coating uniformity and device applicability of spin coated sol-gel PZT films[J].Microelectronic Engineering,1995,29:189-192.
    [123].H.Kozuka.On Ceramic Thin Film Formation from Gels:Evolution of Stress,Cracks and Radiative Striations[J].Journal of the Ceramic Society of Japan,2003,111(9):624-632.
    [124].C.Lee,T.Itoh,T.Ohashi,et al.Development of a piezoelectric self-excitation and selfdetection mechanism in PZT microcantilevers for dynamic scanning force microscopy in liquid[J].J.Vac.Sci.Technol.B,1997,15(4):1559-1563.
    [125].E.Yang,Y.Hishinuma,J.Cheng,et al.Thin-film piezoelectric unimorph actuator-based deformable mirror with a transferred silicon membrane[J].Journal of microelectromechanical sytems,2006,15(5):1214-1225.
    [126].R.Ong,T.Berfield,N.Sottos,et al.Sol-gel derived Pb(Zr,Ti)O_3 thin films:Residual stress and electrical properties[J].Journal of the European Ceramic Society,2005,25(12):2247-2251.
    [127].K.Kim,M.Yoo,S.Lee,et al.Residual stresses in the electrode of Pt/Ti for the thermal detector with thin-film structure[C].Proceedings of the International Symposium on Applications of Ferroelectrics,2000,2:929-932.
    [128].J.Jarzynski.Frequency response of a single-mode optical fiber phase modulator utilizing a piezoelectric plastic jacket[J].Journal of Applied Physics,1984,55(9):3243-3250.
    [129].D.Barrow,O.Lisboa,C.Jen,et al.In-line phase modulators using coaxial thick lead zirconate titanate coated optical fibers[J].Journal of Applied Physics,1996,79(6):3323-3329.
    [130].张福学.现代压电学[M].科学出版社.2001.北京.
    [131].奥尔特.固体中的声场和波[M].科学出版社.1982.北京.
    [132].徐秉业.应用弹塑性力学[M].清华大学出版社.1995.北京.
    [133].鲁健,吴建华,赵刚等.溅射法制备高取向Pt薄膜的工艺研究[J].微细加工技术,2004,1:41-46.
    [134].O.Lisboa,D.Barrow,M.Sayer,et al.Optical fiber phase modulator using coaxial PZT films[J].Electronics Letters,1995,31(17):1491-1492.
    [135].K.Yao,X He,Y.Xu,et al.Piezoelecitrc ceramic thick films deposited on silicon substrates by screen-printing[J].SPIE,2004,5389:108-113.
    [136].M.Imai,T.Yano,Y.Ohtsuka,et al.Wide-frequency fiber-optic phase modulator using piezoelectric polymer coating[J].IEEE Photonics Technology Letters,1990,2:727-729.
    [137].M.Imai,T.Yano,K.Motoi,et al.Piezoelectrically induced optical phase modulation of light in single-mode fibers[J].IEEE Journal of Quantum Electronics,1992,28(9):1901-1908.
    [138].Z.Li,G.Ping.Broadband frequency response of the optic fiber phase modulator with piezoelectric ZnO coating[J].SPIE,2005,5623:504-510.
    [139]. J. Lu, J. Chu, W. Huang, et al. Preparation of thick Pb(Zr,Ti)O_3 (PZT) film by electrostatic spray deposition (ESD) for application in micro-system technology [J]. Jpn.J.Appl.Phys., 2007,41(6)B:2002.
    [140]. G. Yi, M. Sayer, C. Jen, et al. Coaxial thin film transducers based on PZT[C]. Ultrosonics Symposium, 1989:1231-1235.
    [141]. J. Lacey, S. Trolier-Mckinstry. Hard and soft lead zirconate titanate thin films deposited on flat and curved surfaces by pulsed laser deposition[C]. IEEE International Symposium on Applications of Ferroelectrics, 1996,2:18-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700