用户名: 密码: 验证码:
口腔鳞状细胞癌中Apaf-1基因、DAPK基因表达及启动子区甲基化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
口腔鳞状细胞癌(Oral Squamous Cell Carcinoma, OSCC)是口腔颌面部最常见的恶性肿瘤,其发病机理目前尚不明确。本研究在吉林省科技厅基金资助下(项目编号200705349)对凋亡蛋白酶活化因子1(Apaf-1)和死亡相关蛋白激酶(DAPK)在OSCC发生发展过程中的作用机制及去甲基化药物5-氮杂-2'-脱氧胞苷(5-Aza-deoxycytidine, 5-Aza-CdR)对舌鳞癌Tca8113细胞生物学行为的影响进行探讨。目前国内外罕有见到对Apaf-1基因、DAPK基因在OSCC组织及细胞系中表达及甲基化情况系统研究的报道。
     本研究应用免疫组织化学方法和半定量RT-PCR方法检测Apaf-1和DAPK蛋白及mRNA表达,结果显示正常口腔黏膜组织Apaf-1、DAPK蛋白及mRNA表达无减少或缺失。OSCC组织中Apaf-1、DAPK蛋白表达及mRNA表达均显著低于正常口腔黏膜。应用甲基化特异性PCR检测基因启动子区甲基化情况,结果显示正常口腔黏膜组织中Apaf-1基因和DAPK基因启动子区无甲基化。OSCC组织中Apaf-1基因、DAPK基因启动子区甲基化率均显著高于正常口腔黏膜,基因启动子区甲基化与其在肿瘤组织中的蛋白表达及mRNA表达下调呈正相关。Apaf-1基因和DAPK基因的蛋白表达、mRNA表达及基因启动子区甲基化均与肿瘤组织的病理分级、患者的年龄及性别无关。应用去甲基化药物5-Aza-CdR处理舌鳞癌Tca8113细胞,研究Apaf-1基因、DAPK基因去甲基化的转录调节作用,结果显示经5-Aza-CdR处理,舌鳞癌Tca8113细胞的存活率明显降低,凋亡率明显增高,Apaf-1基因、DAPK基因发生去甲基化及mRNA表达上调,且呈药物剂量依赖性。
     通过本研究,得出以下结论:
     1. OSCC的发生发展与Apaf-1和DAPK的mRNA及蛋白表达明显降低密切相关。
     2.口腔鳞状细胞癌组织中,Apaf-1基因和DAPK基因启动子区发生甲基化,是导致Apaf-1和DAPK蛋白表达、mRNA表达下调的重要原因之一。
     3. Apaf-1基因、DAPK基因去甲基化后,Apaf-1基因、DAPK基因表达上调,促进肿瘤细胞凋亡,因此Apaf-1基因、DAPK基因可作为口腔鳞状细胞癌治疗的潜在靶点。
     4. Apaf-1和DAPK基因的表达及甲基化均与OSCC的病理分级、患者的年龄及性别无关。
Oral squamous cell carcinoma (OSCC) is one of the most common malignant tumors in oral and maxillofacial region. Its occurrence and development is a multi-stage process. In this process a variety of gene level changes, including activation of oncogenes and inactivation of tumor suppressor genes. Apoptosis is the mechanism responsible for the physiological deletion of cells and appears to be intrinsically programmed in certain physiological or pathological conditions. Apoptosis-related inactivation of tumor suppressor genes leads to abnormal cell proliferation, and eventually results in tumorigenesis.
     Apoptosis protease activating factor-1(Apaf-1), as the really core of apoptosome complex, is an important pro-apoptotic factor in mitochondrial apoptosis pathway. Apaf-1 plays a role in activation of Caspase-3, simultaneously needing the participation of Apaf-2 (Cyto C) and Apaf-3 (Caspase-9). After Apaf-1 / Cyto C complex binding with ATP / dATP, they can form the apoptosome complex which activate Caspase-3 and start Caspase cascade reaction of apoptosis through Apaf-1's CARD domain convening Caspase-9. Because of the important role of Apaf-1 in apoptosis pathway, the abnormality of Apaf-1 leads to the disorder of apoptosis process. Apaf-1 is also directly or indirectly associated with many diseases, such as: cancer or the nervous system diseases and so on.
     Death-associated protein kinase (DAPK), which participates many transduction pathway mediated by the P53, TNF-α, Fas, IFN-γ, TNF-βand other apoptosis factors, is a positive regulator of apoptosis. DAPK was considered as a tumor suppressor gene and closely related to the occurrence, development, and metastasis of tumor. At the early stage of tumorigenesis, the abnormal expression of DAPK inhibits apoptosis so that leads to normal cells continually division, proliferation and finally tumor formation; while in the case of tumor metastasis, DAPK inhibits cell detachment from the extracellular matrix, which induce tumor cells tolerance to various apoptosis stimuli.
     The relationship between DAPK gene and apaf-1 gene in p53-dependent apoptotic pathway:
     DAPK can activate p19ARF/p53-dependent apoptotic pathway through phosphorylation of p19ARF. Then p53 triggers mitochondrial apoptotic pathway so that lead to DNA fragmentation and apoptosis by means of inducing the expression of some specific apoptotic genes including Bax, PUMA, Noxa, Apaf-1, et al. DAPK gene and Apaf-1 gene, which play an important role in p53-dependent apoptotic pathway, are respectively located in the upstream and downstream of p53. The importance of p53 in starting and early stage of apoptosis has been widely confirmed. The research on these two genes' expression in the OSCC will contribute to explore anti-apoptotic pathway of tumor cells and provide guidance for future treatment. Epigenetics is a study of heritable changes occurring in gene function without changes in the sequence of nuclear DNA. In recent years, there has been rapid progress in understanding epigenetic mechanisms which include DNA methylation, changes in chromatin structure, as well as the changes in genomes of cytoplasmic elements (for instance: chloroplasts and mitochondria). Other mechanisms have also been proposed. These changes will induce the phenomena such as gene silencing, imprinting, para-mutation and RNA interference; therefore, the abnormal modification may lead to tumorigenesis. Despite molecular pathogenesis of the tumor remains unclear, the close relationship between the tumor occurrence and the abnormal methylation of tumor suppressor genes has been recognized by the majority of scholars. The abnormal methylation of genes mainly concentrated in the CpG island in their 5'-ending promoter regions.
     Scholars have found that Apaf-1 is a kind of tumor suppressor gene which rarely mutate. The mechanism underlying Apaf-1 gene's loss of function includes loss of heterozygosity (LOH) and promoter methylation. The methylation-induced gene silencing is the main reason for the down-regulation of gene expression. Also, as tumor suppressor gene, DAPK gene has been concerned by scholars because of its expression down-regulation in variety kinds of tumors. Studies have shown that the down-regulation of DAPK gene expression is relevant with the promoter hypermethylation.
     Transcriptional silencing of tumor suppressor genes led by methylation of CpG island in promoter regions is a reversible epigenetic modification proces,sand this kind of reversal may resume the function of the tumor suppressor genes, suggesting demethylation of DNA as a novel gene therapeutics. The biological activity of 5-Aza-deoxycytidine as a methylation inhibitor is associated with its incorporation into cellular DNA and/or RNA, with subsequent sequestration of DNA methyl transferases (DNMT) via covalent bond formation between C6 of 5-Aza- deoxycytidine and cysteine thiolate of DNMTs. Under physiologic conditions, this enzyme-DNA/RNA adduct is formed irreversibly, thereby depleting the cells of DNMT activity and causing demethylation of cellular DNA. The 5-Aza-deoxycytidine's role of demethylation can reactivate a variety of tumor suppressor genes to restore their function of inducing apoptosis, as well as inhibiting tumor cell growth and providing therapeutics for chemotherapy-resistance tumors. Therefore, it may have broad clinical application prospects.
     DAPK and Apaf-1 are apoptosis-related tumor suppressor genes. Their expression and methylation level in tissues or cells of OSCC have rarely been reported. In this research we detected expression and methylation of DAPK gene and Apaf-1 gene in OSCC tissues and tongue squamous cell carcinoma Tca8113 cell lines. Meanwhile, we observed demethylation in transcriptional regulation of DAPK gene and Apaf-1 gene in Tca8113 cell lines. Specific research contents and results are as follow:
     Ⅰ. Study on expression of Apaf-1 gene and DAPK gene in OSCC The protein expression and mRNA expression of Apaf-1 gene and DAPK gene was detected by immunohistochemistry and semiquantitative RT-PCR in 23 cases of normal oral mucosa and 53 cases of OSCC tissues.
     Results are as follow:
     1. We detected the protein expression and mRNA expression of Apaf-1 gene and DAPK gene in all 23 cases of normal oral mucosa. The positive rate was 100%. There was no gene reduction or deletion.
     2. Apaf-1 protein were positively stained in 23 cases out of 53 OSCC cases (43.4%), The expression of Apaf-1 protein was significantly decreased in OSCC tissues compared with in normal oral mucosa(P<0.01).
     3. DAPK protein were positively stained in 17 cases out of 53 OSCC cases (32.1%), The expression of DAPK protein was significantly decreased in OSCC tissues compared with in normal oral mucosa(P<0.01).
     4. Only in two OSCC tissues of the 53 cases (3.77%), the mRNA index of Apaf-1 gene was 50% greater than that in normal tissues. While in the other 51 cases (96.23%), the mRNA index of Apaf-1 gene showed decreased expression. The expression of Apaf-1 gene was significantly decreased in OSCC tissues compared with in normal oral mucosa(P<0.01).
     5. Only in three OSCC tissues of 53 cases (5.66%), the mRNA index of DAPK gene was 50% greater than that in normal tissues. While in the other 50 cases (94.34%), the mRNA index of DAPK gene showed decreased expression. The expression of DAPK gene was significantly decreased in OSCC tissues compared with in normal oral mucosa(P<0.01).
     6. Protein expression and mRNA expression of Apaf-1 gene and DAPK gene was not significantly correlated with the pathological grade, age and gender of patients (P> 0.05).
     7. The Pearson correlation analysis between Apaf-1 gene and DAPK gene: In statistics, the Pearson correlation coefficient was 0.950(P<0.01),which manifested the expression of these two genes in OSCC tissues had correlation.
     Ⅱ. Study on methylation of Apaf-1 gene and DAPK gene in OSCC The methylation in promoter region of Apaf-1gene and DAPK gene were detected by methylation specific PCR in 23 cases of normal oral mucosa and 53 cases of OSCC tissues.
     Results are as follow:
     1. There was no methylation in promoter region of Apaf-1 gene and DAPK gene in normal oral mucosa.
     2. We detected exhaustive methylation in promoter region of Apaf-1 gene in 41 cases(77.36%)and partial methylation in 5 cases (9.43%)in OSCC. The total methylation rate was 86.79%(46/53) in OSCC, which has significant differences compared with normal oral mucosa(P<0.01).
     3. We detected exhaustive methylation in promoter region of DAPK gene in 30 cases(56.60%)and partial methylation in 8 cases( 15.09%)in OSCC. The total methylation rate was 71.69%(38/53) in OSCC, which has significant difference compared with normal oral mucosa(P<0.01).
     4. The methylation of Apaf-1 gene and DAPK gene was not significantly correlated with pathological grade, age and gender of patients(P>0.05).
     5. Promoter methylation of Apaf-1 gene and DAPK gene tended to correlate positively with their decreased protein expression and mRNA expression in tumor tissues.
     Ⅲ. Study on demethylation treatment of Apaf-1 gene and DAPK gene in human tongue squamous cell carcinoma cell line Tca8113
     To study the effect of demethylated Apaf-1 gene and DAPK gene on Tca8113 cells, we detected Tca8113 cells treated by 5-Aza-deoxycytidine by means of MTT, Annexin V-PI dual stain, TUNEL, methylation specific PCR and semiquantitive RT-PCR.
     Results are as follow:
     1. In tongue Tca8113 cells treated by 5-Aza-deoxycytidine, the cell viability rate was significantly decreased, which has significant differences compared with that of control group(P<0.05). The cell viability appears a dose-dependent effect.
     2. The apoptosis of Tca8113 cells were induced by 5-Aza-deoxycytidine and has significant difference compared with that of control group(P<0.05). The cell apoptosis appears a dose-dependent effect.
     3. After treated by 5-Aza-deoxycytidine, Apaf-1 gene and DAPK gene were demethylated and the most obvious effect was observed in 5μmol/L 5-Aza group.
     4. After treated by 5-Aza-deoxycytidine, the expression Apaf-1 mRNA and DAPK mRNA in Tca8113 cells was increased, which has significant difference compared with control group(P<0.05). The mRNA expression appears a dose-dependent effect.
     5. The mRNA expression of Apaf-1 gene and DAPK gene were upregulated after gene demethylation, which lead to gene exerting their pro-apoptotic role. They can be potential targets for the therapy of oral squamous cell carcinoma. On the base of the results above, we can conclude as follow:
     1. The occurrence and development of OSCC are closely related to significantly decrease of the mRNA and protein expression of Apaf-1 gene and DAPK gene.
     2. In OSCC tissues, the promoter region of Apaf-1 gene and DAPK gene are usually methylated. Gene methylation is one of the main reasons that lead to the decreasing expression of the mRNA and protein of the Apaf-1 gene and DAPK gene.
     3. The expression of Apaf-1 gene and DAPK gene were both increased after demethylation, which promoted apoptosis of the tumor cells. Therefore, Apaf-1 gene and DAPK gene can be used as the potential target for oral squamous cell carcinoma treatment.
     4. The expression and methylation of Apaf-1 gene and DAPK gene were not significantly correlated with the pathological grade, age and gender of patients.
引文
[1]邱蔚六.口腔颌面外科学[M].北京:人民卫生出版社, 2000.
    [2]Harari PM, Wheeler DL, Grandis JR. Molecular target approaches in head and neck cancer: epidermal growth factor receptor and beyond[J]. Semin Radiat Oncol. 2009,19(1):63-68.
    [3]Sherin N, Simi T, Shameena P, et al. Changing trends in oral cancer[J]. Indian J Cancer. 2008, 45(3):93-96.
    [4]Lee SS, Yang SF, Tsai CH, et al. Upregulation of heme oxygenase-1 expression in areca-quid-chewing-associated oral squamous cell carcinoma[J]. J Formos Med Assoc. 2008, 107(5): 355-363.
    [5]Bognar G, Istvan G, Ledniczky G, et al. [Detection of human papilloma virus type 16 in squamous cell carcinoma of colon and its lymph node metastases][J]. Magy Seb. 2008, 61(4): 225-229.
    [6]Reddout N, Christensen T, Bunnell A, et al. High risk HPV types 18 and 16 are potent modulators of oral squamous cell carcinoma phenotypes in vitro[J]. Infect Agent Cancer. 2007, 2: 21.
    [7]Schwarz S, Butz M, Morsczeck C, et al. Increased number of CD25 FoxP3 regulatory T cells in oral squamous cell carcinomas detected by chromogenic immunohistochemical double staining[J]. J Oral Pathol Med. 2008,37(8):485-489.
    [8]Villarroel Dorrego M, Speight PM, Barrett AW. The immunohistology of CD40 in human oral epithelium in health and disease[J]. J Oral Pathol Med. 2006,35(5):268-273.
    [9]Dodd LG, Kerns BJ, Dodge RK, et al. Intratumoral heterogeneity in primary breast carcinoma: study of concurrent parameters[J]. J Surg Oncol. 1997,64(4):280-287; discussion 287-288.
    [10]Saito S, Morita K, Hirano T. High frequency of common DNA copy number abnormalities detected by bacterial artificial chromosome array comparative genomic hybridization in 24 breast cancer cell lines[J]. Hum Cell. 2009,22(1):1-10.
    [11]Alvarez-Nunez F, Mora J, Matias-Guiu X. [Thyroid carcinomas of the follicularepithelium: tumor markers and oncogenes][J]. Med Clin (Barc). 2003,121(7):264-269.
    [12]江培洲,沈新明,黄华.癌基因与抑癌基因的表达研究进展[J].国外医学肿瘤学分册. 2001,28(2):89-92.
    [13]王晓辉,张浩,叶棋浓.癌基因和抑癌基因研究进展[J].生物技术通讯. 2006, 17(2): 242-244.
    [14]Todd R, Wong DT. Oncogenes[J]. Anticancer Res. 1999,19(6A):4729-4746.
    [15]Liu J, Xu R, Jin Y, et al. In vitro triplex formation and functional analysis of TFOs designed against human c-sis/PDGF-B proto-oncogene[J]. Sci China C Life Sci. 2001, 44(1): 83-91.
    [16]Barros-Silva JD, Leitao D, Afonso L, et al. Association of ERBB2 gene status with histopathological parameters and disease-specific survival in gastric carcinoma patients[J]. Br J Cancer. 2009,100(3):487-493.
    [17]Chang YM, Bai L, Liu S, et al. Src family kinase oncogenic potential and pathways in prostate cancer as revealed by AZD0530[J]. Oncogene. 2008,27(49):6365-6375.
    [18]Poincloux R, Al Saati T, Maridonneau-Parini I, et al. The oncogenic activity of the Src family kinase Hck requires the cooperative action of the plasma membrane- and lysosome-associated isoforms[J]. Eur J Cancer. 2009,45(3):321-327.
    [19]Wang X, Wang J, Lin S, et al. Sp1 is involved in H2O2-induced PUMA gene expression and apoptosis in colorectal cancer cells[J]. J Exp Clin Cancer Res. 2008,27:44.
    [20]Lyustikman Y, Momota H, Pao W, et al. Constitutive activation of Raf-1 induces glioma formation in mice[J]. Neoplasia. 2008,10(5):501-510.
    [21]Ancrile BB, O'Hayer KM, Counter CM. Oncogenic ras-induced expression of cytokines: a new target of anti-cancer therapeutics[J]. Mol Interv. 2008,8(1):22-27.
    [22]To MD, Wong CE, Karnezis AN, et al. Kras regulatory elements and exon 4A determine mutation specificity in lung cancer[J]. Nat Genet. 2008,40(10):1240-1244.
    [23]Zhang Y, Jin M, Liu B, et al. Association between H-RAS T81C genetic polymorphism and gastrointestinal cancer risk: a population based case-control study in China[J]. BMC Cancer. 2008, 8:256.
    [24]Haigis KM, Kendall KR, Wang Y, et al. Differential effects of oncogenic K-Ras andN-Ras on proliferation, differentiation and tumor progression in the colon[J]. Nat Genet. 2008, 40(5): 600-608.
    [25]Crawford M, Brawner E, Batte K, et al. MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines[J]. Biochem Biophys Res Commun. 2008,373(4):607-612.
    [26]Crew JP, Fuggle S, Bicknell R, et al. Eukaryotic initiation factor-4E in superficial and muscle invasive bladder cancer and its correlation with vascular endothelial growth factor expression and tumour progression[J]. Br J Cancer. 2000,82(1):161-166.
    [27]Eilers M, Eisenman RN. Myc's broad reach[J]. Genes Dev. 2008,22(20):2755-2766.
    [28]Milde-Langosch K. The Fos family of transcription factors and their role in tumourigenesis[J]. Eur J Cancer. 2005,41(16):2449-2461.
    [29]Silva JM, Dominguez G, Gonzalez-Sancho JM, et al. Expression of thyroid hormone receptor/erbA genes is altered in human breast cancer[J]. Oncogene. 2002,21(27):4307-4316.
    [30]Fong Y, Chou SJ, Hung KF, et al. An investigation of the differential expression of Her2/neu gene expression in normal oral mucosa, epithelial dysplasia, and oral squamous cell carcinoma in Taiwan[J]. J Chin Med Assoc. 2008,71(3):123-127.
    [31]Xia J, Chen Q, Li B, et al. Amplifications of TAOS1 and EMS1 genes in oral carcinogenesis: association with clinicopathological features[J]. Oral Oncol. 2007, 43(5): 508-514.
    [32]Chiang WF, Yen CY, Lin CN, et al. Up-regulation of a serine-threonine kinase proto-oncogene Pim-1 in oral squamous cell carcinoma[J]. Int J Oral Maxillofac Surg. 2006, 35(8): 740-745.
    [33]Freier K, Schwaenen C, Sticht C, et al. Recurrent FGFR1 amplification and high FGFR1 protein expression in oral squamous cell carcinoma (OSCC)[J]. Oral Oncol. 2007, 43(1): 60-66.
    [34]宋旭华.癌基因与抑癌基因的检测及其临床诊断意义[J].标记免疫分析与临床. 2000, 7(4):236.
    [35]曾益新.肿瘤学[M].北京:人民卫生出版社, 1999.
    [36]Kodama M, Murakami M, Kodama T. Topological evidence of differential oncogene activation-tumor suppressor gene inactivation features in 10 human neoplasias, as revealed bysequential regression analysis of world cancer incidence data[J]. Anticancer Res. 1997, 17(5B): 3809-3816.
    [37]Foschini MP, Cocchi R, Morandi L, et al. E-cadherin loss and Delta Np73L expression in oral squamous cell carcinomas showing aggressive behavior[J]. Head Neck. 2008, 30(11): 1475-1482.
    [38]Chakraborty S, Mohiyuddin SM, Gopinath KS, et al. Involvement of TSC genes and differential expression of other members of the mTOR signaling pathway in oral squamous cell carcinoma[J]. BMC Cancer. 2008,8:163.
    [39]Kurasawa Y, Shiiba M, Nakamura M, et al. PTEN expression and methylation status in oral squamous cell carcinoma[J]. Oncol Rep. 2008,19(6):1429-1434.
    [40]Nakamura E, Kozaki K, Tsuda H, et al. Frequent silencing of a putative tumor suppressor gene melatonin receptor 1 A (MTNR1A) in oral squamous-cell carcinoma[J]. Cancer Sci. 2008,99(7):1390-1400.
    [41]Imai T, Toyota M, Suzuki H, et al. Epigenetic inactivation of RASSF2 in oral squamous cell carcinoma[J]. Cancer Sci. 2008,99(5):958-966.
    [42]He Y, Chen Q, Li B. ATM in oral carcinogenesis: association with clinicopathological features[J]. J Cancer Res Clin Oncol. 2008,134(9):1013-1020.
    [43]Lo Muzio L, Campisi G, Farina A, et al. Effect of p63 expression on survival in oral squamous cell carcinoma[J]. Cancer Invest. 2007,25(6):464-469.
    [44]Pimenta FJ, Gomes DA, Perdigao PF, et al. Characterization of the tumor suppressor gene WWOX in primary human oral squamous cell carcinomas[J]. Int J Cancer. 2006, 118(5): 1154-1158.
    [45]白丽蓉,时丽冉.表观遗传学及其相关研究进展[J].安徽农业科学. 2007, 35(20): 6056-6057.
    [46]Tost J. DNA methylation: an introduction to the biology and the disease-associated changes of a promising biomarker[J]. Methods Mol Biol. 2009,507:3-20.
    [47]李鑫,胡兰,季安全. DNA甲基化与个体年龄的相关性研究进展[J].法律与医学杂志. 2006,13(4):284-288.
    [48]Lopez-Serra L, Esteller M. Proteins that bind methylated DNA and human cancer:reading the wrong words[J]. Br J Cancer. 2008,98(12):1881-1885.
    [49]Talmuder.DNA甲基化[EB/OL]. [2009-01-16] [2009-04-11]. http://baike.baidu.com/view/212673.htm
    [50]Chiang PK, Gordon RK, Tal J, et al. S-Adenosylmethionine and methylation[J]. FASEB J. 1996,10(4):471-480.
    [51]吕锋,邵泽勇,谢朝良.表观遗传学在肿瘤诊治中的应用[J].西部医学. 2008, 20(1): 196-199.
    [52]Kanai Y. Alterations of DNA methylation and clinicopathological diversity of human cancers[J]. Pathol Int. 2008,58(9):544-558.
    [53]Suzuki H, Toyota M, Sato H, et al. Roles and causes of abnormal DNA methylation in gastrointestinal cancers[J]. Asian Pac J Cancer Prev. 2006,7(2):177-185.
    [54]Shelton BP, Misso NL, Shaw OM, et al. Epigenetic regulation of human epithelial cell cancers[J]. Curr Opin Mol Ther. 2008,10(6):568-578.
    [55]Recillas-Targa F. Epigenetic regulation and therapeutic approaches in cancer[J]. Curr Top Med Chem. 2008,8(15):1367-1378.
    [56]张海元,刘娟.肿瘤相关基因的表观遗传修饰研究进展[J].长江大学学报(自科版)医学卷. 2007,4(2):202-204.
    [57]Esteller M, Corn PG, Baylin SB, et al. A gene hypermethylation profile of human cancer[J]. Cancer Res. 2001,61(8):3225-3229.
    [58]Costello JF, Fruhwald MC, Smiraglia DJ, et al. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns[J]. Nat Genet. 2000,24(2):132-138.
    [59]陈俊霞,崔秀云.抑癌基因、抑癌基因失活与杂合性丢失及甲基化研究进展[J].国外医学遗传学分册. 2004,27(6):359-363.
    [60]Kato K, Hara A, Kuno T, et al. Aberrant promoter hypermethylation of p16 and MGMT genes in oral squamous cell carcinomas and the surrounding normal mucosa[J]. J Cancer Res Clin Oncol. 2006,132(11):735-743.
    [61]Sogabe Y, Suzuki H, Toyota M, et al. Epigenetic inactivation of SFRP genes in oral squamous cell carcinoma[J]. Int J Oncol. 2008,32(6):1253-1261.
    [62]Suzuki E, Imoto I, Pimkhaokham A, et al. PRTFDC1, a possible tumor-suppressor gene,is frequently silenced in oral squamous-cell carcinomas by aberrant promoter hypermethylation[J]. Oncogene. 2007,26(57):7921-7932.
    [63]Ruesga MT, Acha-Sagredo A, Rodriguez MJ, et al. p16(INK4a) promoter hypermethylation in oral scrapings of oral squamous cell carcinoma risk patients[J]. Cancer Lett. 2007, 250(1):140-145.
    [64]Ishida E, Nakamura M, Ikuta M, et al. Promotor hypermethylation of p14ARF is a key alteration for progression of oral squamous cell carcinoma[J]. Oral Oncol. 2005,41(6):614-622.
    [65]Viswanathan M, Tsuchida N, Shanmugam G. Promoter hypermethylation profile of tumor-associated genes p16, p15, hMLH1, MGMT and E-cadherin in oral squamous cell carcinoma[J]. Int J Cancer. 2003,105(1):41-46.
    [66]Kozaki K, Imoto I, Mogi S, et al. Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer[J]. Cancer Res. 2008,68(7):2094-2105.
    [67]杨光华.病理学[M].北京:人民卫生出版社, 2001.
    [68]Bartova E, Harnicarova A, Pachernik J, et al. Nuclear topography and expression of the BCR/ABL fusion gene and its protein level influenced by cell differentiation and RNA interference[J]. Leuk Res. 2005,29(8):901-913.
    [69]刘宇,季宇彬.肿瘤细胞的凋亡及其分子机制研究[J].哈尔滨商业大学学报(自然科学版). 2008,24(5):524-527.
    [70]Kang HJ, Lee YM, Jeong YJ, et al. Large-scale preparation of active caspase-3 in E. coli by designing its thrombin-activatable precursors[J]. BMC Biotechnol. 2008,8:92.
    [71]李小明,孙志贤.细胞凋亡中的关键蛋白酶——Caspase-3[J].国外医学分子生物学分册. 1999,21(1):6-9.
    [72]Walsh JG, Cullen SP, Sheridan C, et al. Executioner caspase-3 and caspase-7 are functionally distinct proteases[J]. Proc Natl Acad Sci U S A. 2008,105(35):12815-12819.
    [73]项永生,徐昆.凋亡与脑缺血损伤[J].暨南大学学报:自然科学与医学版. 2000, 21(2): 126-130.
    [74]White E. Mechanisms of apoptosis regulation by viral oncogenes in infection and tumorigenesis[J]. Cell Death Differ. 2006,13(8):1371-1377.
    [75]Nelson DA, Tan TT, Rabson AB, et al. Hypoxia and defective apoptosis drive genomicinstability and tumorigenesis[J]. Genes Dev. 2004,18(17):2095-2107.
    [76]Tokman B, Gultekin SE, Sezer C, et al. The expression of p53, p16 proteins and prevalence of apoptosis in oral squamous cell carcinoma. Correlation with mode of invasion grading system[J]. Saudi Med J. 2004,25(12):1922-1930.
    [77]Kato K, Kawashiri S, Yoshizawa K, et al. Apoptosis-associated markers and clinical outcome in human oral squamous cell carcinomas[J]. J Oral Pathol Med. 2008,37(6):364-371.
    [78]Lee JC, Sharma M, Lee YH, et al. Pax9 mediated cell survival in oral squamous carcinoma cell enhanced by c-myb[J]. Cell Biochem Funct. 2008,26(8):892-899.
    [79]Koehn J, Krapfenbauer K, Huber S, et al. Potential involvement of MYC- and p53-related pathways in tumorigenesis in human oral squamous cell carcinoma revealed by proteomic analysis[J]. J Proteome Res. 2008,7(9):3818-3829.
    [80]Jiang L, Zeng X, Yang H, et al. Oral cancer overexpressed 1 (ORAOV1): a regulator for the cell growth and tumor angiogenesis in oral squamous cell carcinoma[J]. Int J Cancer. 2008, 123(8): 1779-1786.
    [81]Nemes J, Boda R, Redl P, et al. [Oral squamous cell carcinoma in north-eastern Hungary. II. Etiological factors][J]. Fogorv Sz. 2006,99(5):179-185.
    [82]Kessler P, Grabenbauer G, Leher A, et al. Neoadjuvant and adjuvant therapy in patients with oral squamous cell carcinoma Long-term survival in a prospective, non-randomized study[J]. Br J Oral Maxillofac Surg. 2008,46(1):1-5.
    [83]Pentimalli F. Tumor Immunotherapy: Shifting the Balance[J]. Nat Rev Cancer. 2007, 7(3): 158-159.
    [84]Young MR. Use of carcinogen-induced premalignant oral lesions in a dendritic cell-based vaccine to stimulate immune reactivity against both premalignant oral lesions and oral cancer[J]. J Immunother. 2008,31(2):148-156.
    [85]刘大庆,司徒镇强.基因治疗研究发展历程的回顾与启示[J].医学与社会. 2003, 16(3):25-27.
    [86]张冰,龚磊,刘贤锡.肿瘤反义治疗研究进展[J].国外医学肿瘤学分册. 2004 ,31(9):674-677.
    [87]Bednarek I, Sypniewski D, Solarz J, et al. [Changes in etoposide-induced apoptosis ofHeLa tumor cells transfected with antisense oligonucleotide for BCL-2 mRNA][J]. Wiad Lek. 2008, 61(4-6):97-106.
    [88]Liu HF, Teng XC, Zheng JC, et al. Effect of NHE1 antisense gene transfection on the biological behavior of SGC-7901 human gastric carcinoma cells[J]. World J Gastroenterol. 2008, 14(14): 2162-2167.
    [89]Schlingensiepen KH, Fischer-Blass B, Schmaus S, et al. Antisense therapeutics for tumor treatment: the TGF-beta2 inhibitor AP 12009 in clinical development against malignant tumors[J]. Recent Results Cancer Res. 2008,177:137-150.
    [90]Stass SA, Mixson J. Oncogenes and tumor suppressor genes: therapeutic implications[J]. Clin Cancer Res. 1997,3(12 Pt 2):2687-2695.
    [91]王沁.癌基因、抑癌基因与肿瘤基因疗法[J].武汉教育学院学报. 1996,15(6):52-55.
    [92]Nakayama S, Semba S, Maeda N, et al. Role of the WWOX gene, encompassing fragile region FRA16D, in suppression of pancreatic carcinoma cells[J]. Cancer Sci. 2008, 99(7): 1370-1376.
    [93]Ishigami T, Uzawa K, Fushimi K, et al. Inhibition of ICAM2 induces radiosensitization in oral squamous cell carcinoma cells[J]. Br J Cancer. 2008,98(8):1357-1365.
    [94]Szyf M. DNA methylation and demethylation as targets for anticancer therapy[J]. Biochemistry (Mosc). 2005,70(5):533-549.
    [95]Morita S, Iida S, Kato K, et al. The synergistic effect of 5-aza-2'-deoxycytidine and 5-fluorouracil on drug-resistant tumors[J]. Oncology. 2006,71(5-6):437-445.
    [96]Yagi S, Oda-Sato E, Uehara I, et al. 5-Aza-2'-deoxycytidine restores proapoptotic function of p53 in cancer cells resistant to p53-induced apoptosis[J]. Cancer Invest. 2008, 26(7): 680-688.
    [97]Natsume A, Wakabayashi T, Tsujimura K, et al. The DNA demethylating agent 5-aza-2'-deoxycytidine activates NY-ESO-1 antigenicity in orthotopic human glioma[J]. Int J Cancer. 2008,122(11):2542-2553.
    [98]Iwase M, Yoshiba S, Uchid M, et al. Enhanced susceptibility to apoptosis of oral squamous cell carcinoma cells subjected to combined treatment with anticancer drugs and phosphatidylinositol 3-kinase inhibitors[J]. Int J Oncol. 2007,31(5):1141-1147.
    [99]Zou H, Henzel WJ, Liu X, et al. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3[J]. Cell. 1997, 90(3): 405-413.
    [100]Zhou P, Chou J, Olea RS, et al. Solution structure of Apaf-1 CARD and its interaction with caspase-9 CARD: a structural basis for specific adaptor/caspase interaction[J]. Proc Natl Acad Sci U S A. 1999,96(20):11265-11270.
    [101]Benites BD, Fattori A, Hackel C, et al. Low expression of APAF-1XL in acute myeloid leukemia may be associated with the failure of remission induction therapy[J]. Braz J Med Biol Res. 2008,41(7):571-578.
    [102]Fu WN, Kelsey SM, Newland AC, et al. Apaf-1XL is an inactive isoform compared with Apaf-1L[J]. Biochem Biophys Res Commun. 2001,282(1):268-272.
    [103]Benedict MA, Hu Y, Inohara N, et al. Expression and functional analysis of Apaf-1 isoforms. Extra Wd-40 repeat is required for cytochrome c binding and regulated activation of procaspase-9[J]. J Biol Chem. 2000,275(12):8461-8468.
    [104]Riedl SJ, Li W, Chao Y, et al. Structure of the apoptotic protease-activating factor 1 bound to ADP[J]. Nature. 2005,434(7035):926-933.
    [105]Jiang X, Wang X. Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1[J]. J Biol Chem. 2000,275(40):31199-31203.
    [106]Cain K, Bratton SB, Cohen GM. The Apaf-1 apoptosome: a large caspase-activating complex[J]. Biochimie. 2002,84(2-3):203-214.
    [107]陈剑琳,傅宇阳. Apaf-1和凋亡[J].国外医学·生理、病理科学与临床分册. 2001, 21(2): 95-97.
    [108]Setkova J, Matalova E, Sharpe PT, et al. Primary enamel knot cell death in Apaf-1 and caspase-9 deficient mice[J]. Arch Oral Biol. 2007,52(1):15-19.
    [109]范红旗,郭锡熔,陈荣华,等.凋亡蛋白酶活化因子1基因在脂肪细胞诱导分化中表达及肿瘤坏死因子-α对其调节作用[J].中国循证儿科杂志. 2007,2(1):38-42.
    [110]Herr I, Debatin KM. Cellular stress response and apoptosis in cancer therapy[J]. Blood. 2001, 98(9):2603-2614.
    [111]余亮.凋亡:细胞的绝唱[EB/OL]. [2009.4.30] [2009.5.5].http://www.ebiotrade.com.
    [112]Cecconi F, Alvarez-Bolado G, Meyer BI, et al. Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development[J]. Cell. 1998,94(6):727-737.
    [113]辛国荣,姜广林,高艳华,等.肝硬化门脉高压症中肝细胞线粒体钙、细胞色素C与细胞凋亡的关系[J].中国组织工程研究与临床康复. 2007,11(47):9456-9461.
    [114]Hajra KM, Liu JR. Apoptosome dysfunction in human cancer[J]. Apoptosis. 2004, 9(6): 691-704.
    [115]Gopalakrishnan S, Van Emburgh BO, Robertson KD. DNA methylation in development and human disease[J]. Mutat Res. 2008,647(1-2):30-38.
    [116]黄带发,富伟能,尚超,等.喉鳞癌Apaf-1基因表达及启动子区甲基化研究[J].遗传学报. 2004,31(12):1327-1331.
    [117]Christoph F, Kempkensteffen C, Weikert S, et al. Methylation of tumour suppressor genes APAF-1 and DAPK-1 and in vitro effects of demethylating agents in bladder and kidney cancer[J]. Br J Cancer. 2006,95(12):1701-1707.
    [118]Johnson CE, Huang YY, Parrish AB, et al. Differential Apaf-1 levels allow cytochrome c to induce apoptosis in brain tumors but not in normal neural tissues[J]. Proc Natl Acad Sci U S A. 2007,104(52):20820-20825.
    [119]Zlobec I, Minoo P, Baker K, et al. Loss of APAF-1 expression is associated with tumour progression and adverse prognosis in colorectal cancer[J]. Eur J Cancer. 2007, 43(6): 1101-1107.
    [120]Anichini A, Mortarini R, Sensi M, et al. APAF-1 signaling in human melanoma[J]. Cancer Lett. 2006,238(2):168-179.
    [121]Sanchez I, Xu CJ, Juo P, et al. Caspase-8 is required for cell death induced by expanded polyglutamine repeats[J]. Neuron. 1999,22(3):623-633.
    [122]Gervais FG, Xu D, Robertson GS, et al. Involvement of caspases in proteolytic cleavage of Alzheimer's amyloid-beta precursor protein and amyloidogenic A beta peptide formation[J]. Cell. 1999,97(3):395-406.
    [123]Yakovlev AG, Ota K, Wang G, et al. Differential expression of apoptotic protease-activating factor-1 and caspase-3 genes and susceptibility to apoptosis during braindevelopment and after traumatic brain injury[J]. J Neurosci. 2001,21(19):7439-7446.
    [124]Kumamoto H, Ooya K. Detection of mitochondria-mediated apoptosis signaling molecules in ameloblastomas[J]. J Oral Pathol Med. 2005,34(9):565-572.
    [125]Raveh T, Kimchi A. DAP kinase-a proapoptotic gene that functions as a tumor suppressor[J]. Exp Cell Res. 2001,264(1):185-192.
    [126]Britschgi A, Trinh E, Rizzi M, et al. DAPK2 is a novel E2F1/KLF6 target gene involved in their proapoptotic function[J]. Oncogene. 2008,27(43):5706-5716.
    [127]Schneider-Stock R, Roessner A, Ullrich O. DAP-kinase--protector or enemy in apoptotic cell death[J]. Int J Biochem Cell Biol. 2005,37(9):1763-1767.
    [128]Morley SJ, Willett M. Signaling pathways open the GAITway to translational control[J]. Dev Cell. 2008,15(5):639-640.
    [129]Mukhopadhyay R, Ray PS, Arif A, et al. DAPK-ZIPK-L13a axis constitutes a negative-feedback module regulating inflammatory gene expression[J]. Mol Cell. 2008, 32(3): 371-382.
    [130]Tanaka T, Bai T, Yukawa K, et al. Radiation-induced cell death is independent of the apoptotic signals mediated by death-associated protein kinase in human cervical squamous cell carcinoma cells[J]. Oncol Rep. 2005,14(4):949-955.
    [131]Raveh T, Droguett G, Horwitz MS, et al. DAP kinase activates a p19ARF/p53- mediated apoptotic checkpoint to suppress oncogenic transformation[J]. Nat Cell Biol. 2001, 3(1): 1-7.
    [132]Cohen O, Inbal B, Kissil JL, et al. DAP-kinase participates in TNF-alpha- and Fas-induced apoptosis and its function requires the death domain[J]. J Cell Biol. 1999, 146(1): 141-148.
    [133]李艳春,曾庆富. DAP-kinase的研究进展[J].国外医学·生理、病理科学与临床分册. 2003,23(3):260-262.
    [134]Jin Y, Gallagher PJ. Antisense depletion of death-associated protein kinase promotes apoptosis[J]. J Biol Chem. 2003,278(51):51587-51593.
    [135]Schumacher AM, Velentza AV, Watterson DM, et al. DAPK catalytic activity in the hippocampus increases during the recovery phase in an animal model of brain hypoxic-ischemicinjury[J]. Biochim Biophys Acta. 2002,1600(1-2):128-137.
    [136]Huang J, Teng L, Liu T, et al. Identification of a novel serine/threonine kinase that inhibits TNF-induced NF-kappaB activation and p53-induced transcription[J]. Biochem Biophys Res Commun. 2003,309(4):774-778.
    [137]Jin Y, Blue EK, Dixon S, et al. A death-associated protein kinase (DAPK)-interacting protein, DIP-1, is an E3 ubiquitin ligase that promotes tumor necrosis factor-induced apoptosis and regulates the cellular levels of DAPK[J]. J Biol Chem. 2002,277(49):46980-46986.
    [138]Bialik S, Kimchi A. DAP-kinase as a target for drug design in cancer and diseases associated with accelerated cell death[J]. Semin Cancer Biol. 2004,14(4):283-294.
    [139]Kogel D, Reimertz C, Dussmann H, et al. The death associated protein (DAP) kinase homologue Dlk/ZIP kinase induces p19ARF- and p53-independent apoptosis[J]. Eur J Cancer. 2003, 39(2):249-256.
    [140]Kim CH, Chiplunkar S, Gupta S. Chronic HIV type 1 infection down-regulates expression of DAP kinase and p19ARF-p53 checkpoint and is associated with resistance to CD95-mediated apoptosis in HUT78 T cells[J]. AIDS Res Hum Retroviruses. 2004, 20(2): 183-189.
    [141]Wang WJ, Kuo JC, Yao CC, et al. DAP-kinase induces apoptosis by suppressing integrin activity and disrupting matrix survival signals[J]. J Cell Biol. 2002,159(1):169-179.
    [142]Yazawa K, Tsuno NH, Kitayama J, et al. Selective inhibition of cyclooxygenase-2 inhibits colon cancer cell adhesion to extracellular matrix by decreased expression of beta1 integrin[J]. Cancer Sci. 2005,96(2):93-99.
    [143]Zhang Y, Lu H, Dazin P, et al. Squamous cell carcinoma cell aggregates escape suspension-induced, p53-mediated anoikis: fibronectin and integrin alphav mediate survival signals through focal adhesion kinase[J]. J Biol Chem. 2004,279(46):48342-48349.
    [144]Shani G, Marash L, Gozuacik D, et al. Death-associated protein kinase phosphorylates ZIP kinase, forming a unique kinase hierarchy to activate its cell death functions[J]. Mol Cell Biol. 2004,24(19):8611-8626.
    [145]Bello MJ, Aminoso C, Lopez-Marin I, et al. DNA methylation of multiple promoter-associated CpG islands in meningiomas: relationship with the allelic status at 1p and22q[J]. Acta Neuropathol. 2004,108(5):413-421.
    [146]Farrell WE, Clayton RN. Epigenetic change in pituitary tumorigenesis[J]. Endocr Relat Cancer. 2003,10(2):323-330.
    [147]Leung RC, Liu SS, Chan KY, et al. Promoter methylation of death-associated protein kinase and its role in irradiation response in cervical cancer[J]. Oncol Rep. 2008, 19(5): 1339-1345.
    [148]Zhang S, Kong WJ, Wang YJ, et al. [Inhibitory effect of 5-Aza-2'-deoxycytidine on human nasopharyngeal carcinoma xenograft in nude mice][J]. Ai Zheng. 2005, 24(10): 1201-1205.
    [149]Chim CS, Liang R, Fung TK, et al. Epigenetic dysregulation of the death-associated protein kinase/p14/HDM2/p53/Apaf-1 apoptosis pathway in multiple myeloma[J]. J Clin Pathol. 2007, 60(6):664-669.
    [150]Lou C, Yang B, Gao YT, et al. [Aberrant methylation of multiple genes and its clinical implication in hepatocellular carcinoma][J]. Zhonghua Zhong Liu Za Zhi. 2008,30(11):831-836.
    [151]Herman JG, Graff JR, Myohanen S, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands[J]. Proc Natl Acad Sci U S A. 1996, 93(18): 9821-9826.
    [152]De Schutter H, Geeraerts H, Verbeken E, et al. Promoter methylation of TIMP3 and CDH1 predicts better outcome in head and neck squamous cell carcinoma treated by radiotherapy only[J]. Oncol Rep. 2009,21(2):507-513.
    [153]Bernal C, Aguayo F, Villarroel C, et al. Reprimo as a potential biomarker for early detection in gastric cancer[J]. Clin Cancer Res. 2008,14(19):6264-6269.
    [154]Jarmalaite S, Jankevicius F, Kurgonaite K, et al. Promoter hypermethylation in tumour suppressor genes shows association with stage, grade and invasiveness of bladder cancer[J]. Oncology. 2008,75(3-4):145-151.
    [155]Chen WT, Hung WC, Kang WY, et al. Urothelial carcinomas arising in arsenic-contaminated areas are associated with hypermethylation of the gene promoter of the death-associated protein kinase[J]. Histopathology. 2007,51(6):785-792.
    [156]Takino H, Li C, Hu S, et al. Primary cutaneous marginal zone B-cell lymphoma: amolecular and clinicopathological study of cases from Asia, Germany, and the United States[J]. Mod Pathol. 2008,21(12):1517-1526.
    [157]Hopfer O, Komor M, Koehler IS, et al. Aberrant promotor methylation in MDS hematopoietic cells during in vitro lineage specific differentiation is differently associated with DNMT isoforms[J]. Leuk Res. 2009,33(3):434-442.
    [158]Hachana M, Trimeche M, Ziadi S, et al. Evidence for a role of the Simian Virus 40 in human breast carcinomas[J]. Breast Cancer Res Treat. 2009,113(1):43-58.
    [159]Zhao XL, Meng ZY, Qiao YH, et al. [Promoter methylation of DAPK gene in cervical carcinoma][J]. Ai Zheng. 2008,27(9):919-923.
    [160]Amara K, Trimeche M, Ziadi S, et al. Prognostic significance of aberrant promoter hypermethylation of CpG islands in patients with diffuse large B-cell lymphomas[J]. Ann Oncol. 2008, 19(10):1774-1786.
    [161]Liu XF, Kong FM, Xu Z, et al. Promoter hypermethylation of death-associated protein kinase gene in cholangiocarcinoma[J]. Hepatobiliary Pancreat Dis Int. 2007,6(4):407-411.
    [162]Chai CY, Huang YC, Hung WC, et al. Arsenic salts induced autophagic cell death and hypermethylation of DAPK promoter in SV-40 immortalized human uroepithelial cells[J]. Toxicol Lett. 2007,173(1):48-56.
    [163]Lindholm D, Arumae U. Cell differentiation: reciprocal regulation of Apaf-1 and the inhibitor of apoptosis proteins[J]. J Cell Biol. 2004,167(2):193-195.
    [164]Wang HL, Bai H, Li Y, et al. Rationales for expression and altered expression of apoptotic protease activating factor-1 gene in gastric cancer[J]. World J Gastroenterol. 2007, 13(38): 5060-5064.
    [165]杨少辉. RUNX3、DAPK基因甲基化与胃癌关系的研究[D].沈阳:中国医科大学, 2007.
    [166]雷令风行.RT-PCR技术[EB/OL]. [2008.2.12] [2009.3.16]. http://baike.baidu.com/view/1410034.htm.
    [167]zouchengwu.RT-PCR原理[EB/OL]. [2008.4.15] [2009.3.16]. http://hi.baidu.com/zouchengwu/blog/item/d535f10a6068af3bb0351d0e.htm. l
    [168]Hirasawa Y, Arai M, Imazeki F, et al. Methylation status of genes upregulated bydemethylating agent 5-aza-2'-deoxycytidine in hepatocellular carcinoma[J]. Oncology. 2006, 71(1-2): 77-85.
    [169]Kim HE, Du F, Fang M, et al. Formation of apoptosome is initiated by cytochrome c-induced dATP hydrolysis and subsequent nucleotide exchange on Apaf-1[J]. Proc Natl Acad Sci U S A. 2005,102(49):17545-17550.
    [170]郭黠,谢辉,张海涛. DAPK在细胞凋亡及疾病中的研究进展[J].国际病理科学与临床杂志. 2006,26(1):52-54.
    [171]goodcook.免疫组织化学[EB/OL]. [2007.10.31] [2009.3.9]. http://baike.baidu.com/view/1229000.htm.
    [172]Besse B, Cande C, Spano JP, et al. Nuclear localization of apoptosis protease activating factor-1 predicts survival after tumor resection in early-stage non-small cell lung cancer[J]. Clin Cancer Res. 2004,10(17):5665-5669.
    [173]Leo C, Horn LC, Rauscher C, et al. Lack of apoptotic protease activating factor-1 expression and resistance to hypoxia-induced apoptosis in cervical cancer[J]. Clin Cancer Res. 2007, 13(4):1149-1153.
    [174]Kuester D, Dar AA, Moskaluk CC, et al. Early involvement of death-associated protein kinase promoter hypermethylation in the carcinogenesis of Barrett's esophageal adenocarcinoma and its association with clinical progression[J]. Neoplasia. 2007,9(3):236-245.
    [175]高海波,张拴林,陈燕红.半定量RT-PCR在基因表达方面的应用[J].畜禽业. 2008, (226): 34-37.
    [176]Zhou CQ, Liu S, Xue LY, et al. Down-regulation of gamma-synuclein in human esophageal squamous cell carcinoma[J]. World J Gastroenterol. 2003,9(9):1900-1903.
    [177]Spinsanti G, Zannolli R, Panti C, et al. Quantitative Real-Time PCR detection of TRPV1-4 gene expression in human leukocytes from healthy and hyposensitive subjects[J]. Mol Pain. 2008,4:51.
    [178]von Schnakenburg C, Strehlau J, Ehrich JH, et al. Quantitative gene expression of TGF-beta1, IL-10, TNF-alpha and Fas Ligand in renal cortex and medulla[J]. Nephrol Dial Transplant. 2002,17(4):573-579.
    [179]Mori R, Wang Q, Danenberg KD, et al. Both beta-actin and GAPDH are usefulreference genes for normalization of quantitative RT-PCR in human FFPE tissue samples of prostate cancer[J]. Prostate. 2008,68(14):1555-1560.
    [180]绿谷生物网.RT-PCR的操做经验[EB/OL]. [2008.9.10] [2009.3.18]. http://www.ibioo.com/experiment/pcr/rtpcr/2008/3892.htm. l
    [181]Furukawa Y, Sutheesophon K, Wada T, et al. Methylation silencing of the Apaf-1 gene in acute leukemia[J]. Mol Cancer Res. 2005,3(6):325-334.
    [182]Roman-Gomez J, Jimenez-Velasco A, Agirre X, et al. Lack of CpG island methylator phenotype defines a clinical subtype of T-cell acute lymphoblastic leukemia associated with good prognosis[J]. J Clin Oncol. 2005,23(28):7043-7049.
    [183]Mittag F, Kuester D, Vieth M, et al. DAPK promotor methylation is an early event in colorectal carcinogenesis[J]. Cancer Lett. 2006,240(1):69-75.
    [184]Fischer JR, Ohnmacht U, Rieger N, et al. Promoter methylation of RASSF1A, RARbeta and DAPK predict poor prognosis of patients with malignant mesothelioma[J]. Lung Cancer. 2006,54(1):109-116.
    [185]Raval A, Tanner SM, Byrd JC, et al. Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia[J]. Cell. 2007,129(5):879-890.
    [186]Wethkamp N, Ramp U, Geddert H, et al. Expression of death-associated protein kinase during tumour progression of human renal cell carcinomas: hypermethylation-independent mechanisms of inactivation[J]. Eur J Cancer. 2006,42(2):264-274.
    [187]Christoph F, Kempkensteffen C, Weikert S, et al. Frequent epigenetic inactivation of p53 target genes in seminomatous and nonseminomatous germ cell tumors[J]. Cancer Lett. 2007, 247(1): 137-142.
    [188]Foley DL, Craig JM, Morley R, et al. Prospects for epigenetic epidemiology[J]. Am J Epidemiol. 2009,169(4):389-400.
    [189]Del Poeta G, Bruno A, Del Principe MI, et al. Deregulation of the mitochondrial apoptotic machinery and development of molecular targeted drugs in acute myeloid leukemia[J]. Curr Cancer Drug Targets. 2008,8(3):207-222.
    [190]Kong WJ, Zhang S, Guo CK, et al. Effect of methylation-associated silencing of the death-associated protein kinase gene on nasopharyngeal carcinoma[J]. Anticancer Drugs. 2006,17(3):251-259.
    [191]Czekierdowski A, Czekierdowska S, Danilos J, et al. Microvessel density and CpG island methylation of the THBS2 gene in malignant ovarian tumors[J]. J Physiol Pharmacol. 2008, 59 Suppl 4:53-65.
    [192]Maehata T, Taniguchi H, Yamamoto H, et al. Transcriptional silencing of Dickkopf gene family by CpG island hypermethylation in human gastrointestinal cancer[J]. World J Gastroenterol. 2008,14(17):2702-2714.
    [193]Liu L, Li Y, Tollefsbol TO. Gene-environment interactions and epigenetic basis of human diseases[J]. Curr Issues Mol Biol. 2008,10(1-2):25-36.
    [194]宫雁冰,钟鸣,王洁.肿瘤细胞中的表观遗传编码紊乱[J].国际遗传学杂志. 2006, 29(2): 114-117.
    [195]Berletch JB, Phipps SM, Walthall SL, et al. A method to study the expression of DNA methyltransferases in aging systems in vitro[J]. Methods Mol Biol. 2007,371:81-87.
    [196]刘仲敏,刘芝华,吴昊. DNA高甲基化与抑癌基因[J].世界华人消化杂志. 2003, 11(9): 1420-1424.
    [197]黄朝晖,杜祥. DNA甲基化在肿瘤无创性分子诊断中的研究进展[J].中国癌症杂志. 2009,19(3):224-227.
    [198]Zare M, Jazii FR, Alivand MR, et al. Qualitative analysis of Adenomatous Polyposis Coli promoter: hypermethylation, engagement and effects on survival of patients with esophageal cancer in a high risk region of the world, a potential molecular marker[J]. BMC Cancer. 2009,9:24.
    [199]Negraes PD, Favaro FP, Camargo JL, et al. DNA methylation patterns in bladder cancer and washing cell sediments: a perspective for tumor recurrence detection[J]. BMC Cancer. 2008, 8:238.
    [200]Taneja N, Tjalkens R, Philbert MA, et al. Irradiation of mitochondria initiates apoptosis in a cell free system[J]. Oncogene. 2001,20(2):167-177.
    [201]陈荣林,李宏,刘建辉.关键蛋白酶激活因子Apaf-2/CytC在细胞凋亡中的作用[J].中国生物工程杂志. 2006,26(3):89-92.
    [202]Fujimoto A, Takeuchi H, Taback B, et al. Allelic imbalance of 12q22-23 associatedwith APAF-1 locus correlates with poor disease outcome in cutaneous melanoma[J]. Cancer Res. 2004, 64(6):2245-2250.
    [203]Christoph F, Weikert S, Kempkensteffen C, et al. Promoter hypermethylation profile of kidney cancer with new proapoptotic p53 target genes and clinical implications[J]. Clin Cancer Res. 2006,12(17):5040-5046.
    [204]Christoph F, Hinz S, Kempkensteffen C, et al. mRNA expression profiles of methylated APAF-1 and DAPK-1 tumor suppressor genes uncover clear cell renal cell carcinomas with aggressive phenotype[J]. J Urol. 2007,178(6):2655-2659.
    [205]Hinz S, Kempkensteffen C, Weikert S, et al. EZH2 polycomb transcriptional repressor expression correlates with methylation of the APAF-1 gene in superficial transitional cell carcinoma of the bladder[J]. Tumour Biol. 2007,28(3):151-157.
    [206]Christoph F, Hinz S, Kempkensteffen C, et al. A gene expression profile of tumor suppressor genes commonly methylated in bladder cancer[J]. J Cancer Res Clin Oncol. 2007, 133(6): 343-349.
    [207]Christoph F, Weikert S, Kempkensteffen C, et al. Regularly methylated novel pro-apoptotic genes associated with recurrence in transitional cell carcinoma of the bladder[J]. Int J Cancer. 2006,119(6):1396-1402.
    [208]Raveh T, Berissi H, Eisenstein M, et al. A functional genetic screen identifies regions at the C-terminal tail and death-domain of death-associated protein kinase that are critical for its proapoptotic activity[J]. Proc Natl Acad Sci U S A. 2000,97(4):1572-1577.
    [209]Liu Y, Gao W, Siegfried JM, et al. Promoter methylation of RASSF1A and DAPK and mutations of K-ras, p53, and EGFR in lung tumors from smokers and never-smokers[J]. BMC Cancer. 2007,7:74.
    [210]Wang Y, Zhang D, Zheng W, et al. Multiple gene methylation of nonsmall cell lung cancers evaluated with 3-dimensional microarray[J]. Cancer. 2008,112(6):1325-1336.
    [211]Huang Q, Su X, Ai L, et al. Promoter hypermethylation of multiple genes in gastric lymphoma[J]. Leuk Lymphoma. 2007,48(10):1988-1996.
    [212]Kaise M, Yamasaki T, Yonezawa J, et al. CpG island hypermethylation of tumor-suppressor genes in H. pylori-infected non-neoplastic gastric mucosa is linked with gastriccancer risk[J]. Helicobacter. 2008,13(1):35-41.
    [213]Kato K, Iida S, Uetake H, et al. Methylated TMS1 and DAPK genes predict prognosis and response to chemotherapy in gastric cancer[J]. Int J Cancer. 2008,122(3):603-608.
    [214]Nayak CS, Carvalho AL, Jeronimo C, et al. Positive correlation of tissue inhibitor of metalloproteinase-3 and death-associated protein kinase hypermethylation in head and neck squamous cell carcinoma[J]. Laryngoscope. 2007,117(8):1376-1380.
    [215]Lettini AA, Guidoboni M, Fonsatti E, et al. Epigenetic remodelling of DNA in cancer[J]. Histol Histopathol. 2007,22(12):1413-1424.
    [216]Abbaszadegan MR, Moaven O, Sima HR, et al. p16 promoter hypermethylation: a useful serum marker for early detection of gastric cancer[J]. World J Gastroenterol. 2008, 14(13): 2055-2060.
    [217]Lind GE, Ahlquist T, Kolberg M, et al. Hypermethylated MAL gene - a silent marker of early colon tumorigenesis[J]. J Transl Med. 2008,6:13.
    [218]Nomoto S, Kinoshita T, Kato K, et al. Hypermethylation of multiple genes as clonal markers in multicentric hepatocellular carcinoma[J]. Br J Cancer. 2007,97(9):1260-1265.
    [219]Zhang Z, Li D, Wu M, et al. Promoter hypermethylation-mediated inactivation of LRRC4 in gliomas[J]. BMC Mol Biol. 2008,9:99.
    [220]Menschikowski M, Hagelgans A, Kostka H, et al. Involvement of epigenetic mechanisms in the regulation of secreted phospholipase A2 expressions in Jurkat leukemia cells[J]. Neoplasia. 2008,10(11):1195-1203.
    [221]Xie SM, Fang WY, Liu Z, et al. Lentivirus-mediated RNAi silencing targeting ABCC2 increasing the sensitivity of a human nasopharyngeal carcinoma cell line against cisplatin[J]. J Transl Med. 2008,6:55.
    [222]Heo J, Lee BR, Koh JW. Protective effects of epigallocatechin gallate after UV irradiation of cultured human lens epithelial cells[J]. Korean J Ophthalmol. 2008,22(3):183-186.
    [223]37℃医学网.FCM在生物医学工程学方面的应用[EB/OL]. [2000.5.23] [2008.11.15]. http://www.37c.com.cn/literature/literature03/102/1021002.xml?tmp=.100185.6
    [224]Feng Y, Tian ZM, Wan MX, et al. Low intensity ultrasound-induced apoptosis in human gastric carcinoma cells[J]. World J Gastroenterol. 2008,14(31):4873-4879.
    [225]Wu Y, Qiu H, Zeng Y, et al. Mycoplasma genitalium lipoproteins induce human monocytic cell expression of proinflammatory cytokines and apoptosis by activating nuclear factor kappaB[J]. Mediators Inflamm. 2008,2008:195427.
    [226]Lang DS, Droemann D, Schultz H, et al. A novel human ex vivo model for the analysis of molecular events during lung cancer chemotherapy[J]. Respir Res. 2007,8:43.
    [227]Ushizawa K, Takahashi T, Kaneyama K, et al. Cloning of the bovine antiapoptotic regulator, BCL2-related protein A1, and its expression in trophoblastic binucleate cells of bovine placenta[J]. Biol Reprod. 2006,74(2):344-351.
    [228]Nakajima T. Signaling cascades in radiation-induced apoptosis: roles of protein kinase C in the apoptosis regulation[J]. Med Sci Monit. 2006,12(10):RA220-224.
    [229]Kopnin BP. Targets of oncogenes and tumor suppressors: key for understanding basic mechanisms of carcinogenesis[J]. Biochemistry (Mosc). 2000,65(1):2-27.
    [230]Ooi SK, Bestor TH. The colorful history of active DNA demethylation[J]. Cell. 2008, 133(7): 1145-1148.
    [231]Dhasarathy A, Wade PA. The MBD protein family-reading an epigenetic mark?[J]. Mutat Res. 2008,647(1-2):39-43.
    [232]Sansom OJ, Maddison K, Clarke AR. Mechanisms of disease: methyl-binding domain proteins as potential therapeutic targets in cancer[J]. Nat Clin Pract Oncol. 2007,4(5):305-315.
    [233]Wang X, Tryndyak V, Apostolov EO, et al. Sensitivity of human prostate cancer cells to chemotherapeutic drugs depends on EndoG expression regulated by promoter methylation[J]. Cancer Lett. 2008,270(1):132-143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700