用户名: 密码: 验证码:
水杨酸诱导梨抗轮纹病作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
梨是我国的优势树种,也是我国传统的出口创汇果品。梨轮纹病是梨生产上主要病害之一,目前,主要依靠化学杀菌剂防治,但长期使用化学杀菌剂不仅易使病菌产生抗药性,而且存在农药残留等问题,对食品安全、环境保护以及人类健康等造成不利影响。植物诱导抗病性是控制植物病害的重要方法之一,水杨酸是已经被认定的系统获得抗性化学诱导剂。本研究以主栽品种鸭梨(Pyrus bretschneideri‘Yali’)为试材,探讨水杨酸诱导梨抗轮纹病的作用效果,从植物抗氧化酶、病程相关蛋白等方面阐述水杨酸诱导增强梨对轮纹病抗性的生理生化机制。并通过研究水杨酸诱导及轮纹病菌胁迫对梨叶绿素荧光特性、电阻抗参数的影响,试图为利用叶绿素荧光技术、电阻抗技术监测梨轮纹病提供初步的参数。采用实时荧光定量PCR的方法,对水杨酸诱导后梨中NPR1基因转录表达水平进行分析。主要研究结果如下:
     1.水杨酸处理显著提高鸭梨对梨轮纹病的抗性。用0.2mmol·L-1水杨酸对鸭梨叶片及果实诱导处理,接种轮纹病菌后,叶片的病情指数显著降低,诱抗效果达21.86%;诱导处理后的果实在接种3d时,发病率比对照降低38.64%,接种7d时,果实病斑直径显著低于对照。水杨酸对轮纹病菌毒性测定结果表明0.002~0.2mmol·L-1水杨酸对轮纹病菌的生长无抑制作用,即0.2mmol·L-1水杨酸对轮纹病菌无直接毒性,说明水杨酸诱导后梨对轮纹病抗性的增强是来源于其对植物的诱导抗病性作用。
     2.外源水杨酸诱导后梨叶片中内源水杨酸总含量升高,其中游离态水杨酸含量降低,结合态水杨酸含量升高,表明水杨酸诱导梨系统获得抗病性的建立与内源水杨酸状态的改变相关。对叶片中超氧化物歧化酶(SOD)、多酚氧化酶(PPO)同工酶谱的分析结果表明,水杨酸诱导处理后SOD、PPO同工酶谱均未出现新的酶带,但酶谱带表达量增强。
     3.水杨酸诱导处理后梨叶片及果实中苯丙氨酸解氨酶(PAL)、多酚氧化酶(PPO)、β-1,3-葡聚糖酶(GLU)和几丁质酶(CHI)活性增强,并且降低了膜脂过氧化产物丙二醛(MDA)和超越阴离子(·O2-)的含量,表明水杨酸对其有系统诱导作用,增强梨对轮纹病菌侵染的抵抗能力。
     4.病菌侵染后叶片的光系统Ⅱ最大原初光能转换效率(Fv/Fm)、实际光化学效率(Y(Ⅱ))、光化学猝灭系数(qP)、最大表观电子传递效率(ETRmax)减小,说明病菌对光系统Ⅱ反应中心造成破坏。外源水杨酸诱导后梨叶片的非光化学猝灭系数(NPQ)、光系统Ⅱ原初量子效率(Q)和最大表观电子传递效率(ETRmax)提高,光化学猝灭系数无显著变化。诱导叶片接种病菌后,光系统Ⅱ最大原初光能转换效率(Fv/Fm)、光化学猝灭系数(qP)和最大表观电子传递效率(ETRmax)降低幅度减小,表明水杨酸能够缓解病菌对光系统Ⅱ反应中心的伤害,提高光系统Ⅱ反应中心对光能的吸收利用。
     5.0.2mmol·L-1水杨酸诱导后,接种病菌叶片的高频电阻率、低频电阻率、胞外电阻率、胞内电阻率和弛豫时间分布系数减小;接种病菌果实的低频电阻率、胞外电阻率和弛豫时间增大,高频电阻率、胞内电阻率和弛豫时间分布系数减小。
     6.克隆鸭梨NPR1基因,研究外源水杨酸对NPR1基因的表达调控。结果表明NPR1基因在梨不同器官中的表达量差异较大,叶片、果肉中NPR1基因的表达量较高,茎中的表达量显著低于其它器官。水杨酸诱导后梨叶片中NPR1表达量有明显升高,果皮中NPR1的表达量在水杨酸处理24h显著升高。梨叶片和果皮中的NPR1基因在水杨酸诱导后表达增强,这将有助于激活下游防卫基因的表达,从而产生系统获得抗性。
     综上所述,水杨酸通过参与调节梨体内与抗病有关的生理生化过程来增强对轮纹病的抗性,并且能够激活梨防卫基因的表达,产生系统获得抗性。
Pear ring rot caused by Physalospora piricola Nose is a major fungal disease of pears inChina, which results in a huge lose annually. Therefore, many methods have been developed inthe past decades, such as planting resistant varieties, strengthening cultivation management andchemicals control. Among these, the applications of fungicides are a traditional approach tocontrol this kind of diseases. Unfortunately, fungicides are becoming less effective because of thedevelopment of fungicide resistance by pathogens. Also, the use of fungicides shows a reducingtrend due to increasing environmental concern about fungicidal residues in fruit. Therefore, thereis need for an effective, environmental-friendly method to control the disease. As a signalmolecule, salicylic acid (SA) could protect different plant species against diseases. To reveal themechanism of resistance of pear against ring rot induced by SA, the influence of SA treatment ondisease severity and plant defense enzymes were studied with Pyrus bretschneideri‘Yali’ andPhysalospora piricola Nose as the materials. In this paper, the physiological and biochemicalcharacteristics of detached pear were measured after application of SA, and the changes ofelectrical impedance spectroscopy (EIS) parameters and chlorophyll fluorescence characteristicswere observed. At the same time, the expression of NPR1gene in pear after SA treatment wastested with Real-Time PCR technique.The main results in this paper were as follows:
     1. Salicylic acid treatment could significantly improve the resistance of Yali pear toring rot disease. The results showed that the leaves of Yali pear treated with0.2mmol·L-1SA could significantly degrade disease index and the induced resistance reached up to21.86%. While the treatment of0.2mmol·L-1SA could decrease the incidence rate of pearfruit infected with P. piricola. PDA culture results showed that SA at lower concentrationcould not inhibit the growth of P. piricola. The effect of resistance was not by SA killingthe fungi directly, but come from SA activated the systemic acquired resistance of pears.
     2. The content of total SA was increased in the pear leaves treated with exogenous SA. Itis interesting to note that the content of free states SA was reduced and the content of bindingstates SA was increased. It was suggested that SA induced the expression of systemic acquireresistance by changing of endogenous salicylic acid status.The isozymes analysis resultsshowed that superoxide dismutase (SOD) and polyphenol oxidases (PPO) isozymes had notnew enzymes in pear leaves treated with SA, but the expressions of enzyme were enhanced.
     3. In the present study, plant defence responses were induced in pear using markerenzymes such as superoxide dismutase (SOD), peroxidase (POD), phenylalanineammonia-lyase (PAL), polyphenol oxidases (PPO), β-1,3-glucanase (GLU) and chitinase(CHI). In the inoculated leaves and fruits, the SA-treatment enhanced the activities of PAL,PPO, β-1,3-glucanase and chitinase. It was observed that the PR-proteins respondedquickly to pathogen infection and the contents of MDA and·O2-dropped downsimultaneously. These results clearly demonstrated that SA could induce the systemicacquired resistance and strengthen antiviral capability of pear to P. piricola.
     4. Chlorophyll fluorescence characteristics were observed in pear leaves after treatedwith SA and infected by P. piricola. Under the stress of pathogen, the chlorophyllfluorescence parameter Fv/Fm, Y (II), qP and ETRmaxdecreased. And, the chlorophyllfluorescence parameter NPQ, Q and ETRmaxincreased, whereas qP was no significantchange in leaves teaeted with SA. The decreasing of Fv/Fm, qP and ETRmaxwere inhibitedin induced leaves inoculated with P. piricola. These results suggested that SA couldalleviate the damage of P. piricola on the PSII reaction center and improve absorption andutilization of light energy.
     5. The effects of SA and pathogen stress on parameters of electrical impedancespectroscopy (EIS) in pear leaves and fruit were investigated. The results showed thatspecific high-frequency resistance, specific low-frequency resistance, specific extracellularresistance, specific intracellular resistance and distribution coefficient of relaxation time inleaves treated with SA and infected by P. piricola decreased. Furthermore, the obtainedresults demonstrated that specific low-frequency resistance, specific extracellularresistance and relaxation time increased, whereas specific high-frequency resistance, specificintracellular resistance and distribution coefficient of relaxation time decreased in fruitstreated with SA and infected by P. piricola.
     6. According to the eonsensus domain of NPR1gene and by using RT-PCRtechnology, a cDNA fragment of NPR1gene was cloned from Pyrus bretschneideri cv. Yali.Real-time quantitative PCR (qPCR) analysis carried out on mRNAs from leaves and fruitstreated with SA. Results showed that the expression of NPR1gene had significantlydifference in different organs of pear. The expression of NPR1gene in pear could begreatly enhanced by the treatment of0.2mmol·L-1SA.
     In conclusion, the work presented here showed that SA treatment could significantlyincrease activities of defense-related enzymes and enhance disease resistance in pear. AndSA could induce the systemic acquired resistance and strengthen the expression of defensegene in pear.
引文
[1]Raskin I. Salicylic acid, a new plant hormone [J]. Plant Physiol,1992,99:799-803.
    [2]Alkahtani M, Omer S A, El-Naggar M A, et al. Pathogenesis-related protein and phytoalexininduction against cucumber powdery mildew by elicitors [J]. International Journal of PlantPathology,2011,2:63-71.
    [3]Ali S, Khan M A, Sahi S T, et al. Evaluation of plant extracts and salicylic acid against Bemisiatabaci and cotton leaf curl virus disease [J]. Pakistan Journal of Phytopathology,2010,22:98-100.
    [4]陈策.苹果轮纹病研究进展[J].植物病理学报,1999,29(3):193-198.
    [5]张丽丽,常有宏,陈志谊.梨轮纹病菌培养特性研究[J].果树学报,2009,26(4):520-524.
    [6]王艳娜,王贵禧,梁丽松,等.鸭梨果实轮纹病潜伏侵染时期及采后发病规律的研究[J].林业科学研究,2008,21(5):630-634.
    [7]李怀方,刘凤权,郭小密.园艺植物病理学[M].北京:中国农业大学出版社,2001:243-244.
    [8]周建,袁德义,李佑武.关于10个南方砂梨品种抗病性的比较研究[J].西北林学院学报,2006,21(2):110-112.
    [9]李树玲,林珂,黄礼森,等.梨果实抗轮纹病初步鉴定[J].天津农学院学报,1996,3(4):36-39.
    [10]曹玉芬,孙秉钧,李美娜.梨品种果实对轮纹病的抗性鉴定[J].果树科学,1999,16(3):180-184.
    [11]李晓刚,杨青松,蔺经,等.梨品种对枝干轮纹病的抗性及其遗传规律研究[J].江西农业学报,2009,21(11):59-60.
    [12]张丽丽,常有宏,蔺经,等.不同梨品种果实对梨轮纹病菌的抗性[J].江苏农业学报,2010,26(2):440-442.
    [13]蒋军喜,戴兆基,唐自文,等.5种杀菌剂对梨轮纹病菌的毒力测定和田间药效试验[J].江西农业大学学报,2010,32(4):710-713.
    [14]刘邮洲,常有宏,魏本强,等.化学药剂敌力脱与拮抗细菌协同作用防治梨轮纹病研究[J].果树学报,2010,27(1):82-87.
    [15]刘招龙,张绍铃,孙益林,等.木霉菌对抑制梨轮纹菌的生理特性研究[J].中国农学通报,2005,21(9):345-346.
    [16]陈志谊,任海英,刘永峰,等.戊唑醇和枯草芽孢杆菌协同作用防治蚕豆枯萎病及增效机理初探[J].农药学学报,2002,6(4):40-44.
    [17]孙卓.植物诱导抗病性的应用研究及其展望[J].安徽农业科学,2008,36(19):8149-8150.
    [18]余迪求,汤章城.植物生理与分子生物学(第二版)[M].科学出版社.
    [19]Jones A M. Surprising Signals in Plant Cells [J]. Science,1994,263(5144):183-184.
    [20]Gaffney T, Friedrich L, Vernooij B, et al. Requirement of Salicylic Acid for the Induction ofSystemic Acquired Resistance [J]. Science,1993,261(5122):754-756.
    [21]Metraux J P, Signer H, Ryals J, et al. Increase in Salicylic Acid at the Onset of Systemic AcquiredResistance in Cucumber [J]. Science,1990,250(4983):1004-1006.
    [22]Wildermuth M C, Dewdney J, Wu G, et al. Isochorismate synthase is required to synthesize salicylicacid for plant defence [J]. Nature,2001,414:562-565.
    [23]Nawrath C, Heck S, Parinthawong N, et al. EDS5, an essential component of salicylicacid–dependent signaling for disease resistance in Arabidopsis, is a member of the MATEtransporter family [J]. Plant Cell,2002,14:275-286.
    [24]彭金英,黄勇平.植物防御反应的两种信号转导途径及其相互作用[J].植物生理与分子生物学学报,2005,31(4):347-353.
    [25]Delaney T P, Uknes S, Vernooij B, et al. A central role of salicylic acid in plant disease resistance [J].Science,1994,266:1247-1250.
    [26]Blanco F, Salinas P, Cecchini N M, et al. Early genomic responses to salicylic acid in Arabidopsis[J]. Plant Mol Biol,2009,70(2):79-102.
    [27]冉隆贤,谷文众,吴光金.水杨酸诱导桉树抗青枯病的作用及相关酶活性变化[J].林业科学研究,2004,17(1):12-18.
    [28]刘利华,林奇英.病程相关蛋白与植物抗病性研究[J].福建农业学报,1999,14(3):53-58.
    [29]Vanloon L C, Rep M, Pieterse C M J. Signification of inducible defense-related proteins in infectedplants [J]. Annual Review of Phytopathology,2006,44:135-162.
    [30]Antoniw J F, Ritter C E, Pierpoint W S, et al. Comparison of three pathogenesis-related proteinsfrom plant s of two cultivars of tobacco infected with TMV [J]. Journal of General Virology,1980,47:79-87.
    [31]Vanloon L C. Occurrence and properties of plant pathogenesis-related proteins [J]. Mechanisms ofResistance to Plant Diseases,1999,29:1-19.
    [32]Chen Z, Malamy J, Henning J, et al. Induction, modification, and transduction of the salicylic acidsignal in plant defense responses [J]. Proceedings of the National Academy of Sciences of theUnited States of America,1995,92(10):4134-4137.
    [33]Takahashi H, Chen Z, Du H, et al. Development of necrosis and activation of disease resistance intransgenic tobacco plants with severely reduced catalase levels [J]. Plant Journal,1997,11(5):993-1005.
    [34]Matsuoka M, Ohashi Y. Induction of pahtogensis-related protein in tobacco leaves [J]. Plant Physiol,1986,80(2):505-510.
    [35]Bol J F, van Kan J A. The synthesis and possible functions of virus-induced proteins in plants [J].Microbiol. Sci,1988,5(2):47.
    [36]Chikara M, Marc V B, Guy B, et al. Differential effects of elicitors on the viability of ricesuspension cell [J]. Plant Physiology,1991,97:619-629.
    [37]蔡新忠,郑重,宋凤鸣.水杨酸对水稻幼苗抗瘟性的诱导作用[J].植物病理学报,1996,26(1):7-12.
    [38]李占杰,师金鸽,杨铁钊,等.水杨酸介导的植物系统获得抗性信号的传导途径[J].中国农学通报,2006,22(12):84-89.
    [39]罗虹,周桂元,黄斐,等.水杨酸对花生种子及幼苗几种酶活性的影响[J].花生学报,2002,31(2):7-9.
    [40]李淑菊,马德华,庞金安,等.水杨酸对黄瓜几种酶活性及抗病性的诱导作用[J].华北农学报,2000,(2):118-122.
    [41]Prithiviraj B, Bais H P, Weir T, et al. Down regulation of virulence factors of pseudomonasaeruginosa by salicylic acid attenuates it s virulence on Arabidopsis thaliana and Caenorhabditiselegans [J]. Infect Immun,2005,73(9):5319-5328.
    [42]杜良成,王钧.病原相关蛋白及其在植物抗病中的作用[J].植物生理学通讯,1990,26(4):1-6.
    [43]Chen Z, Klessig D F. Identification of a soluble salicylic acid-binding protein that may function inthe signal transduction in the plant disease resistance response [J]. Proc Natl Acad Sci USA,1991,88:8179-8183.
    [44]Du H, Klessig D F. Identification of a soluble, high affinity salicylic acid-binding protein in tobacco[J]. Plant Physiol,1997,113:1319-1327.
    [45]Slaymaker D H, Navarre D A, Clark D, et al. The tobacco salicylic acid-binding protein3(SABP3)is the chloroplast carbonic anhydrase, which exhibit s antioxidant activity and plays a role in thehypersensitive defense response [J]. Proc Natl Acad Sci USA,2002,99:11640-11645.
    [46]周莹,寿森炎,贾承国,等.水杨酸信号转导及其在植物抵御生物胁迫中的作用[J].自然科学进展,2007,17(3):305-312.
    [47]余迪求,岑川,李宝健,等.植物系统获得的抗病性和信号传导[J].植物学报,1999,41(2):115-124.
    [48]Aarts N, Metz M, Holub E, et al. Different requirements for EDS1and NDR1by disease resistancegenes define at least two R gene2mediated signaling pathways in Arabidopsis [J]. Proceedings ofthe National Academy of Sciences of USA,1998,95:10306-10311.
    [49]Zhou N, Tootle T L, Tsui F, et al. PAD4functions upstream from salicylic acid to control defenseresponses in Arabidopsis [J]. Plant Cell,1998,10:1021-1030.
    [50] Jirage D, Tootle T L, Reuber L, et al. Arabidopsis thaliana PAD4encodes a lipase-like gene that isimportant for salicylic acid signaling [J]. Proceedings of the National Academy of Sciences ofUSA,1999,96:13583-13588.
    [51] Shah J. The salicylic acid loop in plant defense [J]. Curr Opin Plant Biol,2003,6:365-371.
    [52]李惠敏,吕建珍,覃屏生,等. NPR1基因研究进展[J].广西师范大学学报(自然科学版),2003,21(3):67-71.
    [53]程世亚,袁澍,席德慧,等.植物系统获得性抗性的分子机理[J].生命的化学,2008,28(3):256-259.
    [54]赵淑清,郭剑波.植物系统性获得抗性及其信号转导途径[J].中国农业科学,2003,36(7):781-787.
    [55]Chen Z, Silva H, Klessing D F. Active oxygen species in the induction of plant systemic acquiredresistance by salicylic acid [J]. Science,1993,262(5141):1883-1886.
    [56]Ananieva E A, Christov K N, Popova L P, et al. Exogenous treatment with salicylic acid leads toincreased antioxidant capacity in leaves of barley plants exposed to paraquat [J]. J Plant Physiol,2004,161(3):319-328.
    [57]张红志,蔡新忠.病程相关基因非表达子1(NPR1):植物抗病信号网络中的关键节点[J].生物工程学报,2005,21(4):511-515.
    [58]Li J, Brader G, Palva T. The WRKY70transcription factor: a node of convergence forjasmonate-mediated and salicylate-mediated signals in plant defense [J]. Plant Cell,2004,16:319-331.
    [59]Desveaux D, Subramaniam R, Després C, et al. A “Whirly” transcription factor is required forsalicylic acid-dependent disease resistance in Arabidopsis [J]. Developmental Cell,2004,6:229-240.
    [60]Kessmann H, Staub T, Hofinann C, et al. Induction of systemic acquired disease resistance in plantsby chemicals [J]. Annual Rev. Phytopathol,1994,32:439-459.
    [61]方中达.植病研究方法第三版[M].北京:中国农业出版社,1998:366-368.
    [62]黄彰欣.植物化学保护实验指导[M].北京:中国农业出版社,1993:56-59.
    [63]张玉,陈昆松,张上隆.猕猴桃果实中内源水杨酸的提取、测定及其在采后研究中的应用[J].中国食品学报,2004,4(3):6-9.
    [64]李合生.植物生理生化试验原理与技术[M].北京:高等教育出版社,2000.
    [65]张志良,翟伟倩.植物生理学实验指导[M].北京:高等教育出版社,2003:123-124.
    [66]Cheng G W, Crisosto C H. Browning potential, phenolic composition, and polyphenoloxidaseactivity of buffer extracts of peach and nectarine skin tissue [J]. J. Amer. Soc. Hort. Sci.,1995,120(5):835-838.
    [67]李姝江,朱天辉,黄艳娜.防御酶系对山茶灰斑病诱导抗性的响应[J].植物保护学报,2011,38(1):59-64.
    [68]赵离飞,赵双琐,李忠民,等.水杨酸诱导小麦赤霉毒素抗性研究[J].洛阳农业高等专科学校学报,2006,21(4):261-262.
    [69]边秀秀,尚勋武,王化俊.外源水杨酸(SA)诱导小麦抗条锈病研究初报[J].麦类作物学报,2008,28(4):701-704.
    [70]毛爱军,王永健,冯兰香,等.水杨酸等4种诱导剂诱导辣椒抗疫病作用的研究[J].中国农业科学,2004,37(10):1481-1486.
    [71]田世平,产祝龙.诱导抗性在果蔬采后病害防治中的研究与应用[J].植物病理学报,2004,34(5):385-394.
    [72]曾凯芳,姜微波.水杨酸处理对采后绿熟芒果炭疽病抗病性的诱导[J].中国农业大学学报,2005,10(2):36-40.
    [73]Wang D, Amornsiripanitch N, Dong X N. A genomic approach to identify regulatory nodes in thetranscriptional network of systemic acquired resistance in plants [J]. PLos Pathog,2006,2:1042-1050.
    [74]Raskin I, Skubatz H, Tang W, et al. Salicylic acid levels in thermogenic and non-thermogenic plants[J]. Ann Bot,1990,66:369-373.
    [75]余叔文.植物生理学与分子生物学[M].科学出版社,1992,415.
    [76]姜云,吴元华,丁艳丽,等.凯地菌素对番茄防御酶系、同工酶及病程相关蛋白诱导的研究[J].农药,2005,44(5):202-204,207.
    [77]刘凤权,王金生.水杨酸对水稻防卫反应酶系的系统诱导[J].植物生理学通讯,2002,38(2):121-123.
    [78]王爱国,罗广华.植物的超氧自由基与羟胺反应的定量关系[J].植物生理学通讯,1990,26(6):55-57.
    [79]Liu H X, Jiang W B, Bi Y, et al. Postharvest BTH treatment induces resistance of peach (Prunuspersica L. cv. Jiubao) fruit to infection by Penicillium expansum and enhances activity of fruitdefense mechanisms [J]. Postharvest Biol. Technol.,2005,35:263-269.
    [80]Cheng G W, Breen P J. Activity of phenylalanine ammonia-lyase (PAL) and concentrations ofanthocyanins and phenolics in developing strawberry fruit [J]. J. Amer. Soc. Hort. Sci,1991,116(5):865-869.
    [81]史益敏.现代植物生理实验指导[M].北京:科学出版社,1999:128-129.
    [82]Boller T, Gehri A, Mauch F, et al. Chitinase in bean leaves: induction by ethylene, purification,properties, and possible function [J]. Planta,1983,57:22-31.
    [83]Reissig J L, Strominger J L, Leloir L F. A modified colorimetric method for the estimation ofN-acetylamino sugars [J]. J. Biol. Chem.,1955,217:959-966.
    [84]Yao H J, Tian S P. Effects of pre-and post-harvest application of salicylic acid or methyl jasmonateon inducing disease resistance of sweet cherry fruit in storage [J]. Postharvest Biol. Technol.,2005,35:253-262.
    [85]Sticher L, Mauch-Mani B, Métraux J P. Systemic acquired resistance [J]. Annu. Rev. Phytopathol,1997,35:235-270.
    [86]Chen Z X, Silva H, Klessig D F. Involvement of reactive oxygen species in the induction ofsystemic acquired resistance by salicylic acid in plants [J]. Sci.,1994,242:1883-1886.
    [87]余迪求,岑川,杨明兰,等.玉米不同组织过氧化氢酶水杨酸敏感性的差异和外源水杨酸处理提高玉米抗病性的研究[J].植物学报,1999,41(12):1293-1298.
    [88]Mauch-Main B, Slisarenko A J. Production of salicylic acid precursors is a major function ofphenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronosporaparasitica [J]. PlantCell,1996,8:203-212.
    [89]Huang J L, Gu M, Lai Z B, et al. Functional analysis of the Arabidopsis PAL gene family in plantgrowth, development, and response to environmental stress [J]. Plant Physiology,2010,153(8):1526-1538.
    [90]王媛,杨红玉. SA诱导拟南芥对灰霉病的抗性与木质素含量的关系[J].植物保护,2007,33(4):50-54.
    [91]陈年来,胡敏,代春艳,等.诱抗处理对甜瓜叶片酚类物质代谢的影响[J].园艺学报,2010,37(11):1759-1766.
    [92]]陈年来,乃小英,张玉鑫,等.植物源诱导剂对甜瓜叶片防卫酶活性的影响[J].西北植物学报,2010,30(10):2016-2021.
    [93]李淼,产祝龙,田世平,等.果实采后病害诱导抗性研究进展[J].保鲜与加工,2010,10(5):1-7.
    [94]Anand A, Uppalapati S R, Ryu C M, et al. Salicylic acid and systemic acquired resistance play arole in attenuating crown gall disease caused by Agrobacterium tumefaciens [J]. Plant Physiology,2008,146(2):703-715.
    [95]汪跃华,徐兰英,庞学群,等.苯并噻二唑处理提高采后沙糖橘对指状青霉菌的抗性[J].园艺学报,2010,37(12):1901-1908.
    [96]黄雪梅,张灿,庞学群,等. INA诱导的香蕉果实抗病性与早期活性氧积累的关系[J].园艺学报,2011,38(2):265-272.
    [97]史庆华,朱祝军,徐敏,等.外源水杨酸对黄瓜叶片几种酶活性和抗氧化物质含量的影响[J].园艺学报,2004,31(5):666-667.
    [98] Huang J L, Gu M, Lai Z B, etal. Functional analysis of the Arabidopsis PAL gene family in plantgrowth, development, and response to environmental stress [J]. Plant Physiology,2010,153(8):1526-1538.
    [99]Qin G Z, Tian S P, Xu Y, et al. Enhancement of biocontrol efficacy of antagonistic yeasts bysalicylic acid in sweet cherry fruit [J]. Physiological and molecular plant pathology,2003,62:147-154.
    [100]Xu X B, Chan Z L, Xu Y, et al. Effect of Pichia membranaefaciens combined with salicylic acid oncontrolling brown rot in peach fruit and the mechanisms involved [J]. Journal of the Science ofFood and Agriculture,2008,88:1786-1793.
    [101]王国莉.水杨酸对苦瓜叶片白粉病抗性及抗氧化酶活性的影响[J].西北植物学报,2008,28(3):529-534.
    [102]Yao H J, Tian S P. Effects of pre-and post-harvest application of salicylic acid or methyljasmonate on inducing disease resistance of sweet cherry fruit in storage [J]. Postharvest Biologyand Technology,2005,35,253-262.
    [103]蒋跃明.香蕉采后炭疽病发生与几丁酶、β-1,3-葡聚糖酶和多巴胺的关系[J].植物生理学报,1997,23(2):158-162.
    [104]范青,田世平,刘海波,等.两种拮抗菌β-1,3-葡聚糖酶和几丁酶的产生及其抑菌的可能机理[J].科学通报,2001,46(20):1713-1717.
    [105]Darvill A G, Albershim P. Phytoalexins and the elictors-a defense against microbial infection inplant [J]. Ann Rer Plant Physial,1984,35:243.
    [106]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448.
    [107]Genty B, Briantais J M, Baker N R, et al. The relationship between the quantum yield ofphotosynthetic electron transport and quenching of chlorophyll fluorescence [J]. BiochimicaBiophysica Acta,1989,990:87-92.
    [108] Schreiber U, Bilger W, Neubauer C. Chlorophyll fluorescence as a non-destructive indicator forrapid assessment ofin vivophotosynthesis [J]. Ecological Studies,1994,100:49-70.
    [109]陈建明,俞晓平,程家安.叶绿素荧光动力学及其在植物抗逆生理研究中的应用[J].浙江农业学报,2006,18(1):51-55.
    [110]冯建灿,胡秀丽,毛训甲.叶绿素荧光动力学在研究植物逆境生理中的应用[J].经济林研究,2002,20(4):14-18.
    [111]李晓,冯伟,曾晓春.叶绿素荧光分析技术及应用进展[J].西北植物学报,2006,26(10):2186-2196.
    [112]徐德聪,吕芳德,潘晓杰.叶绿素荧光分析技术在果树研究中的应用[J].经济林研究,2003,21(3):88-91.
    [113]王北洪,黄木易,马智宏,等.条锈病对冬小麦叶绿素荧光、光合及蒸腾作用的影响[J].华北农学报,2004,19(2):92-94.
    [114]陈兵,王克如,李少昆,等.病害胁迫对棉叶光谱反射率和叶绿素荧光特性的影响[J].农业工程学报,2011,27(9):86-93.
    [115]张志刚,尚庆茂.水杨酸、壳聚糖对盐胁迫下黄瓜叶片光合参数的调节作用[J].西北农业科学,2010,19(3):174-178.
    [116]范苓,段伟,程杰山,等.水杨酸对高温胁迫下及恢复期间葡萄幼苗叶片光合机构PSⅡ的影响[J].果树学报,2009,26(5):623-627.
    [117]Ananiera E A, Alexieva V S, Popova L P. Treatment with salicylic acid decreases the effects ofparaquat on pho-tosynthesis [J]. Plant Physiol,2002:237-243.
    [118]赵会杰,邹琦,于振文.叶绿素荧光分析技术及其在植物光合机理研究中的应用[J].河南农业大学学报,2000,34(3):248-251.
    [119]Belkhodja R, Morales F, Abadia A, et al. Chlorophyll fluorescence as a possible tool for salinitytolerance screening in barley (Hordenm vulgare L.)[J]. Plant Physiol,1994,104(2):667-673.
    [120]姜闯道,高辉远.缺铁使大豆叶片激发能的耗散增加[J].植物生理与分子生物学学报,2002,28(2):127-132.
    [121]Ackmann J J, Seitz M A. Methods of complex impedance measurements in biological tissue [J].CRC Critical Review in Biomedical Engineering,1984,11:281-311.
    [122]Macdougall R C, Thompson R G, Piene H. Stem electrical capacitance and resistancemeasurements as related to total foliar biomass of balsam fir trees [J].Canadian Journal of ForestResearch,1987,17:1071-1074.
    [123]Greenham C G, Helms K, Muller W J. Influence of virus infections on impedance parameters [J].Journal of Experimental Botany,1978,29:867-877.
    [124]Cox M A, Zhang M I N, Willison J H M. Apple bruise assessment through electrical impedancemeasurements [J]. Journal of Horticulrural Science,1993,68:393-398.
    [125]Zhang G, Ryyppo A, Repo T. The electrical impedance spectroscopy of Scots pine needles duringcold acclimation [J]. Physiologia Plantarum,2002,115:385-392.
    [126]Zhang G, Ryypo A,Vapaavuori E, et al. Quantification of additive response and stationarity of frosthardiness by photoperiod and temperature in Scots pine [J]. Canadian Journal of Forest Research,2003,33:1772-1784.
    [127]Repo T, Oksanen.E, Vapaavuori E. Effects of elevated concentrations of ozone and carbon dioxideon the electrical impedance of leaves of silver birch(Betula pendula) clones [J]. Tree Physiology,2004,24:833-843.
    [128]Repo T, Zhang G, Ryypo A, et al. The relation between growth cessation and frost hardening inScots pines of different origins [J]. Trees,2000,14:456-464.
    [129]Repo T, Zhang M, Ryypo A, et al. Effects of freeze-thaw injury on parmeters of distributedelectrical circuits of stems and needles of Scots pine seedlings at different stages of acclimation [J].Journal of Experimental Botany,1994,45:823-833.
    [130]卢善发.植物组织电阻及其应用[J].生物学杂志.1994,12(5):4-6.
    [131]梁军,屈智巍,刘惠文,等.杨树溃疡病及松材线虫病对树体干部电指标的影响[J].林业科学,2006,42(12):68-72.
    [132]Repo T, Zhang G, Ryypp A, et al. The electrical impedance spectroscopy of Scots pine (Pinussylvestris L.) shoots in relation to cold acclimation [J]. J Exp Bot,2000,51:2095-2107.
    [133]Cao H, L i X, Dong X. Generation of broad-spectrum disease resistance by overexp ression of anessential regulatory gene in systemic acquired resistance [J]. Proc Natl Acad Sci (USA),1998,95:6531-6536.
    [134]Pieterse C M J, van Wees S C M, van Pelt J A, et al. A novel signaling pathway controllinginduced systemic resistance in Arabidopsis [J]. Plant Cell,1998,10:1571-1580.
    [135]Cao H, Glazebrook J, Clarke J D, et al. A rabidopsis NPR1gene that controls systemic acquiredresistance encodes a novel protein containing ankyrin repeats [J]. Cell,1997,88:57-63.
    [136]Reuber T, Plotnikova J M, Dewdney J, et al. Correlation of defence gene induction defects withpowdery mildew susceptibility in Arabidopsis enhanced disease susceptibility mutants [J]. Plant J,1998,1:473-485.
    [137]Spoel S H, Koornneef A, Claessens S M, et al. NPR1modulates cross-talk between salicylate-andjasmonate-dependent defense pathways through a novel function in the cytosol [J]. Plant Cell,2003,15(3):760-770.
    [138]Dong X. SA, JA, ethykene, and disease resistance in plants [J]. Curr Opin Plant Biol,1998,1:316-323.
    [139]李敏,李胜军,裴新梧.香蕉NPR1基因片段的克隆及对水杨酸的早期应答反应[J].农业生物技术学报,2007,15(2):352-353.
    [140]Mawsheng C, Heather A F, Patrick E C, et al. Overexpression of a rice NPR1homolog leads toconstitutive activation of defense response and hypersensitivity to light [J]. MolecularPlant-Microbe Interactions,2005,18(6):511-520.
    [141]Makandar R, Essig J S, Schapaugh M A, et al. Genetically engineered resistance to Fusarium headblight in wheat by expression of Arabidopsis NPR1[J]. Molecular Plant Microbe Interactions,2006,19(2):123-129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700