用户名: 密码: 验证码:
船舶冷藏箱变频节能技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界各国易腐货物进出口量的迅速增加,冷藏集装箱运输得到了迅
    速的发展,目前全球冷藏集装箱数约为750 000TEU,且每年仍有约6500 TEU
    新冷藏集装箱投入营运,冷藏集装箱运输已成为国际贸易中的一种重要手
    段,然而在营运的冷藏集装箱中有90%以上采用机械式,所以其能耗问题
    日趋突出,本文所要解决的问题就是如何提高冷藏集装箱制冷装置的工作效
    率和经济性。
     本文针对冷藏集装箱制冷系统的节能,提出了在压缩机、风机中运用变
    频器进行无级调速的方法,使制冷系统的制冷量与箱内的热负荷有较好的匹
    配,从而达到节能的目的。通过对冷藏集装箱制冷系统运行特性的热工分析,
    得出冷藏集装箱的热负荷计算可借鉴在空调系统中已运用相当成熟的热反应
    系数法进行计算的结论,从而使热负荷计算更为精确。
     在论文中,总结了制冷与空调装置节能技术的研究成果,针对冷藏集装
    箱的特殊运输环境,提出了冷藏集装箱的节能技术措施。
     压缩机容量的变频无级调节:冷藏集装箱制冷压缩机变频节能计算,应
    用热反应系数法,选择典型航线、进行实船典型航行时刻冷藏集装箱各围壁
    温差渗入热的计算,并在参考了有关文献推荐的经验公式后,计算出典型航
    次、典型航行日、典型时刻制冷系统的热负荷,并对计算所得的制冷系统负
    荷与设计工况下的制冷系统负荷进行比较,得出差值,运用其变化率说明了
    压缩机变速调节的必要性。另一方面通过变频节能计算得出压缩机具有33%
    的节能率,从而论证了冷藏集装箱制冷压缩机变频的可行性。
     风机的变频调节:冷藏集装箱风机的变频节能计算,采用热反应系数得
    出典型航次、典型航行时刻冷藏集装箱内的温差渗入热,计算出冷藏集装箱
    内显热及实际所需的风量,通过实际所需风量与额定风量的差值和比率说明
    冷藏集装箱风机变速的必要性。典型航次冷藏集装箱风机变频节能计算,得
    出蒸发器风机具有58.8%的节能率和冷凝器风机具有70%的节能率,阐明了
    冷藏集装箱风机变频的可行性。
     电子膨胀阀替代热力膨胀阀:由于变频系统的制冷剂流量变化范围比较
    大,而电子膨胀阀对流量变化的反应速度比热力膨胀阀快,对过热度调节的
    时间滞后比较小,制冷系统很快就能进入稳定运行状态,使制冷系统的各组
    成部分的动态特性有了较好地协调,且电子膨胀阀能够进行集中控制,因此
    在变频系统中电子膨胀阀代替热力膨胀阀是必然趋势。在对冷藏集装箱蒸发
    
    
     器的动态特性进行分析后,得出冷藏集装箱蒸发器具有漫时变的特性,进而
     提出了电子膨胀阀在制冷系统运行时的过热度调节规律。
     本文对冷藏集装箱制冷系统实现变频中,分析了冷藏集装箱制冷系统的
     控制特性和冷藏集装箱的控制性能,并提出了冷藏集装箱的控制方法及制冷
     压缩机与变频器的匹配。
     研究结果表明,冷藏集装箱制冷系统在其设计负荷的40%~90%航线上
     运行采用变频控制具有相当大的节能前景。
Along with the rapid increase in the amount of perishable goods
     imported and exported in the world, refrigerated container transportation
     has been drastically developed. At present, the number of the refrigerated
     container has been 750 000TEU and 65 00 TEU new refrigerated container
     are putting into use every year. Refrigerated container transportation has
     played a significant role in international trade. There has 90% of the
     mechanical mode in the refrigerated container, energy consumption,
     however, has also become an unneglectable problem. This thesis is aimed
     to expound how to improve the work efficiency and economic benefits of
     refrigerating installation in refrigerated container.
     Aiming at energy-saving in the refrigerating system of refrigerated
     container: This thesis puts forward the idea of using frequency converter to
     achieve stepless change in compressor and air blower to make a good-
     matching between refrigerating capacity and refrigeration duty. In this way
     the goal of energy-saving can be accomplished. In the course of calculating
     refrigeration duty of refrigerated container, thermal analysis is made toward
     the course of heat transmission in the container's thermal baffle. The
     conclusion is that the calculation of container's refrigeration duty can apply
     the same way as heat response factors, which has been maturely used in
     air-conditioning system. Through this way the calculation of refrigeration
     duty can be more precise.
     The paper summarizes the research achievements in energy-saving
     technology about refrigerating machinery and air-conditioning plant. It
     raises the measure of energy-saving, in regard of the special transportation
     condition of refrigerated container.
     Stepless change of compressor for capacity control: Adopt the way of
     heat response factors to calculate variable frequency energy-saving of
     compressor in the container's refrigerating system ; lnleakage-heat
     calculating caused by the temperature difference through the refrigerated
    
    
    
     container's thermal baffle based on typical line in a specific transportation
     on a typical sailing date and time of a practical ship; then calculate
     refrigeration duty at typical time after consulting some empirical formulas
     recommended by relevant literatures; compare the calculated refrigeration
     duty with the refrigeration duty of refrigerating system under designed
     operating mode to get difference and fluctuating rate to illustrate the
     necessity of stepless change in compressor. With the calculation of variable
     frequency energy-saving , the 33% energy-saving rate expound and prove
     the feasibility of the application of the variable speed compressor in
     refrigerated container.
     Variable frequency air blower for the system air volume regulation of
     air-conditioning system: In the calculation of air blower's variable speed
     energy-saving in refrigerated container, get refrigeration duty inside the
     refrigerated container at typical time by the way of heat response factors.
     From these, the sensible heat and air volume in need at typical time can be
     determined; the difference between the air volume practically needed and
     the specified amount manifests the necessity of the application of variable
     speed air blower. Through the calculation of variable frequency energy-
     saving of air blower in a certain route, a rate of 58.8% in the energy-saving
     by evaporator air blower and a rate of 70% in the energy-saving by
     condenser air blower can be gotten. Thus, the feasibility of variable
     frequency in air blower is proved.
引文
1 Jahrgang . 1983 Heft 4 (3) New product. ASHRAE Journal , APR, MAR, JAN, JUNE 1983
    2 R.jsermann Und H.TOLIE. 25Jahre Institut fUr Regelung-steahnick on der Technischen Hochschule Darmstadt, Regelungstechnik,1985
    3 DANFOSS produkt Ubersicht. 1982. 9
    4 The DANFOSS Journal 3,1985
    5 The DANFOSS Journal 1. 84P8. Electronic temperature regulator. EPTTHCVC, 188
    6 CHEN Zhijiu. Untersuchurg des dynamischen Verhaleens.bei Kreuz-strom ver dampfernvon Kalteanlagen Forschung bericht AV 3/18. Institut fUr MeB-und Regelstechnik der Universitat karlsurhe 1. 6. 1983
    7 P14. Qualhatssteunmg des statischen Frequen zumformers TYP.VLT
    8 A.C.Stera. Martine Transport, president, Ⅱ R Section D.20~(th) International Congress of Refrigeration, ⅡR/ⅡF, Sydney, 1999
    9 J.A.McGovern and S.Harte .An energy method for compressor performance analysis. International Journal of Refrigeration. VOL. 18. N06 199 Refrigeration, ⅡR/ⅡF, Sydney, 1999
    10 0. K. Riegger, Ph. D. A variable speed compressor performance. ASHRAE Transactions, 1988(PartⅡ) :1215-12285:421-433
    11 H·F·TH·Meffert, C·Ainfante-Ferreira. Energy efficiency of transport refrigeration units. 20~(th) International Congress of Refrigeration, Ⅱ R/ ⅡF, Sydney, 1999
    12 G. Scalabrin and G. Bianco. Experimental thermodynamic analysis of a variable speed open reciprocating refrigeration compressor. International Journal Refrigeration. 1994 Vol17 Nol, 68-75
    13 A.Benamer and D.Clodic . Test bench for comparative measurement of energy efficiency of variable and fixed speed scroll compressor. 20~(th) International Congress of Refrigeration, ⅡR/ⅡF, Sydney, 1999
    14 Dermott Crombie PH.d.. New technologies allow radical energy saving in seagoing container refrigeration systems,. 20~(th) International Congress of Refrigeration, Ⅱ R/ ⅡF, Sydney, 1999
    15 Reefer container seminar . Bureau veritas-Shanghai Central Office.
    16 S. A. Tassou and H. O. Al-Nizari. Investigation of the effects of
    
    thermostatic and electronic expansion valves on the steady state and transient performance of commercial chillers. Rev. Int. Froid, 1993 Vol 16 Nol: 49~53
    17 Carrier Transicold. Container Refrigeration Unit operation and service. 1998
    18 W.P.Jones. Air conditioning engineering. 1980
    19 H.Wang and S.Touber. Distributed and non-steady-sting modeling of an air cooler. International Journal Refrigeration., 1991. Vol. 14: 283~297
    20 Outtagarts A. Habersohll P. Lallemand M. Cornportement Dynamique d(?) Evaporatcur dc Machinc Frigorigiquc Soumis Adcs Variations dc Dcbit. 19th Int. Congress Refrigeration, 1995: 375~392
    21 Kencichi Yoshimoto. Application of the Preview Tracking Control Algorith to Servoing of Robot Hanipulator, Proc. Of 1st ISSR., 1996
    22 陈芝久.制冷装置动态特性试验研究.上海交大科技交流室,1984.3
    23 陈芝久等著.制冷系统热动力学.北京:机械工业出版社,1998.5
    24 谢如鹤,陈治亚,胡思继.关于加快研制、开发和生产冷藏集装箱的思考.综合评述,1999,(7):3~8
    25 上海海运学院科技情报服务部.冷藏船运输市场的竞争.水运文献信息,1999.4:11
    26 韩厚德,沈一平.冷藏集装箱制冷系统节能技术研究.集装箱化,1999,(2):30~33
    27 郑青榕.船舷中央空调系统节能技术研究:[学位论文].上海;上海海运学院,1999.12
    28 蒋能照.(火用)及其在制冷工程中的应用.制冷学报,1981,(1):62~77
    29 谢剑锋.变频空调器中全封闭往复式制冷压缩机的热力性能及控制方法研究:[学位论文].上海:上海交通大学,1997.1
    30 朱瑞琪,孙毅刚,刘君华.制冷空调设备的变频能量调节.制冷技术,1995,3:51~55
    31 杨东华等译.工程热力学理论基础及工程应用.北京:科学出版社,1983
    32 谢如鹤,胡思继,罗贵秀.冷藏运输中货物干耗问题的研究.制冷学报,1999,(2):42~49
    33 韩厚德.船舶冷藏集装箱运行特性及节能技术研究.上海海运学院院报,1996.6,(3):72~78
    34 陆定安.电动机节能改造实用手册.上海:上海科学技术出版社,1993
    
    
    35 方禹声.聚氨脂泡沫塑料.北京:北京化学工业出版社,1994
    36 陈沛霖.空气调节负荷计算理论与方法.上海:同济大学出版社,1985
    37 张乐法编著.空调动态负荷与计算机运算理论与实务.济南:济南出版社,1980
    38 谭浩强编著.C 程序设计.北京:清华大学出版社,1988
    39 《船舶设计实用手册冷藏通风》编写组.船舶设计实用手册冷藏通风分册.上海:国防工业出版社,1975
    40 卢士勋主编.制冷与空气调节技术—理论基础及工程技术.上海:上海科学普及出版社,1992
    41 郭庆堂,吴进发编著.实用制冷工程设计手册.北京:中国建筑工业出版社,1994
    42 鲍士雄,夏畹,邬振耀编.船舶空气调节.上海:国防工业出版社,1980
    43 卢士勋,韩厚德编著.船舶辅机学.上海:科学出版社,1995
    44 上村建二著.冷冻便览.成山堂书店.照和59
    45 原魁,刘伟强编著,变频器基础及应用.北京:冶金工业出版社,
    46 满永奎,韩安荣,吴成东编著.通用变频器及其应用.北京:机械工业出版社,1995.8
    47 虞加严.制冷船舶装置微机控制的研究:[学位论文].上海:上海海运学院,1994.12
    48 周兴禧.变频空调蒸发器变流量特性理论研究.流体机械,1997,(2):47~50
    49 朱瑞琪,陈文勇,吴业正.制冷机供液调节系统中蒸发器的动态特性.流体机械,1998,(5):33~37
    50 朱瑞琪,田怀璋.电子膨胀阀调节规律的确定方法.流体工程,1993.1:55~59
    51 白梓运,陈芝久.蒸发器的电子膨胀阀自适应研究.第七届全国余热制冷与热泵技术会议论文集,1994.10
    52 陈芝久,蒋文强.制冷蒸发器与热力膨胀阀回路的稳定性分析.上海交通大学学报,1993.3
    53 上海远洋运输公司“裕固河”轮.《航海日志》,1998.(2~4)
    54 杨万枫.冷藏集装箱隔热结构的热工研究:[学位论文].上海:上海海运学院,1998.5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700