用户名: 密码: 验证码:
多模态磁共振成像数据分析方法研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁共振成像最主要的一个优点就是它具有多种成像模态(或对比度),采用多模态磁共振成像已经成为多个研究领域特别是神经、精神疾病领域的一个重要研究手段。不过,如何有效地利用多模态磁共振成像研究神经、精神疾病的影像学标记尚缺乏系统性的研究,另外,虽然磁共振成像技术已经得到了广泛的应用,但是作为一种年轻的研究手段,其数据分析方法学上还存在很多局限性。因此,本文主要分两个部分来研究这些问题。
     第一部分,我们系统地研究了如何有效地利用多模态磁共振成像进行神经、精神疾病的研究。首先,我们介绍了三种常用磁共振成像模态的成像基础及其敏感性,包括功能磁共振成像,弥散张量成像和高分辨T1加权结构像。然后,详细地研究了这三种成像模态的常用分析方法及其功用和缺陷,并且针对它们存在的缺陷提出了一些新的解决方案。特别地,我们研究了如何利用新颖的图论方法分析大脑静息态功能网络和大脑皮层解剖网络的拓扑属性;为了提高测量的准确性,我们提出了一种优化的基于形态学测量方法来研究弥散张量参数图(如FA图)之间的差异。另外,为了克服传统的基于个体空间的神经纤维束追踪方法的局限性,我们提出了一种基于张量配准的神经纤维束追踪方案。最后,我们重点是结合对脑中风疾病的具体研究来分析如何有效地应用各种成像模态及其分析方法。和以前的研究相比,我们观测到了很多重要的新发现,可能为揭示中风后手功能转归的神经生物学基础提供有价值的神经影像学标记。
     第二部分,我们重点研究了两个磁共振成像数据分析方法学上的问题。(1)我们知道,功能连接分析中总会出现一些负相关,而且目前对负相关的生理意义还不清楚。在构建功能网络时,通常对负相关的处理策略是取其绝对值或者把它们设为零。那么负相关的不同处理策略对大尺度脑功能网络拓扑属性到底有怎样的影响?这个问题很少受到研究者的关注,因此,我们第一次比较了这两种常用的负相关处理条件下各个网络拓扑参数的差异,这不仅为负相关在脑功能网络拓扑配置中的角色提供了一个新的认识,而且也为负相关的研究提供一个新的角度。(2)利用传统单张量模型,我们经常观测到存在水肿脑区的FA值非常低,这很可能在一定程度上是归因于局部水肿的部分容积效应,而实际上水肿区域也可能存在一定的各向异性组织。为了克服传统单张量模型对存在水肿条件下进行扩散张量测量的局限性,我们提出了一种部分容积张量模型来拟合弥散加权信号,并且将该模型分别应用于缺血性脑中风和胶质瘤病人的弥散加权数据中。我们发现在病灶处使用该模型能够有效加强FA值,明显地高于采用传统的单张量模型得到的FA,从而有可能帮助病灶区域的神经追踪。另外,通过部分容积张量模型得到的f图能够很清晰地显示出病灶。我们的结果说明部分容积模型能够在一定程度上分离出病灶中水肿的成份,可能更适合于存在水肿脑区的弥散特性测量。
One of the most prominent advantages using magnetic resonance imaging (MRI) is capable of conducting multiple imaging modalities (or contrasts). It has become an important probing approach in many research fields, particularly in studying neurological and psychiatric disorders. However, how to effectively employ multimodal MRI for exploring neuroimaging markers in neurological and psychiatric disorders is a field under investigated. Although MRI has been widely used, it is yet a very young technology in its early development, and the related methodologies are very limited and under developed. In this study, we made efforts to investigate these critical issues along two axes, as detailed below.
     In the first effort, we mainly focused on strategies of how to effectively utilize multimodal MRI for assisting investigations of neurological and psychiatric disorders. First, we introduced the fundamentals and the respective sensitivities of three MRI modalities, including functional MRI (fMRI), diffusion tensor imaging (DTI) and high-resolution Ti-weighted imaging. Second, we studied the commonly used analysis methods as well as their drawbacks for the three MRI modalities in detail. In addition, we also proposed strategies to resolve their drawbacks. Especially, we introduced an effective graph-theory analysis method for investigating the topological properties of both resting-state brain networks and anatomical networks of brain cortex; we proposed an optimal voxel-based morphometry approach to improving the accuracy in measuring the difference of diffusion derived indicies (e.g., FA-fractional anisotropy). Additionally, we also proposed a novel strategy for fiber tracking that is based on tensor-based registration for overcoming the drawbacks inherited in the traditional approach that has to be done within individual spaces. Finally, to demonstrate the effectiveness of our proposed strategy, we carried out a specific study using multimodal MRI data of stroke patients as an application instance. Comparing with previous studies, we observed many vital new findings, which may provide valuable neuroimaging markers for the pathophysiological fundamental of different outcomes in hand function after subcortical stroke.
     In a second effort, we studied two methodological issues on MRI data analysis.(1) We know that negative correlations constantly exist in functional connectivity analysis. Unfortunately, the physiological underpinnings of negative correlations are not exactly clear. For reconstructing the brain network, negative correlations are usually treated using either the following two strategies:(a) adopting the absolute value of a negative correlation, or (b) setting all negative correlations to zero. However, little is known concerning the effect of taking the two different strategies for dealing with negative correlations on the topological properties of brain network. We therefore for the first time examined the differences in the topological properties of the resulting brain networks reconstructed using the two strategies. The work not only provides insight into the role of negative correlations in configuring the topology of brain functional network, but also offers a new view for studying the negative correlations.(2) Using traditional single tensor model (TSTM), we often observed extremely low FA at locations with edema in the brain, which might be partly attributed to the partial volume effect induced from edema. In fact, anisotropic tissue may also exsit at the loacations of edema. To resolve this issue, we proposed a partial-volume tensor model (PVTM) to approximate and model the diffusion weighted signals, and the model was applied in the diffusion-weighted datasets collected from stroke and glioma patients, respectively. We found that our PVTM can effectively enhance the FA measurement in the ischemic stroke and glioma tumor regions, significantly greater than that calculated using TSTM, which would therefore facilitate the success of fiber tracking within such regions. Moreover, the f map generated from PVTM can well display the lesion. Our results demonstrated that PVTM can isolate the component of edema from lesion to some extent and might be more suitable than TSTM for measuring diffusion properties in the regions of edema.
引文
1. Huettel SA, Song AW, McCarthy G (2009) Functional Magnetic Resonance Imaging:Sinauer Associates, Incorporated.
    2. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87:9868-9872.
    3. Pauling L, Coryell CD (1936) The Magnetic Properties and Structure of Hemoglobin, Oxyhemoglobin and Carbonmonoxyhemoglobin. Proc Natl Acad Sci U S A 22:210-216.
    4. Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, et al. (1992) Intrinsic signal changes accompanying sensory stimulation:functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 89:5951-5955.
    5. Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, et al. (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 89:5675-5679.
    6. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537-541.
    7. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150-157.
    8. Rauch A, Rainer G, Logothetis NK (2008) The effect of a serotonin-induced dissociation between spiking and perisynaptic activity on BOLD functional MRI. Proc Natl Acad Sci U S A 105: 6759-6764.
    9. Zang Y, Jiang T, Lu Y, He Y, Tian L (2004) Regional homogeneity approach to fMRI data analysis. Neuroimage 22:394-400.
    10. Uddin LQ, Kelly AM, Biswal BB, Margulies DS, Shehzad Z, et al. (2008) Network homogeneity reveals decreased integrity of default-mode network in ADHD. J Neurosci Methods 169: 249-254.
    11. Zang YF, He Y, Zhu CZ, Cao QJ, Sui MQ, et al. (2007) Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 29:83-91.
    12. Cordes D, Haughton V, Carew JD, Arfanakis K, Maravilla K (2002) Hierarchical clustering to measure connectivity in fMRI resting-state data. Magn Reson lmaging 20:305-317.
    13. van de Ven VG, Formisano E, Prvulovic D, Roeder CH, Linden DE (2004) Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Human Brain Mapping 22:165-178.
    14. Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, et al. (2001) Frequencies contributing to functional connectivity in the cerebral cortex in "resting-state" data. AJNR Am J Neuroradiol 22:1326-1333.
    15. Lowe MJ, Mock BJ, Sorenson JA (1998) Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage 7:119-132.
    16. Hampson M, Peterson BS, Skudlarski P, Gatenby JC, Gore JC (2002) Detection of functional connectivity using temporal correlations in MR images. Human Brain Mapping 15:247-262.
    17. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain:a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 100:253-258.
    18. Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME (2006) Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci U S A 103: 10046-10051.
    19. Monti MM (2011) Statistical Analysis of fMRI Time-Series:A Critical Review of the GLM Approach. Front Hum Neurosci 5:28.
    20. Sporns O, Tononi G, Edelman GM (2000) Theoretical neuroanatomy:relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb Cortex 10:127-141.
    21. Strogatz SH (2001) Exploring complex networks. Nature 410:268-276.
    22. Sporns O, Zwi JD (2004) The small world of the cerebral cortex. Neuroinformatics 2:145-162.
    23. Watts DJ, Strogatz SH (1998) Collective dynamics of'small-world'networks. Nature 393:440-442.
    24. Newman MEJ (2003) The Structure and Function of Complex Networks. SIAM Review 45:167-256.
    25. Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296: 910-913.
    26. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26:63-72.
    27. Humphries MD, Gurney K, Prescott TJ (2006) The brainstem reticular formation is a small-world, not scale-free, network. Proc Biol Sci 273:503-511.
    28. Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87:198701.
    29. Wang J, Wang L, Zang Y, Yang H, Tang H, et al. (2009) Parcellation-dependent small-world brain functional networks:a resting-state fMRI study. Human Brain Mapping 30:1511-1523.
    30. Newman ME (2002) Assortative mixing in networks. Phys Rev Lett 89:208701.
    31. Newman ME (2006) Modularity and community structure in networks. Proc Natl Acad Sci U S A 103:8577-8582.
    32. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, et al. (2002) Network motifs:simple building blocks of complex networks. Science 298:824-827.
    33. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity:uses and interpretations. Neuroimage 52:1059-1069.
    34. He Y, Chen Z, Evans A (2008) Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer's disease. J Neurosci 28:4756-4766.
    35. Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional networks. PLoS Comput Biol 3:el7.
    36. Stam GJ, Jones BF, Nolte G, Breakspear M, Scheltens P (2007) Small-world networks and functional connectivity in Alzheimer's disease. Cereb Cortex 17:92-99.
    37. Wang L, Zhu C, He Y, Zang Y, Cao Q, et al. (2009) Altered small-world brain functional networks in children with attention-deficit/hyperactivity disorder. Human Brain Mapping 30:638-649.
    38. Mori S (2007) Introduction to Diffusion Tensor Imaging:Elsevier Science.
    39. Ashburner J, Friston KJ (2000) Voxel-based morphometry--the methods. Neuroimage 11:805-821.
    40. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, et al. (2006) Tract-based spatial statistics:voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487-1505.
    41. Afzali M, Soltanian-Zadeh H, Elisevich KV (2011) Tract based spatial statistical analysis and voxel based morphometry of diffusion indices in temporal lobe epilepsy. Comput Biol Med 41: 1082-1091.
    42. Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265-269.
    43. Behrens TE, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, et al. (2003) Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 50: 1077-1088.
    44. Pannek K, Chalk JB, Finnigan S, Rose SE (2009) Dynamic corticospinal white matter connectivity changes during stroke recovery:a diffusion tensor probabilistic tractography study. J Magn Reson Imaging 29:529-536.
    45. Alexander DC, Pierpaoli C, Basser PJ, Gee JC (2001) Spatial transformations of diffusion tensor magnetic resonance images. IEEE Trans Med Imaging 20:1131-1139.
    46. Xu D, Mori S, Shen D, van Zijl PC, Davatzikos C (2003) Spatial normalization of diffusion tensor fields. Magn Reson Med 50:175-182.
    47. Zhang H, Yushkevich PA, Alexander DC, Gee JC (2006) Deformable registration of diffusion tensor MR images with explicit orientation optimization. Med Image Anal 10:764-785.
    48. Xu D, Hao X, Bansal R, Plessen KJ, Peterson BS (2008) Seamless warping of diffusion tensor fields. IEEE Trans Med Imaging 27:285-299.
    49. Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 97:11050-11055.
    50. Mechelli A, Friston KJ, Frackowiak RS, Price CJ (2005) Structural covariance in the human cortex. J Neurosci 25:8303-8310.
    51. Lerch JP, Worsley K, Shaw WP, Greenstein DK, Lenroot RK, et al. (2006) Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI. Neuroimage 31:993-1003.
    52. Chollet F, DiPiero V, Wise RJ, Brooks DJ, Dolan RJ, et al. (1991) The functional anatomy of motor recovery after stroke in humans:a study with positron emission tomography. Ann Neurol 29: 63-71.
    53. Cao Y, D'Olhaberriague L, Vikingstad EM, Levine SR, Welch KM (1998) Pilot study of functional MRI to assess cerebral activation of motor function after poststroke hemiparesis. Stroke 29: 112-122.
    54. Marshall RS, Perera GM, Lazar RM, Krakauer JW, Constantine RC, et al. (2000) Evolution of cortical activation during recovery from corticospinal tract infarction. Stroke 31:656-661.
    55. Weiller C, Ramsay SC, Wise RJ, Friston KJ, Frackowiak RS (1993) Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction. Ann Neurol 33: 181-189.
    56. Cramer SC, Nelles G, Benson RR, Kaplan JD, Parker RA, et al. (1997) A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 28:2518-2527.
    57. Loubinoux I, Carel C, Pariente J, Dechaumont S, Albucher JF, et al. (2003) Correlation between cerebral reorganization and motor recovery after subcortical infarcts. Neuroimage 20: 2166-2180.
    58. Tombari D, Loubinoux I, Pariente J, Gerdelat A, Albucher JF, et al. (2004) A longitudinal fMRI study: in recovering and then in clinically stable subcortical stroke patients. Neuroimage 23: 827-839.
    59. Loubinoux I, Dechaumont-Palacin S, Castel-Lacanal E, De Boissezon X, Marque P, et al. (2007) Prognostic value of FMRI in recovery of hand function in subcortical stroke patients. Cereb Cortex 17:2980-2987.
    60. Ward NS, Brown MM, Thompson AJ, Frackowiak RS (2003) Neural correlates of outcome after stroke:a cross-sectional fMRI study. Brain 126:1430-1448.
    61. Ward NS, Brown MM, Thompson AJ, Frackowiak RS (2003) Neural correlates of motor recovery after stroke:a longitudinal fMRI study. Brain 126:2476-2496.
    62. Johansen-Berg H, Dawes H, Guy C, Smith SM, Wade DT, et al. (2002) Correlation between motor improvements and altered fMRI activity after rehabilitative therapy. Brain 125:2731-2742.
    63. Liepert J, Bauder H, Wolfgang HR, Miltner WH, Taub E, et al. (2000) Treatment-induced cortical reorganization after stroke in humans. Stroke 31:1210-1216.
    64. Hummel F, Celnik P, Giraux P, Floel A, Wu WH, et al. (2005) Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain 128:490-499.
    65. Lindenberg R, Renga V, Zhu LL, Nair D, Schlaug G (2010) Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology 75:2176-2184.
    66. Stagg CI, Bachtiar V, O'Shea J, Allman C, Bosnell RA, et al. (2011) Cortical activation changes underlying stimulation-induced behavioural gains in chronic stroke. Brain.
    67. Calautti C, Leroy F, Guincestre JY, Baron JC (2001) Dynamics of motor network overactivation after striatocapsular stroke-A longitudinal PET study using a fixed-performance paradigm. Stroke 32:2534-2542.
    68. Sun L, Yin D, Zhu Y, Fan M, Zang L, et al. (2013) Cortical reorganization after motor imagery training in chronic stroke patients with severe motor impairment:a longitudinal fMRI study. Neuroradiology 55:913-925.
    69. Cramer SC, Moore CI, Finklestein SP, Rosen BR (2000) A pilot study of somatotopic mapping after cortical infarct. Stroke 31:668-671.
    70. Pineiro R, Pendlebury S, Johansen-Berg H, Matthews PM (2001) Functional MRI detects posterior shifts in primary sensorimotor cortex activation after stroke:evidence of local adaptive reorganization? Stroke 32:1134-1139.
    71. Calautti C, Leroy F, Guincestre JY, Baron JC (2003) Displacement of primary sensorimotor cortex activation after subcortical stroke:a longitudinal PET study with clinical correlation. Neuroimage 19:1650-1654.
    72. Calautti C, Baron JC (2003) Functional neuroimaging studies of motor recovery after stroke in adults:a review. Stroke 34:1553-1566.
    73. Ward NS, Newton JM, Swayne OB, Lee L, Frackowiak RS, et al. (2007) The relationship between brain activity and peak grip force is modulated by corticospinal system integrity after subcortical stroke. Eur J Neurosci 25:1865-1873.
    74. Dong Y, Dobkin BH, Cen SY, Wu AD, Winstein CJ (2006) Motor cortex activation during treatment may predict therapeutic gains in paretic hand function after stroke. Stroke 37:1552-1555.
    75. Calautti C, Naccarato M, Jones PS, Sharma N, Day DD, et al. (2007) The relationship between motor deficit and hemisphere activation balance after stroke:A 3T fMRI study. Neuroimage 34: 322-331.
    76. Carter AR, Shulman GL, Corbetta M (2012) Why use a connectivity-based approach to study stroke and recovery of function? Neuroimage 62:2271-2280.
    77. Carter AR, Astafiev SV, Lang CE, Connor LT, Rengachary J, et al. (2010) Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Ann Neurol 67:365-375.
    78. Park CH, Chang WH, Ohn SH, Kim ST, Bang OY, et al. (2011) Longitudinal changes of resting-state functional connectivity during motor recovery after stroke. Stroke 42:1357-1362.
    79. Thomalla G, Glauche V, Koch MA, Beaulieu C, Weiller C, et al. (2004) Diffusion tensor imaging detects early Wallerian degeneration of the pyramidal tract after ischemic stroke. Neuroimage 22:1767-1774.
    80. Liang Z, Zeng J, Liu S, Ling X, Xu A, et al. (2007) A prospective study of secondary degeneration following subcortical infarction using diffusion tensor imaging. J Neurol Neurosurg Psychiatry 78:581-586.
    81. Puig J, Pedraza S, Blasco G, Daunis IEJ, Prats A, et al. (2010) Wallerian degeneration in the corticospinal tract evaluated by diffusion tensor imaging correlates with motor deficit 30 days after middle cerebral artery ischemic stroke. AJNR Am J Neuroradiol 31:1324-1330.
    82. Yu C, Zhu C, Zhang Y, Chen H, Qin W, et al. (2009) A longitudinal diffusion tensor imaging study on Wallerian degeneration of corticospinal tract after motor pathway stroke. Neuroimage 47: 451-458.
    83. Song F, Zhang F, Yin DZ, Hu YS, Fan MX, et al. (2012) Diffusion tensor imaging for predicting hand motor outcome in chronic stroke patients. J Int Med Res 40:126-133.
    84. Cho SH, Kim DG, Kim DS, Kim YH, Lee CH, et al. (2007) Motor outcome according to the integrity of the corticospinal tract determined by diffusion tensor tractography in the early stage of corona radiata infarct. Neurosci Lett 426:123-127.
    85. Cho SH, Kim SH, Choi BY, Kang JH, Lee CH, et al. (2007) Motor outcome according to diffusion tensor tractography findings in the early stage of intracerebral hemorrhage. Neurosci Lett 421:142-146.
    86. Lee JS, Han MK, Kim SH, Kwon OK, Kim JH (2005) Fiber tracking by diffusion tensor imaging in corticospinal tract stroke:Topographical correlation with clinical symptoms. Neuroimage 26: 771-776.
    87. Fan F, Zhu C, Chen H, Qin W, Ji X, et al. (2013) Dynamic brain structural changes after left hemisphere subcortical stroke. Human Brain Mapping 34:1872-1881.
    88. Wright IC, Sharma T, Ellison ZR, McGuire PK, Friston KJ, et al. (1999) Supra-regional brain systems and the neuropathology of schizophrenia. Cereb Cortex 9:366-378.
    89. Andrews TJ, Halpern SD, Purves D (1997) Correlated size variations in human visual cortex, lateral geniculate nucleus, and optic tract. J Neurosci 17:2859-2868.
    90. Bassett DS, Bullmore E, Verchinski BA, Matt ay VS, Weinberger DR, et al. (2008) Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 28: 9239-9248.
    91. Folstein MF, Folstein SE, McHugh PR (1975) "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189-198.
    92. Mankinen K, Long XY, Paakki JJ, Harila M, Rytky S, et al. (2011) Alterations in regional homogeneity of baseline brain activity in pediatric temporal lobe epilepsy. Brain Res 1373:221-229.
    93. Zhang Z, Liu Y, Jiang T, Zhou B, An N, et al. (2012) Altered spontaneous activity in Alzheimer's disease and mild cognitive impairment revealed by Regional Homogeneity. Neuroimage 59: 1429-1440.
    94. Wu QZ, Li DM, Kuang WH, Zhang TJ, Lui S, et al. (2011) Abnormal regional spontaneous neural activity in treatment-refractory depression revealed by resting-state fMRI. Human Brain Mapping 32:1290-1299.
    95. Paakki JJ, Rahko J, Long X, Moilanen I, Tervonen O, et al. (2010) Alterations in regional homogeneity of resting-state brain activity in autism spectrum disorders. Brain Res 1321: 169-179.
    96. Wu T, Long X, Zang Y, Wang L, Hallett M, et al. (2009) Regional homogeneity changes in patients with Parkinson's disease. Human Brain Mapping 30:1502-1510.
    97. Zhu CZ, Zang YF, Cao QJ, Yan CG, He Y, et al. (2008) Fisher discriminative analysis of resting-state brain function for attention-deficit/hyperactivity disorder. Neuroimage 40:110-120.
    98. Liao W, Zhang Z, Pan Z, Mantini D, Ding J, et al. (2010) Altered functional connectivity and small-world in mesial temporal lobe epilepsy. PLoS One 5:e8525.
    99. Liu Y, Liang M, Zhou Y, He Y, Hao Y, et al. (2008) Disrupted small-world networks in schizophrenia. Brain 131:945-961.
    100. Supekar K, Menon V, Rubin D, Musen M, Greicius MD (2008) Network analysis of intrinsic functional brain connectivity in Alzheimer's disease. PLoS Comput Biol 4:e1000100.
    101. Fair DA, Cohen AL, Dosenbach NU, Church JA, Miezin FM, et al. (2008) The maturing architecture of the brain's default network. Proc Natl Acad Sci U S A 105:4028-4032.
    102. Fair DA, Cohen AL, Power JD, Dosenbach NU, Church JA, et al. (2009) Functional brain networks develop from a "local to distributed" organization. PLoS Comput Biol 5:e1000381.
    103. Church JA, Fair DA, Dosenbach NU, Cohen AL, Miezin FM, et al. (2009) Control networks in paediatric Tourette syndrome show immature and anomalous patterns of functional connectivity. Brain 132:225-238.
    104. De Vico Fallani F, Astolfi L, Cincotti F, Mattia D, Marciani MG, et al. (2007) Cortical functional connectivity networks in normal and spinal cord injured patients:Evaluation by graph analysis. Human Brain Mapping 28:1334-1346.
    105. Wang L, Yu C, Chen H, Qin W, He Y, et al. (2010) Dynamic functional reorganization of the motor execution network after stroke. Brain 133:1224-1238.
    106. Sharma N, Baron JC, Rowe JB (2009) Motor imagery after stroke:relating outcome to motor network connectivity. Ann Neurol 66:604-616.
    107. Yin D, Song F, Xu D, Peterson BS, Sun L, et al. (2012) Patterns in cortical connectivity for determining outcomes in hand function after subcortical stroke. PLoS One 7:e52727.
    108. Wu K, Taki Y, Sato K, Kinomura S, Goto R, et al. (2012) Age-related changes in topological organization of structural brain networks in healthy individuals. Human Brain Mapping 33: 552-568.
    109. He Y, Chen ZJ, Evans AC (2007) Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex 17:2407-2419.
    110. Ward NS, Newton JM, Swayne OB, Lee L, Thompson AJ, et al. (2006) Motor system activation after subcortical stroke depends on corticospinal system integrity. Brain 129:809-819.
    111. Murase N, Duque J, Mazzocchio R, Cohen LG (2004) Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol 55:400-409.
    112. Fregni F, Boggio PS, Mansur CG, Wagner T, Ferreira MJ, et al. (2005) Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport 16:1551-1555.
    113. Boggio PS, Nunes A, Rigonatti SP, Nitsche MA, Pascual-Leone A, et al. (2007) Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restorative Neurology and Neuroscience 25:123-129.
    114. Catalan MJ, Honda M, Weeks RA, Cohen LG, Hallett M (1998) The functional neuroanatomy of simple and complex sequential finger movements:a PET study. Brain 121 (Pt 2):253-264.
    115. Johansen-Berg H, Rushworth MF, Bogdanovic MD, Kischka U, Wimalaratna S, et al. (2002) The role of ipsilateral premotor cortex in hand movement after stroke. Proc Natl Acad Sci U S A 99: 14518-14523.
    116. Fridman EA, Hanakawa T, Chung M, Hummel F, Leiguarda RC, et al. (2004) Reorganization of the human ipsilesional premotor cortex after stroke. Brain 127:747-758.
    117. Hanakawa T, Dimyan MA, Hallett M (2008) Motor planning, imagery, and execution in the distributed motor network:a time-course study with functional MRI. Cereb Cortex 18: 2775-2788.
    118. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357-381.
    119. Yin D, Yan X, Fan M, Hu Y, Men W, et al. (2013) Secondary degeneration detected by combining voxel-based morphometry and tract-based spatial statistics in subcortical strokes with different outcomes in hand function. AJNR Am J Neuroradiol 34:1341-1347.
    120. Lacourse MG, Orr EL, Cramer SC, Cohen MJ (2005) Brain activation during execution and motor imagery of novel and skilled sequential hand movements. Neuroimage 27:505-519.
    121. Leiguarda RC, Marsden CD (2000) Limb apraxias:higher-order disorders of sensorimotor integration. Brain 123 (Pt 5):860-879.
    122. Grefkes C, Nowak DA, Eickhoff SB, Dafotakis M, Kust J, et al. (2008) Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann Neurol 63: 236-246.
    123. Lewis GN, Byblow WD (2004) Bimanual coordination dynamics in poststroke hemiparetics. J Mot Behav 36:174-188.
    124. Rose DK, Winstein CJ (2005) The co-ordination of bimanual rapid aiming movements following stroke. Clin Rehabil 19:452-462.
    125. Wassermann EM, Fuhr P, Cohen LG, Hallett M (1991) Effects of transcranial magnetic stimulation on ipsilateral muscles. Neurology 41:1795-1799.
    126. Netz J, Lammers T, Homberg V (1997) Reorganization of motor output in the non-affected hemisphere after stroke. Brain 120 (Pt 9):1579-1586.
    127. Bassett DS, Bullmore E (2006) Small-world brain networks. Neuroscientist 12:512-523.
    128. Kaiser M (2011) A tutorial in connectome analysis:topological and spatial features of brain networks. Neuroimage 57:892-907.
    129. van Meer MP, Otte WM, van der Marel K, Nijboer CH, Kavelaars A, et al. (2012) Extent of bilateral neuronal network reorganization and functional recovery in relation to stroke severity. J Neurosci 32:4495-4507.
    130. Jiang T, He Y, Zang Y, Weng X (2004) Modulation of functional connectivity during the resting state and the motor task. Human Brain Mapping 22:63-71.
    131. Ago T, Kitazono T, Ooboshi H, Takada J, Yoshiura T, et al. (2003) Deterioration of pre-existing hemiparesis brought about by subsequent ipsilateral lacunar infarction. J Neurol Neurosurg Psychiatry 74:1152-1153.
    132. Thomas B, Eyssen M, Peeters R, Molenaers G, Van Hecke P, et al. (2005) Quantitative diffusion tensor imaging in cerebral palsy due to periventricular white matter injury. Brain 128: 2562-2577.
    133. Gerloff C, Bushara K, Sailer A, Wassermann EM, Chen R, et al. (2006) Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain 129:791-808.
    134. Weiller C, Chollet F, Friston KJ, Wise RJ, Frackowiak RS (1992) Functional reorganization of the brain in recovery from striatocapsular infarction in man. Ann Neurol 31:463-472.
    135. Yin D, Luo Y, Song F, Xu D, Peterson BS, et al. (2013) Functional reorganization associated with outcome in hand function after stroke revealed by regional homogeneity. Neuroradiology 55: 761-770.
    136. Carey JR, Kimberley TJ, Lewis SM, Auerbach EJ, Dorsey L, et al. (2002) Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain 125:773-788.
    137. Lindberg PG, Skejo PH, Rounis E, Nagy Z, Schmitz C, et al. (2007) Wallerian degeneration of the corticofugal tracts in chronic stroke:a pilot study relating diffusion tensor imaging, transcranial magnetic stimulation, and hand function. Neurorehabil Neural Repair 21: 551-560.
    138. Thomalla G, Glauche V, Weiller C, Rother J (2005) Time course of wallerian degeneration after ischaemic stroke revealed by diffusion tensor imaging. J Neurol Neurosurg Psychiatry 76: 266-268.
    139. Kobayashi S, Hasegawa S, Maki T, Murayama S (2005) Retrograde degeneration of the corticospinal tract associated with pontine infarction. J Neurol Sci 236:91-93.
    140. Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev 20:91-127.
    141. McFarland NR, Haber SN (2000) Convergent inputs from thalamic motor nuclei and frontal cortical areas to the dorsal striatum in the primate. J Neurosci 20:3798-3813.
    142. Pierpaoli C, Barnett A, Pajevic S, Chen R, Penix LR, et al. (2001) Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture. Neuroimage 13: 1174-1185.
    143. Wang C, Stebbins GT, Nyenhuis DL, deToledo-Morrell L, Freels S, et al. (2006) Longitudinal changes in white matter following ischemic stroke:a three-year follow-up study. Neurobiol Aging 27:1827-1833.
    144. Lindenberg R, Renga V, Zhu LL, Betzler F, Alsop D, et al. (2010) Structural integrity of corticospinal motor fibers predicts motor impairment in chronic stroke. Neurology 74:280-287.
    145. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, et al. (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273-289.
    146. Yin D, Song F, Xu D, Sun L, Men W, et al. (2013) Altered topological properties of the cortical motor-related network in patients with subcortical stroke revealed by graph theoretical analysis. Human Brain Mapping.
    147. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, et al. (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102:9673-9678.
    148. Fransson P (2005) Spontaneous low-frequency BOLD signal fluctuations:an fMRI investigation of the resting-state default mode of brain function hypothesis. Human Brain Mapping 26:15-29.
    149. Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA (2009) The impact of global signal regression on resting state correlations:are anti-correlated networks introduced? Neuroimage 44:893-905.
    150. Fox MD, Zhang D, Snyder AZ, Raichle ME (2009) The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 101:3270-3283.
    151. Weissenbacher A, Kasess C, Gerstl F, Lanzenberger R, Moser E, et al. (2009) Correlations and anticorrelations in resting-state functional connectivity MRI:a quantitative comparison of preprocessing strategies. Neuroimage 47:1408-1416.
    152. Schwarz AJ, McGonigle J (2011) Negative edges and soft thresholding in complex network analysis of resting state functional connectivity data. Neuroimage 55:1132-1146.
    153. Liang X, Wang J, Yan C, Shu N, Xu K, et al. (2012) Effects of different correlation metrics and preprocessing factors on small-world brain functional networks:a resting-state functional MRI study. PLoS One 7:e32766.
    154. Fornito A, Zalesky A, Breakspear M (2013) Graph analysis of the human connectome:promise, progress, and pitfalls. Neuroimage 80:426-444.
    155. Bassett DS, Bullmore ET (2009) Human brain networks in health and disease. Curr Opin Neurol 22: 340-347.
    156. Chang C, Glover GH (2009) Effects of model-based physiological noise correction on default mode network anti-correlations and correlations. Neuroimage 47:1448-1459.
    157. Fornito A, Harrison BJ, Zalesky A, Simons JS (2012) Competitive and cooperative dynamics of large-scale brain functional networks supporting recollection. Proc Natl Acad Sci U S A 109: 12788-12793.
    158. Descoteaux M, Angelino E, Fitzgibbons S, Deriche R (2006) Apparent diffusion coefficients from high angular resolution diffusion imaging:estimation and applications. Magn Reson Med 56: 395-410.
    159. Peled S, Friman O, Jolesz F, Westin CF (2006) Geometrically constrained two-tensor model for crossing tracts in DWI. Magn Reson Imaging 24:1263-1270.
    160. Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K (2005) Diffusional kurtosis imaging:the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 53:1432-1440.
    161. Hirsch JG, Bock M, Essig M, Schad LR (1999) Comparison of diffusion anisotropy measurements in combination with the flair-technique. Magn Reson lmaging 17:705-716.
    162. Shimony JS, McKinstry RC, Akbudak E, Aronovitz JA, Snyder AZ, et al. (1999) Quantitative diffusion-tensor anisotropy brain MR imaging:normative human data and anatomic analysis. Radiology 212:770-784.
    163. Alexander AL, Hasan KM, Lazar M, Tsuruda JS, Parker DL (2001) Analysis of partial volume effects in diffusion-tensor MRI. Magn Reson Med 45:770-780.
    164. Behrens TEJ, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CAM, et al. (2003) Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6:750-757.
    165. Alexander AL, Lee JE, Lazar M, Field AS (2007) Diffusion tensor imaging of the brain. Neurotherapeutics 4:316-329.
    166. Niendorf T, Dijkhuizen RM, Norris DG, van Lookeren Campagne M, Nicolay K (1996) Biexponential diffusion attenuation in various states of brain tissue:implications for diffusion-weighted imaging. Magn Reson Med 36:847-857.
    167. Stadlbauer A, Nimsky C, Buslei R, Salomonowitz E, Hammen T, et al. (2007) Diffusion tensor imaging and optimized fiber tracking in glioma patients:Histopathologic evaluation of tumor-invaded white matter structures. Neuroimage 34:949-956.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700