用户名: 密码: 验证码:
土—细长结构物相互作用的非线性动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在土木工程领域,土-结构相互作用问题是结构动力响应分析及相关设计的重要组成部分。在地震动激励下,以大跨度桥梁和重大岩土工程为例,其下部结构物的动力响应均对结构体系的抗震性能有重要影响。由工程实际可知,结构物的下部基础通常为细长结构物,且按基本特征可分为横向细长结构物(弹性地基梁)和纵向细长结构物(桩)。从传统的观点看,已有研究普遍认为弹性地基对其支承结构物有较强的约束作用,并将显著抑制土-结构相互作用的动力响应。因此,对于土-细长结构物相互作用的已有研究则多关注其线性特性,并弱化了土-结构相互作用特性对于结构物动力响应的影响效应。显然,将非线性动力学理论运用到土-细长结构物相互作用动力响应建模及分析的研究仍十分少见。
     为精确揭示土-细长结构物相互作用的动力响应,需要将土-结构相互作用效应在结构动力响应中的贡献引入到系统的建模分析中。通过系统研究可知,若考虑土-结构相互作用引起的二次弯矩效应,则土-细长结构物相互作用精细化模型的非线性动力学方程中将含有多种非线性项:平方非线性、立方非线性和参数激励项。因此,从非线性动力学角度看,此时土-细长结构物相互作用的动力响应中可能存在非常丰富的非线性动力学现象。为全面揭示土-细长结构物相互作用的非线性动力学特性,本论文考虑土-结构相互作用影响效应及细长结构物的几何非线性,建立了弹性地基梁和桩的精细化动力学模型。进而,结合非线性动力学理论,运用多尺度方法对土-细长结构物的非线性动力响应进行系统研究。同时,基于理论计算结果,分析了弹性地基参数、地基模型、边界约束等对土-细长结构物相互作用非线性动力响应的影响。最终,为促进研究成果的应用,与理论试验设计和统计分析相结合,针对土-细长结构物相互作用的非线性动力响应提出了动力参数筛选及设计方法。本论文的主要内容及创新点为以下几个方面:
     1.鉴于土-结构相互作用问题的重要性,本文首次将土-结构相互作用引起的二次弯矩效应引入到非线性动力学研究中。基于本文研究可知,土-结构相互作用引起的非线性特性可归为一类新的非线性现象。新非线性特性的发现拓展了非线性动力学的理论研究,有重要的理论意义。
     2.为研究弹性地基模型对其支承结构物动力响应特性的影响,本文在推导出三参数(Kerr模型)地基反力的显式近似表达式的基础上,给出了四种常见模型(Winkler、Vlasov、Pasternak、Kerr)地基反力的统一表达式。进而,提出了弹性地基模型对结构物动力响应影响效应的对比评价方法。
     3.将土-结构相互作用产生的二次弯矩效应引入到土-细长结构物的动力学建模中,分别利用Newton法和Hamilton原理建立了弹性地基梁的非线性动力学模型。进而,研究了土-结构相互作用效应对于弹性地基梁非线性动力响应特性的影响。并且,通过弹性地基梁非线性内共振响应研究发现,二次弯矩效应导致了连续系统保守特性的破坏。
     4.基于本文所建模型,对弹性地基梁的自由振动进行了分析,发现其面内运动固有频率谱中存在截止频率。进而,对比研究了系统在截止频率前后的模态构型及线性和非线性动力响应特性。显然,本文提出的精细化模型可更全面地揭示不同场地支承时细长结构物的动力学特性。
     5.将二次弯矩效应影响引入到纵向细长结构物的动力响应研究中,运用Hamilton原理建立了水平/轴向受荷桩的非线性动力学分析模型。进而,与非线性动力学理论相结合,研究了桩的多阶屈曲现象及屈曲频率问题。为拓展研究并结合工程实践需求,在群桩基础的非线性动力响应研究中考虑群桩效应影响,并对比研究了群桩效应对系统动力响应中土-结构相互作用效应的影响。
     6.基于理论试验设计和统计分析方法,提出了土-细长结构物相互作用的动力参数设计。利用该动力参数设计方法,可有效地筛选出对目标响应影响显著的关键参数,并可量化和直观展现参数的影响效应,进而为结构的动力设计和优化提供理论指导。
In the civil engineering, the soil-structure interaction problem is an important partof the dynamic design and analyze of the structure. In general, the dynamics responses ofthe substructure play an important role in the seismic behavior of the large-span bridgesand major geotechnical engineering. Based on the engineering practice, the foundationof the structure usually can be defined as the slender structure, including the transverseslender structure (the beam on the elastic foundation) and the vertical slender structure(the pile foundation). As we know, the researchers usually think that the foundations playan role of strong constraint on the structure supported by them, which may significantlyinhibit the dynamic response of the soil-structure interaction system. Obviously, there areonly few studies have focused on the modelling and nonlinear response of the soil-slenderstructure via the theory of the nonlinear dynamics.
     To accurately reveal the vibration nature of the soil-slender structure interaction, therefined model of the soil-slender structure should be proposed considering the efect of thesoil-structure interaction on the dynamic response of the system. Obviously, consideringthe second-order moment, the nonlinear motion equation of the refined model of the soil-slender structure includes a variety of nonlinear terms: the quadratic nonlinear, cubicnonlinear and parametric excitation terms. Predictably, the more complex nonlineardynamics of the soil-slender structure would be observed. Applying the theory of thenonlinear dynamics and considering the efect of the second-order moment and geometricnonlinearity of the slender structure, the nonlinear dynamics models of the beam onelastic foundation and the pile are obtained. Then, applying the theory of nonlineardynamics, the nonlinear response of the soil-slender structure are studied via the methodof multiple scales. Moreover, based on the numerical results, the efects of the foundationmodels, the parameters of the foundation and the boundary condition of the structureon the nonlinear response of the system is investigated. Finally, applying the design ofexperiment and the statistical analysis, the dynamic parameter design of the soil-slenderstructure is proposed. The main contribution of this paper as following:
     1. In view of the soil-structure interaction problem is very importance, the efect ofthe second-order moment caused by the soil-structure interaction is considered inthe research of the nonlinear dynamics. Based on the present study, it is need topoint out that the nonlinearity of interaction can be defined as a new class of thenonlinear dynamical nature. In general, the find of the new nonlinear nature expands the theory of nonlinear dynamics, which has the important theoretical significance.
     2. To analyze the efect of the foundation models on the dynamic response of the struc-ture, the same mathematical form of the subgrade reaction of diferent foundationmodels (Winkler, Vlasov, Pasternak, Kerr) is proposed based on the the explicitexpression of the subgrade reaction of the Kerr model. Moreover, the assessment ofthe foundation models is investigated.
     3. Considering the second-order moment cased by soil-structure interaction, the refinedmodel of the beam on the elastic foundation is derived via the Newton’s secondlaw of motion and the Hamilton primary, respectively. Then, the efect of the soil-structure interaction on the nonlinear response of the beam on the elastic foundationis investigated. Moreover, the results of the internal resonance response of thebeam of the elastic foundation show that, the second-order moment destroys theconservative nature of the soil-structure interaction system.
     4. Applying the present model of the beam on the elastic foundation, the analysis of thefree vibration of the beam on the elastic foundation is investigated. The numericalresults show that the cut-of frequency is discovered in the in-plane natural frequencyspectrum of the beam on the elastic foundation. Moreover, the mode shapes andlinear or nonlinear response of the beam on the system is investigated. Obviously,the present model can reflect the nonlinear response of the soil-structure interactionsystem, in any cases.
     5. The nonlinear dynamics model of the pile foundation subjected to the lat-eral/vertical excitation is obtained via the Hamilton primary. Moreover, combinedwith the theory of nonlinear dynamics, the multi-order buckling phenomenon andthe variation of the frequencies of the pile are investigated. To meet the engineer-ing practice, the efect of the pile-group-efect on the nonlinear response of the pilefoundation is performed. Compared the nonlinear vibration of diferent piles inthe pile group, the efect of the pile-group-efect on the soil-structure interaction isinvestigated.
     6. Based on the design of experiment and the statistical analysis, the dynamic parame-ter design of the soil-slender structure interaction system is proposed. Applying thismethod, the key parameter of the nonlinear response of the system can be screenedout, and can be used for the dynamic design and optimization of structure.
引文
[1]陈惠发,段炼.桥梁工程抗震设计.蔡中民,武军.第一版.北京:机械工业出版社,2008,322–332
    [2]谢旭.桥梁结构地震响应分析与抗震设计.第一版.北京:人民交通出版社,2006,2–17
    [3] Salgado R, Houlasby G T, Cathie D N. Contributions to géotechnique1948-2008:Foundation engineering. Géotechnique,2008,58(5):369–375
    [4] Potts D M, Martins J P. The shaft resistance of axially loaded piles in clays.Géotechniqu,1982,32(4):369–386
    [5] Poulos H G, Mattes N S. The behavior of axially loaded end-bearing piles.Géotechnique,1969,19(2):285–300
    [6] Mylonakis G. Winkler modulus for axially loaded piles. Géotechnique,2001,51(5):455–461
    [7]楼梦麟,宗刚,牛伟星等.土-桩-钢结构相互作用体系的振动台模型试验.地震工程与工程振动,2006,26(5):226–230
    [8] Toyoaki N, Jun O, Kazuo K, et al. Nonlinear soil-pile interaction model for dynamiclateral motion. Journal of Geotechnical Engineering,1992,118(1):89–106
    [9] Elgamal A, Yan L, Yang Z, et al. Three-dimensional seismic response of Hum-boldt bay bridge-foundation-ground system. Journal of Structural Engineering,2008,134(7):1165–1176
    [10]韩强.弹塑性系统的动力屈曲和分叉.第一版.北京:科学出版社,2000,2-32
    [11] Zheng J, Takeda T. Efects of soil-structure interaction on seismic response of PCcable-stayed bridge. Soil Dynamics and Earthquake Engineering,1995,14(6):427–437
    [12] Chaudhary M T A, AbéM, Fujino Y. Identification of soil-structure interaction efectin base isolated bridge from earthquake records. Soil Dynamics and EarthquakeEngineering,2001,21(8):713–725
    [13] Shrikhande M, Gupta V K. Dynamic soil-structure interaction efects on the seismicresponse of suspension bridges. Earthquake Engineering and Structural Dynamics,1999,28(11):1383–1403
    [14] Shamsabadi A, Rollins K, Kapuskar, M. Nonlinear soil-abutment-bridge structure in-teraction for seismic performance-based design. Journal of Geotechnical and Geoen-vironmental Engineering,2007,133(6):707–720
    [15] Curras C J. Seismic soil-pile-structure interaction for bridge and viaduct structure:
    [dissertation]. Davis: University of California,1995,2–15
    [16] Li T, Zhang Z, Shi L. Interaction of pile-soil-structure interaction on seismic responseof self-anchored suspension bridge. Electronic Journal of Geotechnical Engineering,2009,14(5):1–12
    [17]王志华,刘汉龙,陈国兴.基于随机地震反应的桥墩-群桩-土相互作用研究.岩土力学,2006,27(3):409–413
    [18]范立础.梁桥非线性地震反应分析.土木工程学报,198l, l4(1):10–17
    [19] Mylonakis G, Nikolaou A, Gazetas G. Soil-pile-bridg seismic interaction: kinematicand inertial efects.Part I:soft soil. Earthquake Engineering and Structural Dy-namics,1997,26(3):337–359
    [20] Thavaraj L. Seismic analysis of pile foundations for Bridges:[dissertation]. Canada:The University of British,2000,5–10
    [21] Gazetas G. Discussion: contributions to Géotechnique1948-2008: Dynamics.Géotechnique,2009,59(9):789–791
    [22] Housner G W. Geotechnical problems of destructive earthquakes. Géotechnique,1954,4(4):153–162
    [23]吕西林,陈跃庆,陈波等.结构-基础动力相互作用体系振动台模型试验研究.地震工程与工程振动,2000,20(4):20–29
    [24]蒋建国,周绪红,邹银生等.土-结构动力相互作用研究的发展历程及展望.岩土工程界,2001,4(6):47–49
    [25]陈兴国,王志华,宰金珉.考虑土与结构相互作用效应的结构减震控制大型振动台模型试验研究.地震工程与工程振动,2001,21(4):117–127
    [26] Karabalis D L, Mohammadi M.3-D dynamic foundation-soil-foundation interactionon layered soil. Soil Dynamics and Earthquake Engineering,1998,17(2):139–152
    [27] Manna B, Baidya D K. Nonlinear dynamic response of piles under horizontal exci-tation. Journal of Geotechnical and Geoenvironmental Engineering,2010,136(12):1600–1609
    [28] Wong H L, Luco J E. Dynamic response of rigid foundations of arbitrary shape.Earthquake Engineering and Structural Dynamics,1976,4(6):579–587
    [29] Little R R, Scavuzzo R J. Vertical soil-structure interaction of nuclear power plantssubjected to seismic excitation. Nuclear Engineering and Design,1973,24(2):203–213
    [30] Spyrakos C C, Beskos D E. Dynamic response of flexible strip-foundations by bound-ary and finite elements. Soil Dynamics and Earthquake Engineering,1986,5(2):84–96
    [31] Wolf J P. Dynamic soil-structure interaction. New Jersey:Prentic-Hall,1985,1–11
    [32] Goyal A, Chopra A K. Earthquake analysis of intake-outlet towers including tower-water-foundation-soil interaction. Earthquake Engineering and Structural Dynamics,1989,18(3):325–344
    [33] Xu C, Spyrakos C C. Seismic analysis of towers including foundation uplift. Engi-neering Structures,1996,18(4):271–278
    [34] FEMA450. NEHRP recommended provisions for seismic regulations for new build-ings and Wash-ington DC other structures(2003edition). Building Seismic SafetyCouncil(BSSC),2003,35-60
    [35] Spyrokos C C, Koutromanos L A, Maniatakis C A. Seismic response of based-isolatedbuildings including soil-structure interaction. Soil Dynamics and Earthquake Engi-neering,2009,29(4):658–668
    [36] Sarrazin M, Moroni O, Roesset J M. Evaluation of dynamic response characteris-tics of seismically isolated bridges in Chile. Earthquake Engineering and StructuralDynamics,2005,34(4-5):425–438
    [37] Park S H, Antin N. A discontinuous Galerkin method for seismic soil-structure in-teraction analysis in the time domain. Earthquake Engineering and Structural Dy-namics,2004,33(2):285–293
    [38] Bode C, Hirschauer R, Savidis S A. Soil-structure interaction in the time domainusing halfspace Green’s functions. Soil Dynamics and Earthquake Engineering,2002,22(4):283–295
    [39] Chau K T, Shen C Y, Guo X. Nonlinear seismic soil-pile-structure interactions:Shaking table tests and FEM analyses. Soil Dynamics and Earthquake Engineering,2009,29(2):300–310
    [40] Lu J, Elgamal A, Shants T. A framework for3D nonlinear ground-foundationanalysis. In Proc of the2009GeoHunan International Conference (GSP192), GEO-Hunan,2009,189–196
    [41] Valsangkar A J, Pradhanang R. Vibrations of beam-columns on two-parameter elas-tic foundations. Earthquake Engineering and Structural Dynamics,1988,16(2):217–225
    [42] Lai Y C, Ting B T, Lee W S, et al. Dynamic response of beams on elastic foundation.Journal of Structural Engineering,1992,118(3):853–858
    [43] Eisenberger M. Vibration frequencies for beams on variable one-and two-parameterelastic foundation. Journal of Sound and Vibration,1994,176(5):577–584
    [44] Thambiratnam D, Zhuge Y. Free vibration analysis of beams on elastic foundation.Computers and Structures,1996,60(6):971–980
    [45] Morfidis K. Vibration of timoshenko beams on three-parameter elastic foundation.Computers and Structures,2010,88(5-6):294–308
    [46] Pellicano F, Vakakis A F. Normal modes and boundary layers for a slender tensionedbeam on a nonlinear foundation. Nonlinear Dynamics,2001,25(1-3):79–93
    [47] Coskun I, Engin H. Non-linear vibrations of a beam on an elastic foundation. Journalof Sound and Vibration,1999,223(3):335–354
    [48] Zhu B, Leung A Y T. Linear and nonlinear vibration of non-uniform beams on two-parameter foundations using p-elements. Computers and Geotechnics,2009,36(5):743–750
    [49] Nayfeh A H, Nayfeh S A. Nonlinear normal modes of a continuous system withquadratic non-linearities. Journal of Vibration and Accoustics,1995,117(2):199–205
    [50] Nayfeh A H, Lacarbonara W. On the discretization of distributed-parameter systemswith quadratic and cubic nonlinearities. Nonlinear Dynamics,1997,13(3):203–220
    [51] Nayfeh A H. Reduced-order models of weakly nonlinear spatially continuous systems.Nonlinear Dynamics,1998,16(2):105–125
    [52] Poulos H C. Pile behavior-theory and application. Géotechnique,1989,39(3):365–415
    [53] Li R, Gong J. Analysis of laterally loaded pile in layered soils. Electronic Journal ofGeotechnical Engineering,2009,13(J):1–16
    [54] Salgado R. Analysis of single piles: Challenges and solutions. In Proc of the12thInt Conf of In-ternational Association for Computer Methods and Advances inGeomechanics, India,2008,3117–3126
    [55]陈环,叶国良.关于桩土相互作用问题.港口工程,1990,5:1–6
    [56]柴华友,贺怀建,唐念慈.桩土相互作用模型及模型实验.岩土力学,1993,14(2):75–84
    [57]余俊,尚守平,任慧等.饱和土中桩竖向振动响应分析.工程力学,2008,25(10):187–193
    [58] EI-Marsafawi H, Han Y C, Novak M. Dynamic experiments on two pile groups.Journal of Geotechnical Engineering,1992,118(4):576–592
    [59] Basack S, Purkayastha R D. Behavior of single pile under lateral cyclic load inmarine clay. Asian Journal of Civil Engineering (Building and Housing),2007,8(4):443–458
    [60] Novak M. Dynamic stifness and damping of piles. Canadian Geotechnical Journal,1974,11(4):574–598
    [61] Naggar M H E, Novak M. Nonlinear model for dynamic axial pile response. Journalof Geotechnical Engineering,1994,120(2):308–329
    [62] Naggar M H E, Novak M. Nonlinear axial interaction in pile dynamics. Journal ofGeotechnical Engineering,1994,120(4):678–696
    [63] Naggar M H E, Novak M. Nonlinear analysis for dynamic lateral pile response. SoilDynamics and Earthquake Engineering,1996,15(4):233–244
    [64] Rovithis E N, Pitilakis K D, Mylonakis G E. Seismic analysis of coupled soil-pile-structure systems leading to the definition of a pseudo-natural SSI frequency. SoilDynamics and Earthquake Engineering,2009,29(6):1005–1015
    [65] Soneji B B, Jangid R S. Influence of soil-structure interaction on the response ofseismically isolated cable-stayed bridge. Soil Dynamics and Earthquake Engineering,2008,28(4):245–257
    [66] Karthigeyan S, Ramakrishna V V G S T, Rajagopal K. Numerical investigation ofthe efect of vertical load on the lateral response of piles. Journal of Geotechnicaland Geoenvironmental Engineering,2007,133(5):512–521
    [67] Badoni D, Makris N. Nonlinear response of single piles under lateral inertial andseismic loads. Soil Dynamics and Earthquake Engineering,1996,15(1):29–43
    [68] Assareh M A, Asgarian B. Nonlinear behavior of single piles in jacket type of-shore platforms using incremental dynamic analysis. American Journal of AppliedSciences,2008,5(12):1793–1803
    [69] Chau K T, Yang X. Nonlinear interaction of soil-pile in horizontal vibration. Journalof Engineering Mechanics,2005,131(8):847–858
    [70]陈予恕, Han RPS.现代工程非线性动力学的现状与展望.力学与实践,1995,17(6):11–19
    [71] Zhao Y, Wang L, Chen D, et al. Non-linear dynamic analysis of the two-dimensionalsimplified model of an elastic cable. Journal of Sound and Vibration,2002,255(1):43–59
    [72] Luongo A, Rega G, Vestroni F. Planar non-linear free vibrations of an elastic cable.International Journal of Non-linear Mechanics,1984,19(1):39–52
    [73] Lee C, Perkins N C. Three-dimensional oscillations of suspended cables involvingsimultaneous internal resonances. Nonlinear Dynamics,1995,8(1):45–63
    [74]赵跃宇,王连华,刘伟长等.悬索非线性动力学中的直接法与离散法.力学学报,2005,37(3):329–338
    [75] Zhao Y, Wang L. On the symmetric modal interaction of the suspended cable:Three-to-one internal resonance. Journal of Sound and Vibration,2006,294(4-5):1073–1093
    [76] Mayoral J M, Romo M P. Recent studies on seismic soil-pile-structure-interaction insoft clay. In Proc of the4th International Conference on Earthquake Engineering,Taiwan,2006,034
    [77] Hetenyi M. Beams on elastic foundation. Ann Arbor: University of Michigan Press,1946,50–63
    [78]塞瓦杜雷A P S.土与基础相互作用的弹性分析.北京:中国铁道出版社,1984,7–23
    [79]龙驭球.弹性地基梁的计算.北京:人民交通出版社,1981,2–14
    [80] Ouakad H M,Younis M I. Dynamic response of slacked single-walled carbon nanotuberesonators. Nonlinear Dynamics,2012,67(2):1419–1436
    [81]楼梦麟,沈霞.弹性地基梁振动特性的近似分析方法.应用力学,2004,21(3):149–153
    [82]刘学山,冯紫良,胥兵.黏弹性地基上弹性梁的自由振动分析.上海力学,1999,20(4):470–476
    [83] CalIm F F I. Dynamic analysis of beams on viscoelastic foundation. European Jour-nal of Mechanics-A/Solids,2009,28(3):469–476
    [84] Kerr A D. A study of a new foundation model. Acta Mechanica,1965,1(2):135–147
    [85] Vlasov V Z, Leont’ev U N. Beams, plates and shells on elastic foundation (translatedfrom russian). Israel Program for Scientific Translation, Jerusalem, Israel,1966,47–59
    [86] King M E, Vakakis A F. An engergy-based formulation for computing nonlinearnormal-modes in undamped continuous systems. Journal of Vibration and Accous-tics,1994,116(3):332–340
    [87] Shaw S W, Pierre C. Normal modes of vibration for non-linear continuous systems.Journal of Sound and Vibration,1994,169(3):319–347
    [88] Rosenberg R M. On nonlinear vibrations of systems with many degree of freedom.Advances in Applied Mechanics,1966,9:155–242
    [89] Nayfeh A H. Non-linear Interactions. Wiley Interscience, New york,2000,77–85
    [90] Ansari M, Esmailzadeh E, Younesian D. Internal-external resonance of beams onnon-linear viscoelastic foundation transversed by moving load. Nonlinear Dynamics,2010,61(1-2):163–182
    [91] Pellicano F, Mastroddi F. Nonlinear dynamics of a beam on elastic foundation.Nonlinear Dynamics,1997,14(4):335–355
    [92] Lacarbonara W, Rega G, Nayfeh A H. Resonant non-linear normal modes. Part I:analytical treatment for structural one-dimensional systems. International Journalof Non-linear Mechanics,2003,38(6):851–872
    [93] Feng Z C, Leal L G. Symmetries of the amplitude equations of an inextensionalbeam with internal resonance. Journal of Applied Mechanics,1995,62(1):235–238
    [94] Nayfeh A H, Arafat H N, Chin C M, et al. Multimode interactions in suspendedcables. Journal of Vibration and Control,2002,8(3):337–387
    [95] Srinil N, Rega G. The efects of kinematic condensation on internally resonanctforced vibrations of shallow horizontal cables. International Journal of Non-linearMechanics,2007,42(1):180–195
    [96] Srinil N,Rega G, Chucheepsakul S. Two-to-one resonant multi-modal dynamics ofhorizontal/inclined cables. Part I: Theoretical formulation and model vibration. Non-linear Dynamics,2007,48(3):231–252
    [97] Lacarbonara W, Rega G. Resonant non-linear normal modes. Part II: activa-tion/orthogonality conditions for shallow structural systems. International Journalof Non-linear Mechanics,2003,38(6):873–887
    [98] Nayfeh A H, Balachandran B. Applied Non-linear Dynamics. Wiley Interscience,New york,1994,147–158
    [99] Wang L, Zhao Y, Rega G. Multimode dynamics and out-of-plane drift in suspendedcable using the kinematically condensed model. Journal of Vibration and Accoustics,2009,131(6):061008-1–9
    [100] Chin C M, Nayfeh A H. Three-to-one internal resonances in hinged-clamped beams.Nonlinear Dynamics,1997,12(2):129–154
    [101] Rega G, Lacarbonara W, Nayfeh A H, et al. Multiple resonances in suspended cables:direct versus reduced-order models. International Journal of Non-linear Mechanics,1999,34(5):901–924
    [102] Pellicano F, Amabili M, Vakakis A F. Nonlinear vibrations and multiple resonancesof fluid-filled, circular shells, Part II: Perturbation analysis. Journal of Vibrationand Accoustics,2000,122(4):355–364
    [103] Lacarbonara W, Arafat H N, Nayfeh A H. Non-linear interactions in imperfectbeams at veering. International Journal of Non-linear Mechanics,2005,40(7):987–1003
    [104] Wang L Zhao Y. Nonlinear interactions and chaotic dynamics of suspended cableswith three-to-one internal resonances. International Journal of Solids and Struc-tures,2006,43(25-26):7800–7819
    [105] Rega G, Saetta E. Nonlinear curvature-based model and resonant finite-amplitudevibrations of symmetric cross-ply laminates. Journal of Sound and Vibration,2010,331(12):2836–2855
    [106] Lee C Y, Hull T S, Poulos H G. Simplified pile-slope stability analysis. Computersand Geotechnics,1995,17(1):1–16
    [107] Gabr M A, Wang J, Kiger S A. Efect of boundary conditions on buckling of frictionpiles. Journal of Engineering Mechanics,1994,120(6):1392–1400
    [108] Gabr M A,Wang J, Zhao M. Buckling of piles with general power distribution of lat-eral subgrade reaction. Journal of Geotechnical and Geoenvironmental Engineering,1997,123(2):123–130
    [109] Kuo Yu-Shu, Achmus M, Abdel-Rahman K. Minimum embedded length of cyclichorizontal loaded monopiles. Journal of Geotechnical and Geoenvironmental Engi-neering,2012,138(3):357–363
    [110]叶敏,陈予恕.弹性屈曲梁在参数激励下的倍周期分叉.固体力学学报,1998,19(4):361–364
    [111] Alexander N A. Estimating the nonlinear resonance frequency of a single pile innonlinear soil. Journal of Sound and Vibration,2010,329(8):1137–1153
    [112]程昌钧,朱媛媛,胡佳育.桩基的稳定性:理论和最新进展.固体力学学报,2010,31(5):572–586
    [113] Sun K. Laterally loaded piles in elastic media. Journal of Geotechnical Engineering,1994,120(8):1324–1344
    [114] Nayfeh A H, Emam S A. Exact solution and stability of postbuckling configurationsof beams. Nonlinear Dynamics,2008,54(4):395–408
    [115] Nogami T, Paulson S K. Transfer matrix approach for nonlinear pile group responseanalysis. International Journal for Numerical and Analytical Methods in Geome-chanics,1985,9(4):299–316
    [116] Gazetas G, Makris N. Dynamic pile-soil-pile interaction. Part I: Analysis of axialvibration. Earthquake Engineering and Structural Dynamics,1991,20(2):115–132
    [117] Makris N, Gazetas G. Dynamic pile-soil-pile interaction. Part II: Lateral and seismicresponse. Earthquake Engineering and Structural Dynamics,1992,21(2):145–162
    [118] Mostafa Y E, El Naggar M H. Dynamic analysis of laterally loaded pile groups insand and clay. Canadian Geotechnical Journal,2002,39(6):1358–1382
    [119] Maeso O, Aznarez J J, Garcia F. Dynamic impedances of piles and groups of pilesin saturated soils. Computers and Structures,2005,83(10-11):769–782
    [120] Cairo R, Conte E. Settlement analysis of pile groups in layered soils. CanadianGeotechnical Journal,2006,43(8):788–801
    [121] Castelli F, Maugeri M. Simplified approach for the seismic response of a pile foun-dation. Journal of Geotechnical and Geoenvironmental Engineering,2009,135(10):1440–1451
    [122] Guo W D. Nonlinear response of laterally loaded piles and pile groups. InternationalJournal of Numerical and Analytical Methods in Geomechanics,2009,33(7):879–914
    [123] Chang D, Lin B, Cheng S. Lateral load distributions on grouped piles from dynamicpile-to-pile interaction factors. International Journal of Numerical and AnalyticalMethods in Geomechanics,2009,33(2):173–191
    [124] Ghasemzadeh H, Alibeikloo M. Pile-soil-pile interaction in pile groups with batterpiles under dynamic loads. Soil Dynamics and Earthquake Engineering,2011,31(8):1159–1170
    [125] Xu B, Lu J, Wang J. Dynamic responses of pile groups embedded in a layeredporoelastic half-space to harmonic axial loads. Journal of Vibration and Accoustics,2011,133(1-2):021003-1–10
    [126] Poulos H C, Davis E H. Pile foundation analysis and design. Wiley, New york,1980,233–248
    [127]蒯行成,沈蒲生.层状介质中群桩水平动力阻抗的简化计算方法.振动工程学报,1998,11(3):258–264
    [128] Cairo R, Conte E, Dente G. Interaction factors for the analysis of pile groups in lay-ered soils. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(4):525–528
    [129]陈龙珠,曹明,陈胜立.桩筏基础的相互作用系数解法及参数分析.岩土工程学报,2008,30(2):155–159
    [130]任青,黄茂松,钟锐等.部分埋入群桩的竖向振动特性.岩土工程学报,2009,31(9):1384–1390
    [131] Xu K J, Poulos H G. General elastic analysis of piles and pile groups. InternationalJournal for Numerical and Analytical Methods in Geomechanics,2000,24(15):1109–1138
    [132] Ooi P, Chang B, Wang S. Simplified lateral load analyses of fixed-head piles and pilegroups. Journal of Geotechnical and Geoenvironmental Engineering,2004,130(11):1140–1151
    [133] Ashour M, Pilling P, Norris G. Lateral behavior of pile groups in layered soils.Journal of Geotechnical and Geoenvironmental Engineering,2004,130(6):580–592
    [134] Comodromos E M, Pitilakis K D. Response evaluation for horizontally loaded fixed-head pile groups using3-D non-linear analysis. International Journal for Numericaland Analytical Methods in Geomechanics,2005,29(6):597–625
    [135]黄茂松,吴志明,任青.层状地基中群桩的水平振动特性.岩土工程学报,2007,29(1):32–38
    [136] Chen S L, Chen L Z. Note on the interaction factor for two laterally loaded piles.Journal of Geotechnical and Geoenvironmental Engineering,2008,11(1):1685–1690
    [137] Reese L C, Isenhower W M, Wang S T. Analysis and design of shallow and deepfoundations. John Wiley and Sons, Inc.,2006,517–536
    [138] Gazetas G, Fan K, Kaynia A. Dynamic response of pile groups with diferent con-figurations. Soil Dynamics and Earthquake Engineering,1993,12(4):239–257
    [139] Basu D, Salgado R, Prezzi M. Analysis of laterally loaded piles in multilayered soildeposits. Technical report, Joint Transportation Research Program, Indiana De-partment of Transportation and Purdue University, West Lafayette, Indiana,2008,124-131
    [140]成志清.对结构动力学设计中若干问题的思考.振动、测试与诊断,1994,14(2):1–6
    [141]王国富,王志忠.应用统计.中南大学出版社,2003,88–109
    [142]杨虎,钟波,刘琼荪.应用数理统计.清华大学出版社,2006,123–135
    [143]王庚,管于华,孙瑞博等.现代工业统计与质量管理.中国人民大学出版社,2011,313–338
    [144] Wilkinson L. Revising the Pareto chart. The American Statistician,2006,60:332–334
    [145] Minitab Incorporated, Meet MINITAB, Release14for Windows,1st ed.2003,5-1–11
    [146] Wei B, Xu Y, Li J. Treatment of P-efects in displacement-based seismic designfor sdof systems. Journal of Bridge Engineering,2012,17(3):509–518

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700