用户名: 密码: 验证码:
海南岛中生代岩浆作用及其构造意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
琼中和儋县花岗岩主要为具定向构造的斑状黑云母二长花岗岩,属于准铝质Ⅰ型花岗岩。花岗岩的主量元素和部分微量元素成分与SiO_2呈良好的相关关系,显示出明显的斜长石、角闪石、磷灰石和Ti-Fe氧化物等的分离结晶作用,总体上它们与大陆岛弧花岗岩的微量元素丰度和分布特征相似,系统地亏损Ba、Nb、Sr、P和Ti等元素。琼中花岗岩大部分样品具有一致的~(87)Sr/~(86)Sr初始值(0.7079~0.7112)和ε_(Nd)(t)值(-8.9~-5.8),儋县岩基样品具有相对较高的~(87)Sr/~(86)Sr初始值(0.7119~0.7194)和较低的ε_(Nd)(t)值(-10.6~-8.1),两阶段钕模式年龄计算结果(T_(2DM)=1.6~1.8Ga)表明它们均源自于地壳存留年龄为早中元古代的地壳源区。高精度SHRIMP锆石U-Pb定年显示琼中岩基形成于印支期(237±3Ma),而儋县岩基形成于燕山早期(186±3Ma),修正了前人将海南岛具有定向构造的变形花岗岩等同于海西—印支期花岗岩的认识。
     ~(40)Ar_~(39)Ar及K-Ar定年结果显示海南岛基性岩脉的形成时代主要为~135Ma、105~117Ma和81~96Ma,其中琼南基性岩脉富碱、富钾,属钾玄质系列岩石;琼中基性岩脉的K_2O、Na_2O含量稍低,属于高钾钙碱性系列岩石。海南岛基性岩脉具有与“岛弧”特征相似的微量元素组成特征以及高Sr、低Nd的同位素特征,表明其源自具有EMⅡ特征的富集地幔。琼南基性岩脉强烈富K_2O等LILE和具有较高Nb/Ta比值,其地幔源区应受到了古俯冲板片部分熔融形成的硅质熔体的改造;而琼中基性岩脉的Nb/Ta比值接近于球粒陨石和MORB值,应为古俯冲带含水流体交代的地幔源区的产物。
     根据Barbarin(1999)分类,琼中和儋县岩基花岗岩属于高K及含钾长石斑晶的钙碱性花岗岩,同时它们具有原生定向构造,是挤压—松弛—挤压的构造演化过程的产物,表明海南岛从二叠纪末期开始已经是华南大陆的一部分,主要受到了特提斯构造域的影响。琼中岩基可能形成于“印支期”碰撞造山运动峰期后的松弛阶段,而儋县岩基则可能形成于造山运动的结束阶段。白垩纪基性岩脉(81~135Ma)形成于板内拉张环境,与粤北、福建沿海地区的白垩纪基性岩脉共同指示了中国东南部白垩纪时期处于拉张的构造环境。
The Qiongzhong and Danxian batholiths, as the largest early Mesozoic syntectonic granite intrusions in Hainan Island, are mainly composed of porphyritic biotite two-feldspars granitoids, in which alkali-feldspar phenocrysts and dark minerals are foliated mostly in WE-direction. The granites are of metaluminous I-type. Major and trace elements show co-variations with SiO2, suggesting the fractional crystallization of plagioclase, hornblende, apatite and Ti-Fe oxides in the evolution of the granites. With systematic depletions of Ba, Nb, Sr, P and Ti, the granites display geochemical similarities to most granitoid rocks formed in the subduction-related environments. Both the Qiongzhong and Danxian granites are relatively high in initial 87Sr/86Sr ratios (0.7079 ~ 0.71 12 and 0.71 19 - 0.7194, respectively) and low in Nd(t) (- 8.9 ~ - 5.8 and -10.6 ~ -8.1, respectively). Their two-stage depleted mantle model ages (T2DM) range from 1.6 Ga to 1.8 Ga, implying a derivation from crustal sources with average crusta
    l residence ages of early Mesoproterozoic. The zircon SHRIMP U-Pb dating results suggest that the Qiongzhong and Danxian granites were emplaced at 237 3 Ma and 186 3 Ma, respectively, which argued against the previous thoughts that all the foliated granites with orientated structure in Hainan Island formed duing the Hercynian - Indosinian episode.
    40Ar-39Ar and K-Ar age data indicate that the mafic dykes in Hainan Island were emplaced in three major episodes during -135 Ma, 105 ~ 117 Ma and 81-96 Ma. Mafic dykes from the southern Hainan are rich in Alkali and K and belong to shoshonitic, while those from the northern Hainan belong to high-K calc-alkaline series with lower K2O and Na2O. The mafic dykes are characterized by arc-like trace elements, high initial 87Sr/86Sr ratios and low eNd(t) values, and show some
    familiarities with the EMII-mantle source. The southern Hainan mafic dykes are
    
    
    strongly enriched in LILE with high Nb/Ta ratios, indicating a magma source reconstructed by silicic-melt through partial melting of ancient subducted slides. However, the northern Hainan mafic dykes with chondritic Nb/Ta ratio should be derived from the fiuid-metasomatized mantle related to ancient subduction zone.
    The Qiongzhong and Danxian granites are belong to the KCG-type (K-rich calc-alkaline) granitoids according to the tectonic nomenclature by Barbarin (1999). These foliated KCG-type granites with original orientated structure are the results generated in a changing geodynamic orogenic environment with alternating compressional to extensional stress field. This suggests that Hainan island has been a part of South China since latest Permian, and been major in extrusion environment of the Tethys tectonic system. The Qiongzhong granite should have been formed at orogenic relaxing stage after the peak of Indosinian orogeny, and the Danxian granite were formed at the latest orogenic phase. In addition, the mafic dykes of Hainan island were formed in an intraplate extensional environment, similar to the mafic dykes in North Guangdong and Fujian coastal areas, all suggesting an extension regime tectonic in southeastern China during Cretaceous.
引文
1.陈海泓,孙枢,李继亮,等.华南早三叠世的古地磁学与大地构造.地质科学,1994,29(1):1~9.
    2.陈江蜂,Forland K A,刘义茂.苏州复式花岗岩体的精确~(40)Ar-~(39)Ar定年.岩石学报,1993,9(1):,77~85.
    3.陈江蜂,李学明,周泰禧,等.安徽月山岩体的~(40)Ar/~(39)Ar年龄及与其有关的成矿时代估计.现代地质,1991a,5(1):91~99.
    4.陈江蜂,周泰禧,印春生,等.浙东南某些中生代侵入岩体的~(40)Ar/~(39)Ar年龄测定.岩石学报,1991b,7(3):37~44.
    5.陈培荣,华仁民,章邦桐,等.南岭燕山早期后造山花岗岩类:岩石学制约和地球动力学背景.中国科学(D辑),2002,32(4):279~289.
    6.陈志刚,李献华,李武显.赣南全南正长岩的SHRIMP锆石U-Pb年龄及其对华南燕山早期构造背景的制约.地球化学,2003,待刊.
    7.陈志刚,李献华,李武显.全南正长岩的地球化学特征及成因.地质论评,2002(增刊):77~83.
    8.邓希光,陈志刚,李献华,刘敦一.广西大容山—十万大山花岗岩带SHRIMP锆石U-Pb定年.地质论评,2003,投稿中.
    9.邓希光.桂东南花岗岩地球化学、同位素和SHRIMP年代学研究(博士后出站报告).广州:中国科学院广州地球化学研究所,2003.
    10.杜杨松,Collerson K D,赵建新等.两广交界地区S型花岗岩中麻粒岩包体的特征与成因.岩石学报,1999,15(2):309~314.
    11.方中,夏邦栋,于津海,陶仙聪,杨杰东,李惠民.海南岛古生代岩石Rb-Sr年代学和氧同位素研究.岩石学报,1992,8(3):296~302.
    12.方中,徐士进,陈克荣,等.海南岛石碌群中双峰Sm-Nd同位素特征兼论石碌铁矿成矿背景.地球化学,1993,22(4):326~336.
    13.方中,于津海,夏邦栋,陶仙聪,李惠民.海南岛海西—印支期花岗岩和暗色包体的Sm-Nd同位素特征.南京大学学报,1995,31(2):238~243.
    14.葛同明,刘坚,樊利民,等.衡阳盆地红层的磁性地层学研究.地质学报,1994,68(4):379~388.
    15.葛小月,李献华,陈志刚,李伍平.中国东部燕山期高Sr低Y型中酸性火成岩的地球化学特征及成因:对中国东部地壳厚度的制约.科学通报,2002,47(6):474~480.
    16.海南省地质矿产勘查开发局.海南省1:50万数字地质图修编说明书(1998数字版).1998.1~50.
    17.韩文彬,张文育,黄文明,等.浙江武义地区磨石山群、永康群火山岩的同位素年龄及其地质意义.见:陆志刚,陶奎元(编)中国东南沿海火山地质与矿产论文集(第1辑).北京:地质出版社,1992.72~81.
    
    
    18.侯威,陈惠芳,梁新权,王可伏.海南岛前寒武纪地层的确定及其大地构造演化.长春地质学院学报,1992,22(2):136~143.
    19.黄琳.广西大容山过铝花岗岩复式岩基的同位素地球化学研究.地球化学,1988,17(1):26~40.
    20.简平,汪啸风,何龙清等.金沙江蛇绿岩中斜长岩和斜长花岗岩的U-Pb年龄及地质意义.岩石学报,1999,15(4):590~593.
    21.简平,汪啸风,何龙清等.云南省新平县双沟蛇绿岩U-Pb年代学初步研究.岩石学报,1998,14(2):207~211.
    22.李寄嵎,澎湖地区玄武岩类与福建地区基性岩脉之定年学与地球化学研究兼论中生代晚期以来中国东南地函之演化(博士论文),台北:台湾大学,1994.
    23.李献华,胡瑞忠,饶冰.粤北白垩纪基性岩脉的年代学和地球化学.地球化学,1997,26(2):15~30.
    24.李献华,刘颖,涂湘林,等.硅酸盐岩石化学组成的ICP-AES和ICP-MS准确测定:酸溶与碱熔分解样品方法的对比.地球化学,2002a,31(3):289~294.
    25.李献华,周汉文,丁式江,李寄嵎,张仁杰,张业明,葛文春.海南岛“邦溪—晨星蛇绿岩片”的时代及其构造意义—Sm-Nd同位素制约.岩石学报,2000b,16(3):425~432.
    26.李献华,周汉文,丁式江,李寄嵎,张仁杰,张业明,葛文春.海南岛洋中脊型变质基性岩:古特提斯洋壳的残片?科学通报,2000a,45(1):84~88.
    27.李献华,周汉文,韦刚健,等.滇西新生代超钾质煌斑岩的元素和Sr-Nd同位素特征及其对岩石圈地幔组成的制约.地球化学,2002b,31(1):26~34.
    28.李献华.Sm-Nd模式年龄和等时线年龄的适用性与局限性.地质科学,1996,31(1):97~104.
    29.梁细荣,韦刚健,李献华,等.利用MC-ICPMS精确测定~(143)Nd/~(144)Nd和Sm/Nd比值.地球化学,2003,32(1):91~96.
    30.梁新权.海南岛前寒武纪花岗岩—绿岩系Sm-Nd同位素年龄及其地质意义.岩石学报,1995,11(1):71~76.
    31.刘宝珺,许效松.中国南方岩相古地理图集.北京:科学出版社,1994.
    32.刘昌实,朱金初,沈渭洲等.华南陆壳改造系列花岗岩类型划分和成岩物质来源.地质学报,1990,64(1):43~52.
    33.刘颖,刘海臣,李献华.用ICP-MS准确测定岩石样品中的40余种微量元素.地球化学,1996,25(6):552~558.
    34.马大铨,黄香定,肖志发,陈哲培,张旺驰,钟盛中.海南岛结晶基底—抱板群层序与时代.武汉:中国地质大学出版社.1998.1~60.
    35.毛景文,李红艳,裴荣富.湖南千里山花岗岩体的Nd-Sr同位素及岩石成因研究.矿床地质,1995.14(3):235~242.
    56.莫柱孙.试论南岭花岗岩的地质环境分类.大地构造与成旷学,1985,3:17~27.
    37.南京大学地质系.华南不同时代花岗岩类及其与成矿关系,北京:科学出版社,1981.
    38.庞保成,两广交界地区花岗岩中包体的类型、特征与成因.矿物岩石,2001,21(1):8~13.
    39.彭亚鸣,董传万.浙江青田碱性花岗岩研究.南京大学学报(地球科学),1991,3(2):164~
    
    171.
    40.宋彪,张玉海,万渝生,简平。锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评,2002,48(增刊):26~30.
    41.陶奎元.环太平洋中国东南大陆火山带独特性探讨.见:陆志刚,陶奎元(编)中国东南沿海火山地质与矿产论文集(第1辑).北京:地质出版社,1992.1~13.
    42.涂光炽.华南花岗岩类的地球化学.花岗岩成因讨论.北京:科学出版社,1979,379~381.
    43.汪啸风,马大铨,蒋大海(主编).海南岛地质(二)岩浆岩.北京:地质出版社,1991.1~274.
    44.王联魁,朱为方,张绍立.华南花岗岩两个成岩成矿系列的演化.地球化学,1982,4:329~339.
    45.王焰,张旗,钱青.埃达克岩(adakite)的地球化学特征及其构造意义.地质科学,2000,35:251~256.
    46.韦刚健,梁细荣,李献华,等.(LP)MC-ICPMS方法精确测定液体和固体样品的Sr同位素组成.地球化学,2002,31(3):295~299.
    47.吴福元等.埃达克岩的概念、识别标志及其地质意义.见:肖庆辉等(编)花岗岩研究思维与方法.北京:地质出版社,2002.172~191.
    48.夏邦栋,施光宇,方中,等.海南岛晚古生代裂谷作用.地质学报,1991,65(2):103~115.
    49.夏邦栋,于津海,方中,王赐银,楚雪君.海南岛海西—印支期花岗岩的地球化学特征及成因.地球化学,1990,19(4):365~373.
    50.肖庆辉和卢欣祥.花岗岩构造环境判别方法.见:肖庆辉等(编)花岗岩研究思维与方法.北京:地质出版社,2002.12~52.
    51.谢桂青,胡瑞忠,贾大成.赣西北基性岩脉的地质地球化学特征及其意义.地球化学,2002,31(4):329~337.
    52.徐克勤,胡受奚,孙明志,张景荣,叶俊.论花岗岩的成因系列—以华南中生代花岗岩为例.地质学报,1983,57(2):107~118.
    53.徐克勤,孙鼐,王德滋,胡受奚,刘英俊,季寿元.华南花岗岩成因与成矿,南京国际学术讨论会论文集《花岗岩地质和成矿关系》.江苏:江苏科技出版社,1984.1~20.
    54.徐克勤,朱金初,刘昌实,沈渭洲,徐士进.华南花岗岩类的成因系列和物质来源.南京大学学报,1989,3:1~18.
    55.徐义刚.拉张环境中的大陆玄武岩浆作用:性质及动力学过程.见:郑永飞(编)化学地球动力学.北京:科学出版社,1999,119~167.
    56.杨树锋,虞子冶,郭令智,等.海南岛的地体划分、古地磁研究及其板块构造意义.南京大学学报(地球科学),1989,1(1-2):38~46.
    57.于津生,桂训唐,黄琳,李献华,胡瑞忠.中国某些花岗岩的Sr-O同位素体系.中国科学(B辑),1990,18(7):338~746.
    58.翟建平.昆山、城山和大龙山岩体的锶同位素特征及其成因研究.地球化学,1989,27(3):202~209.
    
    
    59.张旗,钱青,王二七,等.燕山中晚期的“中国东部高原”:埃达克岩的启示.地质科学,2001a,36(2):248~255.
    60.张旗,王焰,钱青,等.中国东部燕山期埃达克岩的特征及其构造—成矿意义.岩石学报,2001b,17(2):236~244.
    61.赵振华.微量元素地球化学原理.北京:科学出版社,1997.1~169.
    62.赵子杰,马大铨,林惠坤,等.广东阳春地区两类花岗岩类的铷—锶、氧同位素组成及其成因探讨.中国地质科学院宜昌地质矿产研究所所刊,1985,(10):89~98.
    63.中国科学院贵阳地球化学研究所.华南花岗岩类的地球化学,北京:科学出版社,1979.
    64.中国科学院华南富铁科学研究队.海南岛地质与石碌铁矿地球化学.北京:科学出版社,1986.1~376.
    65.周玲棣,赵振华,周国富,我国一些碱性岩的同位素年代学研究.地球化学,1996,25(2):164~171.
    66.周泰禧,陈江蜂,李学明,等.安徽省印支期岩浆活动质疑.岩石学报,1988,4(3):46~53.
    67.周泰禧,陈江蜂,李学明,等.安徽霍舒正长岩带侵入体的~(40)Ar/~(39)Ar法同位素地质年龄.安徽地质,1992,2(1):4~11.
    68.周珣若,吴克隆,严炳铨,等.漳州I-A型花岗岩.北京:科学出版社,1994,1~148.
    69. Baldwin A J & Pearce J A. Discrimination of productive and non-productive porphyritic intrusions in the Chilean Andes. Econ Geol, 1982, 77:664~674.
    70. Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 1999, 46:605~626.
    71. Barbarin B. Genesis of the two main types of peraluminous granitoids. Geology, 1996, 24(4): 295~298.
    72. Bate R L & Jackson J A. Glossary of geology (3rd ed). 1987.
    73. Bonin B. From orogenic to anorogenic settings: evolution of granitoid suites after a major orogenesis. Geol J, 1990, 25, 261~270.
    74. Brenan J M, Shaw H F, Phirnney D L, Ryerson F J. Rutile-aqueous fluid partitioning of Nb, Ta, Hf, Zr, U and Th: implications for high field strength element depletions in island-arc basalts. Earth Planet Sci Lett, 1994, 128:327~339.
    75. Chappell B W & White A J R. I-and S-type granites in the Lachlan Fold Belt. Trans R Soc Edinburgh Earth Sci, 1992, 83, 1~26.
    76. Chappell B W & White A J R. Two contrasting granite types. Pacific Geol, 1974, 8:173~174.
    77. Charvet J, Lapierre H, Yu Y, 1994. Geodynamic significance of the Mesozoic volcanism of southeastern China. Journal of Southeast Asian Earth Sciences, 1994, 9:387~396.
    78. Chen J-F, Zhou T-X, Foland K A. ~(40)Ar/~(39)Ar and Rb-Sr geochronology of the Qingyang Batholith, Anhui Province, China. Chinese J Geochem, 1985, 4(3): 220~235.
    79. Chung S-L, Cheng H, Jahn B-M, O'Reilly S Y, Zhu B-Q. Major and trace element, and Sr-Nd isotope constraints on the origin of Paleogene volcanism in South China prior to the South
    
    China Sea opening. Lithos, 1997, 40:203~220.
    80. Chung S-L, Lo C-H, Lee T-Y, et al. Diachronous uplift of the Tibetan plateau starting 40 Myr ago. Nature, 1998, 394:769~773.
    81. Composton W, Williams I S, Meyer C. U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. J Geophys Res, 1984, 89:B525 ~B534.
    82. Defant M J & Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 1990, 347: 662~665.
    83. Defant M J, Drummond M S. Mount St. Helens: Potential example of the partial melting of the subducted lithosphere in a volcanic arc. Geology, 1993, 21: 547~550.
    84. Edwards C, Menzies M, Thirlwall M. Evidence from Muriah, Indonesia for the interplay of supra-subduction zone and intraplate processes in the genesis of potassic alkaline magmas. Journal of Petrology, 1991, 32:555~592.
    85. Enkin R, Yang Z, Chen Y, Courtillot V. Paleomagnetic constraints on the geodynamic history of the major blocks of China from the Permian to the Present. J Geophys Res, 1992, 97, 13953~13989.
    86. Fitton J G, James D, Leeman W P. Basic magmatism associated with late Cenozoic extension in the western United States: Compositional variations in space and time. J Geophys Res, 1991, 96:13693~13711.
    87. Fuhrmann U, Lippolt H J, Hess J C. HD-B1 biotite reference material for K-Ar chronometry. Chem Geol, 1987, 66:41~51.
    88. Gilder S A, Gill J, Coe R S, Zhao X, Liu Z, Wang G, Yuan, K, Liu W, Kuang Ct Wu H. Isotope and paleomagnetic constraints on the Mesozoic tectonic evolution of south China. Journal of Geophysical Research, 1996, 101:16137~16154.
    89. Gilder S A, Keller G R, Luo M, Goodell P C. Timing and spatial distribution of rifting in China. Tectonophysics, 1991, 197:225~243.
    90. Gill J B. Orogenic Andesites and Plate Tectonics. New York: Springer Verlag, 1981. 385.
    91. Green T H & Pearson N J. An experimental study of Nb and Ta partitioning between Ti-rich minerals and silicate liquids at high pressure and temperature. Geochimica et Cosmochimica Acta, 1987, 51:55~62.
    92. Hails H C & Fahrig W F. Mafic Dyke Swarms. Geological Association of Canada Special Paper, 1987, 34,1~503.
    93. Hirose K & Kushiro I. Partial melting of dry peridotites at high pressures: Detemination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet Sci Lett, 1993, 114:477~489.
    94. Hsü K J, Li J, Chen H, et al. Tectonics of South China: Key to understanding West Pacific geology. Tectonophysics, 1990, 183: 9~39.
    95. Hsü K J, Sun S, Li J, Chen H, Pen H, Seng(?)r A M C. Mesozoic overthrust tectonics in south China. Geology, 1988, 16:418~421.
    
    
    96. Irvine T N & Baragar W P A. A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci, 1971, 8:532~548.
    97. Jahn B M, Chen P Y, Yen T P. Rb-Sr ages of granitic rocks in southeastern China and their tectonic significance. Geological Society of American Bulletin, 1976, 86:763~776.
    98. Jahn B M. Mesozoic thermal events in southeast China. Nature, 1974, 248:480~483.
    99. Jochum K P, McDonough W F, Palme H, Spettel B. Compositional constraints on the continental lithospheric mantle from trace elements in spinel peridotite xenoliths. Nature, 1989, 340:548~550.
    100. Jochum K P, Seufert H M, Spettel B, Palme H. The solar-system abundances of Nb, Ta and Y, and the relative abundances of refractory lithophile elements in differentiated planetary bodies. Geochimica et Cosmochimica Acta, 1986, 50:1173~1183.
    101. Kempton P D, Fitton J G, Hawkesworth C J, et al. Isotopic and trace element constraints on the composition and evolution of the lithosphere beneath the southwestern United States. J Geophys Res, 1991,96:13713~13735.
    102. Lameyre J. Granite settings and tectonics. Rend Soc It Mineral Petrol, 1988, 43,215~236.
    103. Lan C-Y, Chung S-L, Mertzman S A, et al. Mafic dikes from Chinmen and Liehyu off southeast China: petrochemical characteristics and tectonic implications. J Geol Soc China, 1995, 38(3): 183~213.
    104. Lan C-Y, Chung S-L, Shen J J-S, et al. Geochemical and Sr-Nd isotopic characteristics of granitic rocks from northern Vietnam. Journal of Asian Earth Sciences, 2000, 18:267~280.
    105. Lan C-Y, Jahn B M, Mertzman S A, Wu T W. Subduction-related granitic rocks of Taiwan. Journal of Southeast Asian Earth Sciences, 1996, 14:11~28.
    106. Lapierre H, Jahn B M, Charvet J, Yu Y W. Mesozoic magmatism in Zhejiang Province and its relation with the tectonic activities in SE China. Tectonophysics, 1997,274:321~338.
    107. Le B N J, Le M R W, Streckeisen A, et al. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol, 1986, 27: 745-750.
    108. Lepvrier C, Maluski H, Nguyen V, et al. Indosinian NW-trending shear zones within the Truong Son belt (Vietnam) ~(40)Ar/~(39)Ar Triassic ages and Cretaceous to Cenozoic overprints. Tectonophysice, 1997, 283:105~127.
    109. Li X-H, Chung S-L, Zhou H-W, et al. Jurassic intraplate magmatism in southem Hunan-eastem Guangxi: ~(40)Ar-~(39)Ar dating, geochemistry, Sr-Nd isotopes and implications for tectonic evolution of SE China. Geological Society, London, Special Publications, 2003, in press.
    110. Li X-H, Li Z X, Ge W-C, Zhou H-W, Li W-X, Liu Y, Wingate M T D. Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825 Ma? Precambrian Research, 2003, 122, 45~83.
    111. Li X-H. Cretaceous magmatism and lithospheric extension in southeast China. Journal of Asian Earth Sciences, 2000, 18:293~305.
    112. Li Z X. Collision between the North and South China bocks: A crustal-detachment model for
    
    suturing in the region east of the Tanlu fault. Geology, 1994, 22:739~742.
    113. Li Z X. Tectonic History of the major East Asian lithospheric blocks since the mid-Proterozoic-A synthesis. Mantle Dynamics and Plate Interactions in East Asia, 1998.221 243.
    114. Lin J-L, Fuller M, Zhang W. Preliminary Phanerozoic polar wander paths for the North and South Chian blocks. Nature, 1985, 313,444~449.
    115. Lo C-H, Onstott T C, Chen C-H, Lee T. An assessment of ~(40)Ar/~(39)Ar dating for the whole-rock volcanic samples from the Luzon Arc near Taiwan. Chem Geol (Isotope Geoscience Section), 1994, 114:157~178.
    116. Loiselle M C & Wones D.R. Characteristics and origin of anorogenic granites. Abstr. 92nd Geol. Soc. Amer. Meet, 1979, 11,468.
    117. Lum C C L, Leeman W P, Foland K A, Kargel J A, Fitton J G. Isotopic variations in continental basaltic lavas as indicators of mantle heterogeneity: Examples from the western US Cordilera. J Geophys Res, 1989, 94:7871~7884.
    118. Malpas J. Two contrasting trondhjemite associations from transported ophiolites in Western Newfoundland: initial report. In: Baker F (eds) trondhjemites and Relted Rocks, Elsevier: Amsterdam, 1979, 465~487.
    119. Martin H, Bonin B, Capdevila R, et al. The Kuiqi Peralkaline granitic complex (SE China): Petrology and geochemistry. J Petrol, 1994, 35:983~1015.
    120. Martin H. Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 1999, 46: 411~429.
    121. Metcalfe I, Shergold I H, Li Z X. IGCP 321 Gondwana dispersion and Asian accretion: fieldwork on Hainan Island. Episodes, 1993, 16:443~447.
    122. Morrison G W. Characteristics and tectonic setting of the shoshonite rock association. Lithos, 1980, 13: 97~108.
    123. Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol, 1984, 25:956~983.
    124. Pearce J A. Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth C J & Norry M J (eds) Continental Basalts and Mantle Xenoliths, Nantwich: Shiva Publishing, 1983, 158~185.
    125. Pearce J A. Sources and settings of granitic rocks. Episodes, 1996, 19:120~125.
    126. Pitcher W S. Granites and yet more granites forty years on. Geol Rund, 1987, 76:51~79.
    127. Pither W S. Granite type and tectonic environment. In: Hsu K (eds) Mountain Building Processes, London: Academic Press, 1983. 19~40.
    128. Roberts M P & Clemene J D. Origin of high-potassium, calc-alkaline, I-type granitoids. Geology, 1993, 21: 825~828.
    129. Rogers N W, Hawkesworth C J, Ormerod D S. Late Cenozoic basaltic magmatism in the Western Great Basin, California and Nevada. J Geophys Res, 1995, 100:10287~10303.
    130. Rogers N W. Potassic magmatism as a key to trace-element enrichment processes in the
    
    upper mantle. J Volcan Geother Res, 1992, 50:85~99.
    131. Sengor A M C. Mid-Mesozoic closure of Permo-Triassic Tethys and its implications. Natrue,1979, 279:590~593.
    132. Sengor A M C & Natal'in B A. Paleotectonics of Asia: fragments of a synthesis. In: Yin A. and Harrison M. (ed.) The tectonic Evolution of Asia. Cambridge University Press, New York, 1996, 486~640.
    133. Sewell R J, Darbyshire D P F, Langford R L, et al. Geochemistry and Rb-Sr geochronology of Mesozoic granites from Hong Kong. Trans R Soc Edinb Earth Sci, 1992, 83:269~280.
    134. Stolz A J, Jochum K P, Hofmann A W, Spettel B. HESE constraints on the nature of island arc and ocean island magma sources. Terra Nova, 1995, 7: 299.
    135. Stolz A J, Jochum K P, Spettel R, et al. Fluid- and melt-related enrichment in the sub-arc mantle: Evidence from Nb/Ta variations in island-arc basalts. Geology, 1996, 24(7): 587 590.
    136. Stolz A J, Varne R, Davies G R, Wheller G E, Foden J D. Magma source components in an arc-continent collision zone: The Flores-Lembata sector, Sunda arc, Indonesia. Contributions to Mineralogy and Petrology, 1990, 105:585~601.
    137. Streckeisen A & Le Maitre R W. A chemical approximation to the modal QAPF classification of the igneous rocks. Neues Jahrb Mineral, Abh, 1979, 136:169~206.
    138. Sun S S & McDonough W F. Chemical and isotopic systematics of oceanic basalt: implications for mantle composition and processes. In: Saunders A D & Norry M J (eds) Magmatism in the Ocean Basins. Geol Soc Spec Pub, 1989, 42:313~345.
    139. Sun S S. Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs: Phil Trans R Soc Lond, 1980, A297:409~445.
    140. Suess E, 1893. Are great ocean depths permanent? In: Sonnenfeld P. (eds.) Tethys: The Ancestral Mediterranean, Benchmark Papers in Geology. Hutchinson Ross Publishing company, 53, 1981, 1-11. Reprinted from Natural science, 1:180~187.
    141. Tanaka T and 19 co-authors. JNdi-1: a neodymium isotopic reference in consistency with La Jolla neodymium. Chem Geol, 2000, 168:279~281.
    142. Taylor S R & McLennan S M. The Continental Crust: its Composition and Evolution. Oxford: Blackwell Sci Publ, 1985. 1~312.
    143. Turner S, Arnaud N, Liu J, et al. Post-collision, shoshonitic volcanism on the Tibetan plateau: implications for convective thinning of the lithosphere and the source of ocean island basalts. J Petrol, 1996, 37:45~71.
    144. Watson E B & Harrison T M. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett, 1983, 64:295~304.
    145. Weaver B L & Tarney J. The Scourie dyke suite: petrogenesis and geochemical nature of the Proterozoic subcontinental mantle. Contrib Mineral Petral, 1981, 78:175~188.
    146. White A J R & Chappell B W. Ultrametamorphism and granitoid genesis. Tectonophysics, 1977, 43: 7~22.
    
    
    147. Williams I S, Buick I S, Cartwright I. An extended episode of earlhy Mesoproterozoic metamorphic fluid flow in the Reylolds Range, central Australia. J Metamorphic Geol, 1996, 14:29~47.
    148. Williams I S. Some observations on the use of zircon U-Pb geochronology in the study of granitic rocks. Trans R Soc Edinburgh - Earth Sci, 1992, 83:447~458.
    149. Williams R, Gill J B. Effects of partial melting on the uranium decay series. Geochim Cosmochim Acta, 1989, 53:1607~1619.
    150. Williams, I.S. 1998. U-Th-Pb geochronology by ion microprobe, M. A. McKibben, Shanks, W. C., and Ridley, W. I., eds., Applications of microanalytical techniques to understanding mineralizing processes, Review of Economic Geology, v. 7, p. 1-35.
    151. Winchester J A, Floyd P A. Geochemical magma type discrimination: Application to altered and metamorphosed basic igneous rocks. Earth Planet Sci Let, 1976, 28:459~469.
    152. Windley B F. The evolving cont Edinents(3rd ed). New York: John Wiley & Sons, 1995. 1 526.
    153. Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth Planet Sci Lett, 1980, 50:11~30.
    154. Wyllie P J & Sekine T. The formation of mantle phlogopite in subduction zone hybridisation. Contributions to Mineralogy and Petrology, 1982, 79:375~380.
    155. Yang H Y. The deuteric alteration and the spilitic degradation of Kungkuan basaltic rocks in northern Taiwan. Acta Geol Taiwanica, 1986, 24:179~210.
    156. Yin A & Nie S. An indentation model for the North and South China collision and the development of the Tan-Lu and Honam fault systems, eastern Asia. Tectonics, 1993, 12:801~813.
    157. Zhai Y, Seguin M-K, Zhou Y, et al. New paleomagnetic data from the Huanan Block, China and Cretaceous tectonics in eastern China. Phys Earth Planet Inter, 1992, 73:163~188.
    158. Zhang Q, Zhou D J, Zhao D S, et al. Ophiolites of the Henduan Mountains China: Characteristics and tectonic settings. J SE Asian Earth Sci, 1994, 9:335~344.
    159. Zhou M F et al. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth Planet Sci Lett, 2002, 196:51~67.
    160. Zhou X M, Li W X. Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magma. Tectonophysics, 2000, 326:269~287.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700