用户名: 密码: 验证码:
单井循环地下换热系统地下水流动及其传热特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单井循环地下换热系统作为一种新型的地下水源热泵系统热源井,目前共有三种形式,即循环单井、抽灌同井和填砾同井。它们均将抽水管和回水管置于一口井内,在井的下部抽水,上部回水。循环单井是在基岩层中直接开孔,大部分水在井孔之内循环,与井壁发生热量交换;少部分水进入井孔,并进入含水层与其进行原水交换;抽灌同井在井孔内部加设了隔板,将热源井分为三个部分,上部为回水区,中间为隔断区,下部为抽水区;填砾同井的形式和抽灌同井类似,不同之处在于,填砾同井的井孔较井管的直径要大很多,其空隙采用分选性较好的砾石进行回填。本文针对以上三种热源井开展了相关的理论和实验研究工作,主要研究工作及结果如下:
     设计并搭建了单井循环地下换热系统的物理模拟砂箱实验台,选取了实验测量仪器和数据采集系统,计算了实验误差。结果表明,所搭建实验台的测量误差在可接受的范围之内,能够准确真实地反映物理现象。
     通过更换不同的预制井来实验模拟三种类型热源井的特性。针对三种不同的热源井,分别进行不同抽回间距、不同初始地温和不同负荷的实验研究。并对循环单井和填砾同井进行了不同排放比例的实验研究。研究表明,增大抽回间距能够显著改善三种热源井的抽水温度、提高换热量。三种热源井中循环单井承担负荷的能力最低,抽回水温度变化最大,热影响范围最小。在取热工况下,排放能够提高循环单井和填砾同井的抽水温度及取热量,小排放比对于提高热源井承担负荷能力的效果较好,随着排放比的增加,这种改善效果减弱。
     针对不同运行模式下抽灌同井特性进行实验研究,按照三个具有代表性的地区——北京、沈阳和上海采暖期和空调期时间分配来设计实验。实验包括四种工况,即连续取热、连续放热、先夏后冬和先冬后夏。研究表明,抽灌同井在寒冷地区运行过程中,系统在该实验条件下,仅靠自然恢复期内的恢复,地下含水层不能使自身恢复至最初状态。必须采用辅助设备,对地下含水层进行热量补给,保证系统长期可靠的运行。在冷热负荷相当的地区,采用先夏后冬的运行模式,可以提高系统运行的稳定性;在寒冷地区应先进行放热工况,继而进行取热工况,保持热源井的抽水温度处在较高水平。相反,在较暖和地区则应先进行取热工况,保持热源井的抽水温度处在较低水平。
     建立了多区域耦合CFD仿真模型。通过纳维-斯托克斯方程和伯努利方程对多孔介质中运动方程进行分析推导,得到了多孔介质内的流动模型,并通过实验确定了该流动模型中的经验系数。利用单井循环地下换热系统砂箱实验台测得的实验数据对数值模拟结果进行了对比,验证了仿真模型的准确性。
     针对三种热源井进行了不同孔隙度、不同初始地温及不同抽水流量三个方面的仿真研究,并分析了三种热源井含水层的流场以及不同流量下的温度场变化情况。研究表明,孔隙度对含水层参与换热较多的抽灌同井和填砾同井影响稍大,对循环单井的影响则较小,但总体上看孔隙度对三种热源井的特性影响不大。抽水流量对单井循环地下换热系统的影响较大,增大抽水流量使得三种热源井的抽水温度变化加大,并能显著提高热源井的热影响范围。初始地温的变化并不影响含水层温度的变化趋势,抽水温度的变化趋势也几乎相同,只是各工况间存在一定温差。但提高初始地温能够显著提高热源井的平均抽水温度和累计取热量,可见初始地温是影响单井循环地下换热系统的关键因素之一。
     本文为国家自然科学基金“单井循环地下换热系统多流态流动与传热耦合机理研究”(41002085)的部分研究内容。本文的研究工作,为全面的掌握单井循环地下换热系统的运行特性、为该系统的设计及应用提供了重要的理论基础和技术储备。
Currently, as a new kind of groundwater heat pump system, single well cycling ground heat exchanger system (SWCGHES) contents three forms of thermal well, e.i. standing column well (SCW), pumping and recharging well (PRW), and pumping and recharging well filled with gravel (PRWFG). Their pumping and injection pipes are placed in a same well, which is pumping water in the low part and recharging water in the top part. The SCW needs to drill hole in the bedrock directly, and then most of the water circulates in the well bore and the heat exchange take place in the well wall, while small part of the water goes out of the borehole and exchanges the heat with aquifer raw water. There are some clapboards in PRW that the thermal well is divided into three parts, i.e. injection zone (in the top part), seals zone (in the middle part), and production zone (in the low part). The PRWFG has similar form with PRW. The difference between them is that the diameter of borehole in PRWFG is longer than the one in PRW. Moreover, the gap of borehole in PRWFG is filled with sorted gravel. In this paper, relative theoretical and experimental researches on these three thermal wells have been carried out. The main research work and results are as follows:
     A physical simulation experiment table of SWCGHES has been designed and set up, while the experimental testing system and data collecting system have been selected. Additionally, the error of this experiment has been calculated. The results show that the measurement error of the experiment table is within an acceptable range, which can accurately reflect the actual physical phenomena.
     Different characteristics of three thermal wells have been simulated by replacing the prefabricated inserts. In SWCGHES relative experimental research has been carried out, such as distances between pumping and injection screens (DPIS) variations, initial aquifer temperature variations, and load variations. Additionally, the bleed experiment has been developed in SCW and PRWFG. The results show that with increasing the DPIS, the outlet water temperature and heat transfer quantities of these three thermal wells can be improved significantly. Among these three thermal wells, SCW’s load capacity is the least and temperature variations between inlet and outlet water is the maximum, while its thermal influence scope is the smallest. Moreover, in heating condition the bleed can improve the outlet water temperature and heat absorption quantities of SCW and PRWFG. Smaller bleed rate can improve the heat load capacity of the thermal well significantly. However, with increasing the bleed rate, this kind of improvement effect is weaker.
     The research on PRW system in different operating modes has been carried out. Time of operating condition has been distributed by heating season and air-conditioning season of three representative regions, e.i. Beijing, Shenyang, and Shanghai, respectively. These experiments include four conditions, e.i. continuous heating condition (CH), continuous cooling condition (CC), summer and winter condition (SW), and winter and summer condition (WS). The results show that in the operation of PRW in cold region the system can not restore in recovery period under the experimental condition. Additionally, the underground aquifer can not make their own return to the original state. Auxiliary equipments must be used for the heat supply of the aquifer, in order to ensure the system in a long-term reliable operation. In the cooling and heating load considerable area, using the SW operation mode can improve the stability of the system. However, in cold area SW operation mode should be used, so that it can keep the outlet water temperature at a higher level. On the contrary, in warm area WS operation mode should be used, while it can maintain the outlet water temperature at a lower level.
     The multi-zone coupling CFD simulation model has been established. The motion equation in porous media has been analyzed and derived by N-S equation and Bernoulli equation, while the flow model in porous media has been developed. In addition, the experience factors in the derived equation have been determined by experiments. Moreover, the experimental results of SWCGHES are compared with the simulation results, while the accuracy of the simulation model has been validated.
     Three aspects of simulation study have been carried out that include porosity variations, initial aquifer temperature variations, and outlet water flow rate variations. In these three thermal wells, the aquifer flow field and aquifer temperature field with outlet water flow rate variations have been analyzed. The results show that the effect of porosity on characteristics of these three thermal wells is weaker; however, this effect on PRW and PRWFG is stronger than SCW. The effect of outlet water flow rate on SWCGHES is greater. With the outlet water flow rate increasing, the outlet water temperature of these three thermal wells changes, while the thermal influence scope improves significantly. The initial aquifer temperature variation can not affect the trend of the aquifer temperature variation, while the trend of outlet water temperature is almost the same except some temperature difference among them. However, improving the initial aquifer temperature can increase the mean temperature of outlet water and accumulative heat absorption quantities, which show that the initial aquifer temperature is a key factor in SWCGHES.
     This paper is a part of national natural science foundation "Study on the Coupling Mechanisms of Multi-Pattern Flow and Heat Transfer in SWCGHES "(41002085). The research in this paper provides a comprehensive grasp of operating characteristics of SWCGHES, while an important theoretical basis and technical reserves are provided for design and application of these systems.
引文
[1] Yang W, Zhou J, Xu W, et al. Current Status of Ground-Source Heat Pumpsin China[J]. Energy Policy,2010,38(1):323-332.
    [2]中华人民共和国国民经济和社会发展第十二个五年规划纲要[J].中国乡镇企业,2011,(4):30-37.
    [3]国家科技攻关计划项目可行性研究报告:建筑节能关键技术研究.科学技术部,2005,8.
    [4] Spitler J. D. Ground-Source Heat Pump System Research Past, Present, andFuture[J]. HVAC&R Research,2005,11(2):165-167.
    [5]陈哓.地表水源热泵理论及应用[M].北京:中国建筑工业出版社,2011:1-2.
    [6]陆亚俊,马最良,姚杨.空调工程中的制冷技术[M].哈尔滨:哈尔滨工程大学出版社,1997:217-218.
    [7] Qi Z, Gao Q, Liu Y, et al. Status and Development of Hybrid EnergySystems from Hybrid Ground Source Heat Pump in China and otherCountries[J]. Renewable and Sustainable Energy Reviews,2014:37-51.
    [8]徐伟.中国地源热泵发展研究报告(2008)[M].北京:中国建筑工业出版社,2008:1-10.
    [9]徐伟.中国地源热泵发展研究报告(2013)[M].北京:中国建筑工业出版社,2013:1-11.
    [10] Lee J. Current Status of Ground Source Heat Pumps in Korea[J]. Renewableand Sustainable Energy Reviews,2009,13:1560-1568.
    [11]倪龙,姜益强,姚杨,等.单井循环地下换热系统健康运行的研究[J].流体机械,2009,(4):64-68.
    [12] Ni L, Li H, Jiang Y, et al. A Model of Groundwater Seepage and HeatTransfer for Single-Well Ground Source Heat Pump Systems[J]. AppliedThermal Engineering,2011,31(14–15):2622-2630.
    [13]陈雨孙.单井水力学[M].北京:中国建筑工业出版社,1977:95-155.
    [14]倪龙,姜益强,姚杨,等.循环单井与含水层的原水交换[J].太阳能学报,2010,(6):743-748.
    [15] Bose J. E., Ledbetter C. W., Partin J R. Experimental Results of a Low-CostSolar-Assisted Heat Pump System Using Earth Coil and Geo-Thermal WellStorage[C]. The4th Annual Heat Pump Technology Conference, Stillwater,OK, USA,1979.
    [16] Braud H., Klimkowski H., Olivier J. Earth Source Heat Exchanger for HeatPumps[J]. ASAE Transactions,1983,(26):1818-1822.
    [17] Tan C., Kush E. Semi-Closed Loop Standing Column Well GroundwaterSource Heat Pump[EB/OL]. GHPC website: www.geoexchange.org
    [18] Mikler V. A Theoretical and Experimental Study of the Energy WellPerformance[D]. Pennsylvania State University,1993:12-23.
    [19] Yuill G. K., Mikler V. Analysis of the Effect of Induced Groundwater Flowon Heat Transfer from a Vertical Open-Hole Concentric-Tube ThermalWell[J]. ASHRAE Transactions,1995,101(1):173-185.
    [20] Orio C.D. Geothermal Heat Pumps and Standing Column Wells[J].Geothermal Resources Council Transactions,1994,(18):375-379.
    [21] Orio C.D. Design, Use&Example of Standing Column Wells[C]. IGSPHATechnical Meeting, Stillwater, OK, USA,1995.
    [22] Orio C.D. Geothermal Heat Pump Applications Industrial/Commercial[J].Energy Engineering,1999,96(3):58-66.
    [23] Orio C. D., Johnson C. N., Poor K. D. Geothermal Standing Column Wells:Ten Years in a New England School[J]. ASHRAE Transactions,2006,112(2):57-64.
    [24] Orio C. D., Johnson C. N., Rees S. J., et al. A Survey of Standing ColumnWell Installations in North America[J]. ASHRAE Transactions,2005,111(2):109-121.
    [25]倪龙.同井回灌地下水源热泵源汇井运行特性研究[D].哈尔滨工业大学,2007:150-160.
    [26] Deng Z. Modeling of Standing Column Wells in Ground Source Heat PumpSystems[D]. Oklahoma State University,2004:20-60.
    [27] Deng Z., Spitler J. D., Rees S.J. Modeling of Standing Column Wells inGround Source Heat Pump Systems[C]. The10th International Conferenceon Thermal Energy Storage-ECOSTOCK, Pomona, NJ, USA,2006.
    [28] Deng Z., Rees S. J., Spitler J.D. A Model for Annual Simulation of StandingColumn Well Ground Heat Exchangers[J]. HVAC&R Research,2005,11(4):637-655.
    [29] Rees S. J., Spitler J. D., Deng Z., et al. A Study of Geothermal Heat Pumpand Standing Column Well Performance[J]. ASHRAE Transactions,2004,110(1):3-13.
    [30] Deng Z., Spitler J. D., Rees S. J. Performance Analysis of Standing ColumnWell Ground Heat Exchanger Systems[J]. ASHRAE Transactions,2006,112(2):633-643.
    [31] Ramesh A., Spitler J. D. A Quasi-Two-Dimensional Standing Column WellModel for Ground Source Heat Pump systems[C]. The12th InternationalConference on Energy Storage, Lleida, Spain,2012.
    [32] Abu-Nada E., Akash B., Al-Hinti I., et al. Modeling of a GeothermalStanding Column Well[J]. International Journal of Energy Research,2008,32:306-317.
    [33] Al-Sarkhi A., Abu-Nada E., Nijmeh S., et al. Performance Evaluation ofStanding Column Well for Potential Application of Ground Source HeatPump in Jordan[J]. Energy Conversion and Management,2008,49:863-872.
    [34] Ng B. M., Underwood C. P., Walker S.L. Numerical Modelling of MultipleStanding Column Wells for Heating and Cooling Buildings[C]. The11thInternational IBPSA Conference, Glasgow, Scotland,2009.
    [35] Ng B. M., Underwood C. P., Walker S.L. Standing Column Wells—Modeling the Potential for Applications in Geothermal Heating andCooling[J]. HVAC&R Research,2011,17(6):1089-1100.
    [36] Lee K. S. Modeling on the Cyclic Operation of Standing Column Wellsunder Regional Groundwater Flow[J]. Journal of Hydrodynamics, Ser. B,2011,23(3):295-301.
    [37] Minea V. Experimental Investigation of the Reliability of ResidentialStanding Column Heat Pump Systems without Bleed in Cold Climates[J].Applied Thermal Engineering,2013,(52):230-243.
    [38]倪龙,马最良.单井循环地下换热系统及其应用前景[J].中国建设信息供热制冷,2008,(11):26-30.
    [39]倪龙,姜益强,姚杨,等.单井循环地下换热系统正常运行的关键[C].2008年全国暖通空调制冷学术年会,中国重庆,2008.
    [40]倪龙,姜益强,姚杨,等.循环单井井管-井孔-含水层传热模型[J].哈尔滨工程大学学报,2009,(11):1228-1233.
    [41]倪龙,余延顺,姜益强,等.循环单井地下水多流态流动特性[J].南京理工大学学报(自然科学版),2010,(3):367-371.
    [42]倪龙,姜益强,姚杨,等.循环单井的传热特性[J].天津大学学报,2009,(11):1034-1039.
    [43]倪龙,姜益强,姚杨,等.循环单井在不同水文地质条件下的运行特性[J].哈尔滨工业大学学报,2011,(4):47-51.
    [44]倪龙,宋伟,唐明宇,等.单井循环地下换热系统初步试验研究[J].建筑科学,2012,28(2):195-197.
    [45]李旻,刁乃仁,方肇洪.单井回灌地源热泵承压含水层渗流解析解[J].山东建筑工程学院学报,2006,(1):1-5.
    [46]李旻,刁乃仁,方肇洪.单井回灌地源热泵地下传热数值模型研究[J].太阳能学报,2007,(12):1394-1401.
    [47]刘惠,刁乃仁,方肇洪.单井回灌地源热泵地下换热器流动模型及分析[J].山东建筑大学学报,2008,(3):230-234.
    [48]刘惠,刁乃仁,方肇洪.单井回灌地源热泵系统地下传热的数值分析[J].建筑热能通风空调,2007,(6):41-45.
    [49]刘涛,张于峰,牛宝联,等.单井循环热泵系统冬季运行特性的数值模拟[J].煤气与热力,2007,(4):65-69.
    [50]林元同.单井循环水源热泵系统特性研究[D].南京理工大学,2009:1-32.
    [51]王韬,余跃进,孟昭贤.循环单井地下换热系统及其应用[J].制冷与空调,2010,(2):44-49.
    [52]张海琳,余跃进,胡纯良.循环单井热泵系统负荷调峰优越性分析[J].南京师范大学学报(工程技术版),2012,(1):33-37.
    [53]卢予北,陈莹.单井抽回两用系统在浅层地热能开发中的应用[J].水电能源科学,2011,(5):120-122.
    [54]李月,袁建伟,王瑞祥,等.水文地质参数对单井回灌地下水源热泵抽水井温度场影响[J].北京建筑工程学院学报,2011,(4):32-36.
    [55]朱宝泉.对单井回灌纳入某建筑标准设计的质疑[J].中国建设信息.供热制冷专刊,2004,(3):74-75.
    [56] Sorensen S. N., Reffstrup J. Prediction of Long-Term OperationalConditions for Single-Well Groundwater Heat Pump Plants[C]. The27thIntersociety Energy Conversion Engineering Conference, San Diego, CA,USA,1992.
    [57]张远东.单(多)井抽灌对浅部地温场的影响研究[D].北京:中国科学院研究生院,2004:1-25.
    [58]倪龙,姜益强,姚杨,等.抽灌同井季节性储能分析[J].哈尔滨工业大学学报,2010,(8):1287-1291.
    [59]倪龙,马最良.含水层参数对同井回灌地下水源热泵的影响[J].天津大学学报,2006,(2):229-243.
    [60]倪龙,马最良.同井回灌地下水源热泵地下水渗流理论研究[J].太阳能学报,2006,(12):1219-1224.
    [61]倪龙,马最良.热负荷对同井回灌地下水源热泵的影响[J].暖通空调,2005,(3):12-14.
    [62]倪龙,马最良.多层含水层中同井回灌地下水源热泵特性分析[J].建筑热能通风空调,2005,(3):10-13.
    [63]倪龙,马最良.井参数对同井回灌地下水源热泵的影响[J].流体机械,2006,(3):65-69.
    [64]王玉林.承压地下水开采井流模型及其渗流理论研究[D].杭州:浙江大学,2011:27-49.
    [65]王玉林,谢康和,李传勋,等.抽-灌同轴非完整井承压层非稳定流模型及解析解[J].水利学报,2012,(1):60-67.
    [66]徐生恒.井式液体冷热源系统.中华人民共和国国家知识产权局:(00123494.3),2002.
    [67] Xu S., Rybach L. Utilization of Shallow Resources Performance of DirectUse System in Beijing[J]. Geotherm. Resour. Council Trans,2003,27:115-118.
    [68]倪龙,马最良.热弥散对同井回灌地下水源热泵的影响[J].建筑热能通风空调,2005,(4):7-10.
    [69]倪龙,马最良,孙丽颖.同井回灌地下水源热泵热力特性分析[J].哈尔滨工程大学学报,2006,(2):195-199.
    [70]倪龙,马最良,徐生恒,等.北京某同井回灌地下水地源热泵工程现场试验研究[J].暖通空调,2006,(10):86-92.
    [71] Roscoe Moss Company. Handbook of Ground Water Development[M].北京:中国水利水电出版社,2009:6-8.
    [72]赵阳升.多孔介质多场耦合作用及其工程相应[M].北京:科学出版社,2010:46-48.
    [73]束龙仓,陶月赞,张元禧.地下水水文学[M].北京:中国水利水电出版社,2009:14-16.
    [74]吴林高,缪俊发,张瑞,等.渗流力学[M].上海:上海科学技术文献出版社,1996:1-20.
    [75]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,2010:15-20.
    [76]薛禹群,谢春红.地下水数值模拟[M].北京:科学出版社,2007:9-11.
    [77]杨金忠,蔡树英,王旭升.地下水运动数学模型[M].北京:科学出版社,2009:11-13.
    [78]陈崇希,林敏.地下水动力学[M].武汉:中国地质大学出版社,1999:10-12.
    [79]吴吉春,薛禹群.地下水动力学[M].北京:中国水利水电出版社,2009:15-19.
    [80] Bear J. Dynamics of Fluids in Porous Media[M]. New York: AmericanElsevier Publishing Company,1972:119-194.
    [81]薛定谔.多孔介质中的渗流物理[M].北京:石油工业出版社,1982:84-216.
    [82]赵新颖,万曼影,马捷.地下含水层储能及其对环境影响的评估[J].能源研究与利用,2004,(1):51-54.
    [83]龙翔,万曼影,马捷.含水层储能技术的应用及储能条件的分析[J].能源工程,2005,(1):42-44.
    [84] Meyer C. F., Todd D. K. Heat-Storage Wells[J]. Journal of Water Well,1973,27(10):35-41.
    [85] Qvale B., Hagelskjaer J., Andersen L. J., et al. Aquifer Thermal EnergyStorage, Technolgy, Systems, Economics[J]. ASHRAE Transactions,1984,90(2B):137-156.
    [86] Brett C. E., Schaetzle W. J. Experiences with Unconfied Aquifer ChilledWater Storage[J]. ASHRAE Transactions,1984,90(2B):169-180.
    [87] Midkiff K. C., Brett C. E., Balaji K., et al. Long-Term Performance of anAir-Conditioning System Based on Seasonal Aquifer Chill EnergyStorage[C]. The27th Intersociety Energy Conversion EngineeringConference, San Diego, CA, USA,1992.
    [88]赵新颖,万曼影,施锡钜.利用含水层储能的水源热泵工程及其对环境影响的评估[J].能源工程,2004,(2):20-24.
    [89] Kabus F., Seibt P. Aquifer Thermal Energy Storage for the Berlin ReichstagBuilding New Seat of the German Parliament[C]. Proceedings WorldGeothermal Congress2000, Kyushu-Tohoku, Japan,2000.
    [90] Paksoy H. O., Andersson O., Abaci S., et al. Heating and Cooling of aHospital Using Solar Energy Coupled with Seasonal Thermal EnergyStorage in an Aquifer[J]. Renewable Energy,2000,19(1-2):117-122.
    [91] Paksoy H. O., Gurbuz Z., Turgut B., et al. Aquifer Thermal Storage (ATES)for Air-Conditioning of a Supermarket in Turkey[J]. Renewable Energy,2004,19(12):1991-1996.
    [92] Bridger D. W., Allen D. M. Designing Aquifer Thermal Energy StorageSystems[J]. ASHRAE Journal,47(9):S32-S38.
    [93]邬小波.地下含水层储能和地下水源热泵系统中地下水回路与回灌技术现状[J].暖通空调,2004,34(1):19-22.
    [94] Werner D., Kley W. Problems of Heat Storage in Aquifers[J]. Journal ofHydrology,1977,34(1-2):35-43.
    [95] Mathey B. Development and Resorption of a Thermal Disturbance in aPhreatic Aquifer with Natural Convection[J]. Journal of Hydrology,1977,34(5-6):315-333.
    [96] Sauty J. P., Gringarten A. C., Fabri H., et al. Sensible Energy Storage inAquifers:2. Field Experiments and Comparison with Theoretical Results[J].Water Resource Research,1982,18(2):253-265.
    [97] Molz F. J., Parr A. D., Andersen P. F. Thermal Energy Storage in a ConfinedAquifer: Second Cycle[J]. Water Resource Research,1981,17(3):641-645.
    [98] Molz F. J., Parr A. D., Andersen P. F., et al. Thermal Energy Storage in aConfined Aquifer: Experimental Results[J]. Water Resource Research,1979,15(6):1509-1514.
    [99] Molz F. J., Warman J. C., Jones T. E. Aquifer Storage of Heated Water: PartI-a Field Experiment[J]. Ground Water,1978,16(4):234-241.
    [100] Molz F. J., Melville J. G., Parr A. D., et al. Aquifer Thermal Energy Storage:a Well Doublet Experiment at Increased Temperature[J]. Water ResourceResearch,1983,19(1):149-160.
    [101] Molz F. J., Melville J. G., Guven O., et al. Aquifer Thermal Energy Storage:an Attempt to Counter Free Thermal Convection[J]. Water ResourcesResearch,1983,19(4):922-930.
    [102]倪龙,荣莉,马最良.含水层储能的研究历史及未来[J].建筑热能通风空调,2007,(1):18-24.
    [103] Holm T. R., Eisenreich S. J., Roseberg H. L., et al. GroundwaterGeochemistry of Short-Term Aquifer Thermal Energy Storage Test Cycles[J].Water Resource Research,1987,23(6):1005-1019.
    [104] Miller R. T. Anisotropy in the Ironton and Galesville Sandstone Nears aThermal-Energy-Storage Well, St. Paul, Minnesota[J]. Ground Water,1984,22(5):532-537.
    [105] Miller R. T., Voss C. I. Finite-Difference Grid for a Doublet Well in anAnisotropic Aquifer[J]. Ground Water,1986,24(4):490-496.
    [106] Perlinger J. A., Almendinger J. E., Urban N. R., et al. GroundwaterGeochemistry of Aquifer Thermal Energy Storage: Long-Term Test Cycle[J].Water Resources Research,1987,23(12):2215-2226.
    [107] Palmer C. D., Blowes D. W., Frind E. O., et al. Thermal Energy Storage inan Unconfined Aquifer:1. Field Injection Experiment[J]. Water ResourceResearch,1992,28(10):2845-2856.
    [108] Buscheck T. A., Doughty C., Tsang C. F. Prediction and Analysis of a FieldExperiment on a Multilayered Aquifer Thermal Energy Storage System withStrong Buoyancy Flow[J]. Water Resources Research.1983,19(5):1307-1315.
    [109] Doughty C., Hellstrom G., Tsang C. F., et al. A Dimensionless ParameterApproach to the Thermal Behavior of an Aquifer Thermal Energy StorageSystem[J]. Water Resource Research,1982,18(3):571-587.
    [110] Papadopulos S. S., Larson S. P. Aquifer Storage of Heated Water: Part IINumerical Simulation of Field Results[J].1978,16(4):242-248.
    [111] Sykes J. F., Lantz R. B., Pahwa S. B., et al. Numerical Simulation ofThermal Energy Storage Experiment Conducted by Auburn University[J].1982,20(5):569-576.
    [112] Tsang C. F., Buscheck T., Doughty C. Aquifer Thermal Energy Storage: aNumerical Simulation of Auburn University Field Experiments[J]. WaterResource Research,1981,17(3):647-658.
    [113] Parr A. D., Molz F. J., Melville J. G. Field Determination of AquiferThermal Energy Storage Parameters[J]. Ground Water,1983,21(1):22-35.
    [114] Molson J. W., Frind E. O., Palmer C. D. Thermal Energy Storage in anUnconfined Aquifer:2. Model Development, Validation and Application[J].Water Resource Research,1992,28(10):2857-2867.
    [115] Dwyer T. E., Eckstein Y. Finite-Element Simulation of Low-Temperature,Heat-Pump-Coupled, Aquifer Thermal Energy Storage[J]. Journal ofHydrology,1987,95(1-2):19-38.
    [116] Nagano K., Mochida T., Ochifuji K. Influence of Natural Convection onForced Horizontal Flow in Saturated Porous Media for Aquifer ThermalEnergy Storage[J]. Applied Thermal Engineering,2002,22(12):1299-1311.
    [117] Chen C. S., Reddell D. L. Temperature Distribution around a Well duringThermal Injection and a Graphical Technique for Evaluating AquiferThermal Properties[J]. Water Resource Research,1983,19(2):351-363.
    [118] Guven O., Melville J. G., Molz F. J. An Analysis of the Effect of SurfaceHeat Exchange on the Thermal Behavior of an Idealized Aquifer ThermalEnergy Storage System[J]. Water Resource Research,1983,19(3):860-864.
    [119] Lippmann M. J., Tsang C. F. Ground-Water use for Cooling: AssociatedAquifer Temperature Changes[J]. Ground Water,1980,18(5):452-458.
    [120] Uffink G. J. M. Dampening of Fluctuations in Groundwater Temperature byHeat Exchange between the Aquifer and the Adjacent Layer[J]. Journal ofHydrology,1983,60(1-4):311-328.
    [121] Voigt H. D., Haefner F. Heat Transfer in Aquifers with Finite CaprokThickness during a Thermal Injection Process[J]. Water Resource Research,1987,23(12):2286-2292.
    [122] Chevalier S., Banton O. Modeling of Heat Transfer with the Random WalkMethod: Part2. Application to Thermal Energy Storage in FracturedAquifers[J]. Journal of Hydrology,1999,222(1-4):140-151.
    [123] Chevalier S., Banton O. Modeling of Heat Transfer with the Random WalkMethod: Part1. Application to Thermal Energy Storage in PorousAquifers[J]. Journal of Hydrology,1999,222(1-4):129-139.
    [124]包曼芳.地下水人工回灌对控制上海地面沉降的作用及其对地下水污染的影响[J].上海地质,1988,(1):43-44.
    [125]李遗福.开展城市地下水人工回灌的经济意义[J].浙江经济,1988,(8):20-21.
    [126]刘毅.上海市地面沉降防治措施及其效果[J].火山地质与矿产,2000,21(2):107-111.
    [127]邬小波,马捷.中国地下含水层储能技术及其发展[J].能源研究与信息,1999,15(4):8-12.
    [128]何耀东.关于深井回灌的试验研究[C].空调制冷技术文集(3)论文集,天津市制冷学会天海冷气技术成套工程公司.
    [129]何耀东.深井回灌技术初探[C].空调制冷技术文集(3)论文集,天津市制冷学会天海冷气技术成套工程公司.
    [130] Xue Y., Xie C., Li Q. Aquifer Thermal Energy Storage: a NumericalSimulation of Field Experiments in China[J].1990,26(10):2365-2375.
    [131]薛顺金.申昆毛纺厂深井回灌试验[J].水文地质工程地质,1995(2):20-22.
    [132]薛禹群,谢春红,李勤奋.含水层储热能研究—上海储能试验数值模拟[J].地质学报,1989,83(1):73-75.
    [133]薛禹群,谢春红,张志辉,等.三维非稳定流含水层储能的数值模拟研究[J].地质论评,1994,40(1):74-81.
    [134]张勇,薛禹群,谢春红.高温差条件下达西定律的理论推导[J].水科学进展,1999,10(4):362-367.
    [135]张勇,薛禹群,谢春红,等.考虑温度变化的地下水运动方程及其在储能模型中的应用[J].地质论评,1999,45(2):209-217.
    [136]张志辉,吴吉春,薛禹群,等.含水层热量输运中自然热对流和水-岩热交换作用的研究[J].工程地质学报,1997,5(3):269-275.
    [137]张志辉,薛禹群,谢春红,等.含水层热量运移中自然热对流作用的数值模拟[J].水科学进展,1996,7(2):99-104.
    [138]张志辉,薛禹群,吴吉春.地下热水运移中自然对流的研究[J].水文地质工程地质,1995,(4):16-18.
    [139]付峥嵘,李念平,汤广发,等.季节性含水层储能系统在住宅中的应用[J].暖通空调,2004,34(9):84-86.
    [140]王明育,马捷,郝振良.地下含水层热储井位置选择和布置[J].成都理工大学学报(自然科学版),2005,32(1):12-16.
    [141]王明育,马捷,万曼影.地下含水层人工储能耦合模型分析计算[J].能源技术,2004,25(1):1-4.
    [142]王锦程,万曼影,马捷.地下含水层储能技术的应用条件及其关键科学问题[J].能源研究与信息,2003,19(4):229-235.
    [143]龙翔,万曼影,马捷.地下水含水层储能的数学模型及其流动条件的研究[J].能源研究与利用,2005,(1):14-18.
    [144]马捷,王明育,戴斌.地下含水层的储能和过程特性的分析[J].华北电力大学学报,2004,31(6):58-60.
    [145]王明育,马捷,万曼影.地下含水层储能两阶段热量运移数值模型研究[J].吉林大学学报(地球科学版),2004,34(4):576-580.
    [146]夏民,王明育,万曼影,等.储能地下含水层两阶段流动换热模型分析[J].水动力学研究与进展(A辑),2005,20(3):363-367.
    [147]马捷.地下含水层储能原理及其工程应用[M].上海:上海交通大学出版社,2007:15-37.
    [148]张建栋,马捷,戴斌.地下含水层储能的实验分析与模拟[J].能源技术,2005,26(6):231-236.
    [149]陈敏.上海地区含水层储能关键技术的研究[D].吉林大学,2012:12-24.
    [150]南新磊.地下含水层储能系统的数值模拟与实验研究[D].辽宁工程技术大学,2012:1-23.
    [151]刘诗尧.对井抽灌水源热泵地下承压含水层储能特性研究[D].大连理工大学,2012:1-17.
    [152]唐明宇.单井循环地下换热系统的储能实验研究[D].哈尔滨工业大学,2013:1-29.
    [153]顾慰慈.渗流计算原理及应用[M].北京:中国建材工业出版社,2000:1-9.
    [154]金忠青. N-S方程的数值解和紊流模型[M].南京:河海大学出版社,1989:1-6.
    [155]丁立波,董少刚,马传明.地下水数值模拟的理论与实践[M].武汉:中国地质大学出版社,2010:22-25.
    [156]毛昶熙.渗流计算分析与控制[M].北京:水利电力出版社,1990:289-294.
    [157]黄素逸.动力工程现代测试技术[M].武汉:华中科技大学出版社,2001:1-17.
    [158]郑刚.天津市地下工程中地下水的影响及控制[J].施工技术,2010,39(9):1-7.
    [159]李连营,林波,王秀贺.天津地区承压水对深基坑开挖的影响分析[J].岩土工程界,2009,12(1):53-54.
    [160] Abu-Mulaweh H. I., Mueller D.W. The Use of LabVIEW and DataAcquisition Unit to Monitor and Control a Bench-Top Air-to-Water HeatPump[J]. Computer Applications in Engineering Education,2008,16(2):83-91.
    [161]陈崇希,万军伟,詹红兵,等.“渗流-管流耦合模型”的物理模拟及其数值模拟[J].水文地质工程地质,2004,(1):1-8.
    [162]袁灯平.上海某垂直单U地埋管钻孔换热能力试验研究[J].工程勘察,2011,(8):47-50.
    [163]冯星辉,林真国,郭彦玲,等.四川省某地源热泵工程地下换热性能测试[J].制冷与空调,2012,26(3):272-275.
    [164]吴晓寒,孙友宏,刘冬生,等.长春地区竖直埋管式地下换热井温度变化研究[J].暖通空调,2008,38(1):11-13.
    [165]高永卫.实验流体力学基础[M].西安:西北工业大学出版社,2002:39-69.
    [166]周学志.抽灌井群地下水运移能量传输及其传热研究[D].吉林大学,2013:56-58.
    [167]项彦勇.地下水力学概论[M].北京:科学出版社,2011:131-133.
    [168]蔡增基,龙天渝.流体力学泵与风机[M].北京:中国建筑工业出版社,1999:6-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700