用户名: 密码: 验证码:
刺参养殖池塘沉积物—水界面营养盐通量的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来刺参(Apostichopus japonicus)已成为中国北方地区最具经济价值的海水养殖品种之一。刺参为底栖杂食性生物,通过摄食碎屑、底泥中的有机物、细菌和原生动物来获取营养物质,因此有“环境清洁工”之称。然而,目前关于刺参池塘养殖对底质等影响的定量研究报道很少,本文通过测定池塘沉积物-水界面营养盐通量等,探讨了刺参不同养殖模式对池塘底质及近岸水域环境的影响及机理。
     从三个池塘采得底泥样并用实验室内培养的方法测定了底泥呼吸率(SOC)、有机碳和营养盐通量以及底泥理化特性和沉降速率。结果显示:三口池塘中的底泥有机碳(TOC)和总氮(TN)含量较低;刺参-海蜇-对虾池(SSJ池)的TOC、TC和SOC有随养殖时间的延长而增加的趋势,说明海蜇具有促进池塘底泥有机物积累的作用。硝氮和氨氮通量大都表现为底泥吸收;无机磷(DIP)通量值较小且表现为底泥释放。本实验结果显示,非投饲的刺参养殖系统不仅是一个水产品生产系统,同时还是一个水域环境N、P的有效净化系统。
     于2007年8月-2008年6月在刺参、扇贝混养的特大型养殖池塘-“大湾”内测定了底泥-水界面营养盐通量及底泥硝化反硝化速率,同时比较了其与“外海”和“普通参池”的差别。结果显示:扇贝养殖期间,“大湾”内扇贝养殖区(SC区)底泥中有机碳(TOC)含量显著大于非扇贝养殖区(Non-SC区)(p<0.05)。SC区在“养殖期”SOC较高且显著大于非扇贝养殖区(p<0.05)。“大湾”SC区和Non-SC区的沉积物-水界面氨氮通量均表现为沉积物释放;“大湾”SC区在“养殖期”及“外海”的各月份NO3-+NO2-通量均表现为底泥释放;大湾内SC区内底泥硝化速率各月份均大于Non-SC区;“海区”和“普通参池”的底泥硝化速率相对较小;各采样点底泥反硝化速率很小,SC区在“养殖期”和“恢复期”中的4月份时底泥反硝化速率均显著大于Non-SC区(p<0.05)。本实验的结果说明:扇贝养殖可导致刺参池塘底泥中的有机物积累,但扇贝养殖停止后池塘底质短期内(4-6个月)即可恢复;刺参的一般养殖模式(普通参池)不会导致养殖池塘底泥的有机物积累,也没有导致附近海域底质的有机物污染。
     于2007年5-11月间从不同刺参养殖模式实验围隔内采得底泥样并通过实验室培养的方法测定了底泥耗氧率(SOC)及沉积物-水界面的N、P通量等。结果表明,投饵对SOC影响不显著(p>0.05),说明本实验条件下投饵没有造成实验围隔底泥中的有机物积累;大部分模式中沉积物释放溶解性无机磷酸盐(DIP)且不同月份之间的通量存在显著差异(p<0.05);投饵模式下的平均通量为非投饵模式下通量值的2~3倍;当养殖密度较大时,非投饵模式中沉积物吸收氨氮的通量大于投饵模式中的通量,且随着养殖密度的增加通量值降低。投饵和放养密度对沉积物硝化、反硝化和氨化速率都有显著影响(p<0.05)。各实验围隔中所测得的底泥硝化与反硝化速率较小,分别为:0~106.20 mg·m~(-2)·d~(-1), 0~3.03μmol·m~(-2)·d~(-1)。
     采用实验室“沉积物柱培养法”研究了温度及溶氧(DO)对刺参养殖池塘沉积物—水界面的营养盐通量及底泥硝化反硝化速率的影响。结果表明:温度对池塘底泥中营养盐通量影响显著(p<0.05),高温环境有利于底泥中氨氮释放,但不利于硝态氮的释放;DO是影响池塘底泥营养盐通量的重要因素,厌氧条件能加速底泥氨氮的释放;SOC随温度和DO升高而增加。温度和DO对底泥硝化、反硝化速率影响均显著(p<0.05),硝化、反硝化速率随温度的升高而显著增加,其中硝化速率在DO为8mg/L时这一趋势更明显;随DO升高硝化速率增加明显,而低DO浓度更有利于反硝化作用。
     利用野外和室内条件下建立的小型实验生态系统研究和探讨了刺参生物干扰对底质的影响,并与可口革囊星虫(Phascolosoma esculenta)进行了比较。实验结果显示:刺参(幼参,体重1.6-7.2g/头)和星虫(约0.6-1.6g/尾)对底质表层有机质含量及稳定性影响显著,且影响效果随底质中有机质含量不同而不相同:当底泥中有机质含量较低时(野外试验),刺参的生物干扰使底泥表层显著增加了TON含量及降低了表层有机质的稳定性(p<0.05);当底质中有机质含量较高时(室内试验),刺参和星虫的生物干扰显著减少了底泥表层的TOC和TON含量(p<0.05)。刺参对深层底泥有机质含量影响不明显,而星虫对深层(6-8cm)底泥影响较大,星虫显著增加了深层底泥中有机质含量及降低了其稳定性(p<0.05),说明星虫作为“向下搬运者”作用明显。室内实验中,刺参放养高密度组底泥表层异养细菌数显著大于其他各组(p<0.05),说明刺参的生物干扰促进了底泥表层细菌的繁殖。
Sea cucumber, Apostichopus japonicus, has been becoming one of the most commercially important mariculture species in northern China in recent years. It is well known that sea cucumbers are deposit feeders, ingesting sediment to gain nutrients from organic matter, bacteria and protozoa, hence they are regarded as“environmental cleaners or scavengers”. However, no quantitative studies about the impacts of sea cucumber aquaculture on the pond sediments and on the nearby coastal waters are available so far. The objective of the present study is to assess the effects of different polyculture systems on the ponds sediments and to evaluate the potential environmental effects of sea cucumber farming on nearby coast.
     Sediment samples were collected from three seawater aquaculture ponds, and soil characteristics, sediment oxygen consumption (SOC), dissolved organic carbon (DOC) and nutrient fluxes were measured using chamber incubations at laboratory. The results show that: Total organic carbon (TOC) and total nitrogen (TN) contents in the dry sediment of the ponds were low. TOC, total carbon (TC) contents and SOC of the sediment in the pond polycultured with jellyfish increased with culture time, indicating that jellyfish farming enhanced the accumulation of organic matter in the sediments to some extent. Sediment showed net nitrate and ammonium uptake in most ponds and months. Dissolved inorganic phosphate (DIP) was released from the sediments in all ponds with low flux rates. The results suggested that non-artificial-feeding sea cucumber culture ponds could not only yield valuable seafood products, but also effectively remove nutrients from the aquaculture systems and consequently alleviate nutrient loadings of the nearby coast.
     Sediments were sampled from sea cucumber-scallop polyculture“Large pond”,“Sea area”and“Common sea cucumber ponds”during October 2007 to June 2008. And sediment-water fluxes of nutrients, benthic nitrification and denitrification rates were measured in laboratory. The results showed that: Contents of total organic carbon (TOC) in the sediment of scallop culture area (SC-area) in“Large pond”were significantly higher than those in the area without scallop (Non-SC-area) during scallop culture period (p<0.05). Sediment oxygen consumption (SOC) in SC-area during scallop culture period were significantly higher than those in Non-SC-area (p<0.05). Ammonia was released from sediment in SC-area and Non-SC-area of“Large pond”in all months. Rates of nitrification in the sediments of SC-area were higher than that of Son-SC-aea in“Large pond”. Rates of nitrification in“Sea area”and“Common sea cucumber pond”were lower. Rates of denitrification at all sampling sites were low. Denitrification rates in SC-area during scallop culture period and in April during“restoration period”were significantly higher than those in Non-SC-area (p<0.05). The results obtained from this study demonstrate that scallop aquaculture in“Large pond”may result in organic matter accumulation in the bottom, however, the sediments may be recovered from enrichment in short time (4-6 months); Common aquaculture model of sea cucumber would not lead to organic accumulation in the sediment both within the pond and nearby coast.
     Sediment samples were collected from in sea cucumber (Apostichopus japonicus) experimental enclosures with different cultural models from May to November in 2007, and sediment-water fluxes of oxygen, nitrogen and phosphorus were investigated using laboratory chamber incubations. Sediment oxygen cemand (SOC) in enclosures were not different significantly between feed model and unfed model (p>0.05), indicating that feeding did not lead to enriched sediments. Dissolved inorganic phosphate (DIP) was released from the sediments in most enclosures. The fluxes of DIP among months were significantly different (p<0.05). Fluxes of nitrate + nitrite (NO_3~-+ NO_2~-) in the enclosures with feeding models were two to three times higher than that with non-feed models. Fluxes of ammonium uptaken by sediments in the enclosures with feeding models were greater than that with non-feed models when sea cucumber density was high. The density of sea cucumber and feed model had signification effects on nitrification, denitrification and nitrate reduction rates of sediment. Rates of nitrification, denitrification and nitrate reduction of different models were much lower compared with other farming ponds and ranged from 0~106.20 mg·m~(-2)·d~(-1), 0~3.03μmol·m~(-2)·d~(-1)
     Effects of temperature and dissolved oxygen on the sediment-water interface nutrient fluxes in sea cucumber aquaculture ponds were studied using laboratory cultivation methods. The results showed that: Water temperature impacted nutrient fluxes in the pond sediment significantly (p<0.05). High temperature is conducive to the release of ammonia nitrogen from the sediment, but disadvantageous to release of nitrate in the sediment; Dissolved oxygen is an important factor to control the pond sediment nutrient change. The release of sediment ammonia nitrogen was accelerated in anaerobic conditions and decreased in anaerobic conditions; The sediment oxygen consumption increases with increasing temperature and dissolved oxygen; Nitrification and denitrification were affected by temperature and dissolved oxygen significantly (p<0.05). Both nitrification and denitrification increased with increasing temperature and nitrification increased more with an increase of temperature at the high content of dissolved oxygen (8mg/L). Nitrification increased with increasing dissolved oxygen and denitrification decreased with an increase of DO.
     Effects of bioturbation of sea cucumber, Apostichopus japonicus Selenka, on the pond bottom soil were studied and compared with that of Phascolosoma esculenta using mesocosms established in the field and laboratory. The results showed that: Bioturbation of sea cucumber (size, 1.6-7.2g ind~(-1)) and P. esculenta significantly affected the organic matter content and its stability in the surface layer of the bottom soil, and their effects varied with the contents of organic matter in the bottom soil. In the conditions with low organic matter contents in the bottom soil (field experiment), bioturbation of A. japonicus resulted in a significant increase of TON and decrease of stability of organic matter in the surface layer of the bottom soil (p<0.05). In the conditions with high organic matter contents in the bottom soil (laboratory experiment), bioturbation of A. japonicus and P. esculenta significantly reduced the contents of TOC and TON in the surface layer of the sediment. Effects of A. japonicus on the content of organic matter in the deep layer of the sediment were not visible, while effects of P. esculenta were larger. P. esculenta increased the content of organic matter in the deep layer and reduced the stability of sediment, which indicates P.esculenta serves as an“Downward-conveyors”in the experimental system. In the laboratory experiment, heterobacteria of the surface layer in the sediment in Treatment containing high density of A. japonicus were more than other Treatments and controls significantly, which demonstrated that bioturbaton of A. japonicus enhance the growth of bacteria.
引文
Acosta-Nassar M.V., Corredor J.E.. Nitrogen budgets of a tropical semi-intensive freshwater fish culture pond[J]. Journal of the World Aquaculture Society,1994,25:261-277.
    Aller R.C., Y. Yinst. Effects of the marine deposit feeders Polychaeta, Macoma balthica (Bivalvia) and Bivalvia on averaged sedimentary solute transport, reaction rates and microbial distributions[J]. Journal Marine Research,1985,43:615-645.
    Aller. R.C., James E.M., William J., et al. Early chemical digenesis sediment-water solute exchange and storage of reactive organic matter near the mouth of the Changjiang, East China Sea[J]. Continental Shelf Research, 1985,4(2):227-251.
    Antonio A.Mozeto, Pareicia F.Silverio, Aluisio Soares. Estimates of benthic fluxes of nutrients across the sediment-water interface (Guarpiranga reservoir, Sao Paulo, Brazil) [J].The Science of the Total Enviroment,2001,266:135-142.
    Barille L., Prou J., Heral M. et al. Effects of high natural season concentration on the feeding selection, and absorption of oyster Crassostrea gigas [J]. Journal Experiment Marine Biology Ecology,1997,212:149-172.
    Barnes J., Owens N.J.P.. Denitrification and nitrous oxide concentrations in the Humber Estuary, UK, and adjacent coastal zones[J]. Marine. Pollution.Bulletin,1998,37(3-7):247-260.
    Bayne B.L. The physiology of suspension feeding by bivalve molluses: an introduction to the Plymouth“TROPHEE”workshop[J]. Journal Experiment Marine Biology Ecology,1998, 219: 1-19.
    Baudo R et al. Sediments chemistry and toxicity of in-place pollutants[J]. Michigan: Lewis Publishes,1990,131-144.
    Berthelson C.R., Cathcart T.P., Pote J.W. In situ measurement of sediment oxygen demand in catfish ponds, Aquacultural Engineering,1996,15(4):261-271.
    Berelson W.M., D.Heggie, A Longmore et al. Benthic nutrient recycling in port Phillip Bay, Australia[J]. Estuarine Coastal Shelf Science, 1998,46:917-934..
    Beusekom J.E., Jonge V.N.D.. Retention of phosphorous and nitrogen in the Ems estuary[J]. Estuaries,1998,21:527-539.
    Blackburn T.H. Lund Bonte Aa and Krom M.D.,C and N mineralization in the sediment of earthern marine ponds[J]. Mar. Ecol. Prog. Ser.,1998,44:22 1-227.
    Blomquist ,Hak?nson. A review on sediment traps in aquatic environments[J]. Archive Hydrobiologia,1981, 91: 101-132.
    Bostrom B., Jansson M., Fleischer S., Exchange of phosphorus across the sediment-water interface[J]. Hydrobiologia,1988,170:229-244.
    Briggs M.R.P., Funge-Smith S.J., A nutrient budgets of some intensive marine shrimp culture ponds in Thailand[J]. Aquaculture and Fisheries Management. 1994,25:789-811.
    Cabrita M.T.,Brotas V.. Seasonal variation in denitrification and dissolved nitrogen fluxes in intertidal sediments of the Tagus Estuary, Portugal[J]. Marine Ecology Progress Series, 2000,202:51-65.
    Callender E., Hammond D.E.. Nitrogen exchange across the sediment water interface in the Potomac river estuary[J]. Estuarine Coastal Shelf Science,1982,15:395-413.
    Cartaxana P., Lloyd D., N2, N2O and O2 profiles in a Tagus Estuary salt marsh[J]. Estuarine Coastal and Shelf Science,1999,48(6):751-756.
    Cerco C.F. Measured and modeled effects of temperature, dissolved oxygen and nutrient concentration on sediment-water nutrient exchange[J]. Hydrobiologia, 1989, 174(3): 185-194.
    Corredor J.E., Morell.J.M., Inorganic nitrogen fluxes across the sediment-water interface in a tropical lagoon[J]. Estuarine Coastal Shelf Science.1989,25:339-345.
    Cowan J.L., Walter R., Boynton. Sediment-water oxygen and nutrient exchange along the longitudinal axis of Chesapeake Bay: seasonal pattern, controlling factors and ecological significance[J]. Estuaries,1996,19:562-580.
    Daniels H.V., Boyd C.E., Chemical budget of polyethylenelined, brackish water ponds[J]. Jour of World Aquacultural Society ,1994,20(2):53-60.
    Do-Hee Kim,Osamu Matsuda, et al. Nitrification, Denitrificatlon and Nitrate Rates in the Sediment of Hiroshima Bay [J]. Journal of Oceanography,1997,53:317-324.
    Dong L.F., Thornton D.C.O., Nedwell D.B.et al. Denitrification in sediments of the river Colne Estuary, England [J]. Marine Ecology Progress Series,2000,203:109-122.
    Dorota M.B., Halina P.J. Seasonal variability of benthic ammonium release in the surface sediments of the gulf of Gdansk(southern Baltic Sea)[J]. Oceanilogia.,2001,43:113-136.
    Florence Vocuve,Gerade Gulraud., Vhristine Marol. NH4+ turnover in intertidal sediments of Marennes-Oleron(France): Effect of sediment temperature[J]. Oceanological Acta, 1998,23:575-548.
    Friedl G, Dinkel G, Wehrli B, Benthic fluxes of nutrients in the northwestern Black Sea[J], Marine Chemistry,1998,62:77-88.
    Funge S., Briggs M. R. P. Nutrient budgets in intensive shrimp ponds: implications for sustainability[J]. Aquaculture,1998,164(18):117-133.
    Gilbert E., Stora G., Bonin P., Influence of bioturbation on denitrification activity in Mediterranean coastal sediments: an in situ experiment approach[J]. Marine Ecology Progress Series,1998,163:99-107.
    Gran V.,Pitknen H. Denitrification in estuarine sediments in the eastern Gulf of Finland, Baltic Sea[J].Hydrobiologia,1999,393(1):107-115.
    Green B W. Chemical budgets for organically fertilized fish ponds in the dry tropics[J]. Journal of the world Aquaculture Society.1995,26(3):284-296.
    Hall P.O.J., Hulth S., Hulth G., et al. Benthic nutrient fluxes on a basin-wide scale in the Skagerrak[J]. Journal of Sea Research,1996,35:123-137.
    Hammond D.E., J.Mcmanus, W.M.Berelson, et al. Early digenesis of organic material in equatorial Pacific sediments: stoichiometry and kinetics[J]. Limnological Oceanographer, 1996, 43(4):1365-1412.
    Hammond D.E., Fuller C., Harmon D.Benthic flux in San Francisco Bay[J]. Hydrobiologia, 1985,129:69-90.
    Haven D S, Morales-Alamo R. Biodeposition as a factor in sedimentation of fine suspended solids in estuaries.GeoMgical Society of American ,1972,133:121-130.
    Hargreaves J A, Nitrogen biogeochemistry of aquaculuture pond sediments [D]. The school of forestry, wildlife and fisheries, Louisiana State University. 1995.
    Heiskanen A.S., Haaphla J., Gundersen K.. Sedimentation and pelagic retention of particulate C, Nand P in the coastal northern Baltic Sea[J], Estuarine Coastal and Shelf Science, 1998,46:703-712.
    Henrikson K, Kemp W M, Nitrification in estuarine and coatal marine sediments. Pages 207-249 in Blackbum T H , S?rensen J editors. Nitrogen cycling in coastal marine environments. John Wiley and Sons. Let., London. 1981.
    Herbert R.A. Nitrogen cycling in coastal marine ecosystem[J]. FEMS Microbiology Review, 1999,23:563-590.
    Hopkin J.S., Hsmilton R.D., Sandifer P.A. et al. Effects of water exchange rate on production, water quality, effluent characteristics and N budgets of intensive shrimp culture ponds[J]. Journal of World Aquaculture Society.1993,24(3):304-320.
    Ishaq M., Kaul V., Phosphorus budgets for Dal, a Himalayan lake, Int.Revue.Ges[J]. Hydrobiologia.,1990,75(1):59-69.
    Istvanovics V., Herodek S., Szilagyi F.. Phosphate adsorption by different sediment fractions in lake Balaton and its protecting reservoirs[J]. Water Research,1989,23(11):1357-1366.
    Jackson C , Preston N , Thompson P , et al. Nitrogen budget and effluent nitrogen components at an intensive shrimp farm [J] . Aquaculture , 2003 , 218: 397-411.
    James A. Steeby Factors affecting sediment oxygen demand in commercial channel catfish ponds [J],Journal of the world aquaculture society ,2004,35(3):322-334.
    Jaramillo E., Bertran C., Bravo A. Mussel biodeposition in an estuary in southern Chile[J]. Marine Ecology Progress Series,1992,82:85-94.
    Jensen H.S., Mcglathery K.J., Marino R. et al. Forms and availability of sediment phosphorus in carbonate sand of Bermuda seagarss bed[J]. Limnological Oceanographer, 1998,43(5):799-810.
    Jensen M.H., Lomstein E., Sorensen J.. Benthic NH4+ and NO3- flux following sedimentation of a spring phytoplankton bloom in Aarhus Bight, Denmark[J]. Marine Ecology Progress Series, 1990,61:87-96.
    Joye M.B., Smith S.V., Hollibaugh J.T.et al. Estimating denitrification rates in estuarine sediments: A comparison of stoichiometric and acetylene based methods[J]. Biogeochemistry, 1996,33: 197-215.
    Jordan M.B. Seasonal variation in nitrate: phosphate ratios in the English channel 1923-1987[J].Estuarine Coastal Shelf Science, 1998,46:157-164.
    Kaspar H.F., Gillespie P.A., Boyer I.C. et al. Effects of mussel aquaculture on the nitrogen cycle and benthic communities in Kenepru Sounds. New Zealand[J], Marine Biology,1985,(85): 127-136.
    Kemp W.M., Sampou P.A., Boyton W.R.. Seasonal depletion of oxygen from bottom waters of Chesapeake Bay: role of benthic and planktonic respiration and physical exchange processes[J]. Marine Ecology Progress Series,1992,85:137-152.
    Kuenene G. J. et al. combined nirification-denitrification process[J], FEMS Microbiology Review,15,1994, 109-117.
    Leacher M., Avnimolech Y. A tentative nutrient balance for intensive fishponds[J]. Bamidgeh, 1979,31:1-8.
    Lerat Y., Lasserre P., Corre P.. Seasonal changes in pore water concentration of nutrients and their diffusive fluxes at the sediment-water interface[J]. Journal Experiment Marine Biology Ecology, 1990,135:135-160.
    Martens C.S., Rosenfeld J.K. Intertitial water chemistry of anoxic long island sound sediments[J]. Limnological Oceanographer.1978,23:605-617.
    Middelburg J.J., Soetaert K., Herman P.M.J., et al. Denitrification in marine sediments: A model study[J]. Global Biogeochemical Cycles,1996,10:661-673.
    Nedwell D.B., Jickells T.D., Sanders R. Nutrients in Estuaries[J]. Advances in Ecological Research, 1999,29:43-92.
    Ogilvie B.G., Nedwell D.B.,Sage A.S. et al. High nitrate, muddy estuaries as nitrogen sinks: the nitrogen budgets of the River Colne estuary[J]. Marine Ecology Progress Series,1997,150: 217-228.
    Raymond N.P., Bonin N., Bertand J.. Comparison of methods for measuring denitrification activity in marine sediments from the western Mediterranean coast[J]. Oceanologica Acta,1992, 15(2): 137-143.
    Reddy K R, Patrick W H, Nitrogen transformations and loss in flooded soil and sediment[J]. CRC Critical Reviews in Environmental Control, 1984, 13:373-307.
    Revsbech N P, Sorensen J, Blackhurn T H, Distribution of oxygen in marine sediments measured withmicroelectrodes[J]. Limnology and Oceanography 1980 , 25, 403–411.
    Roose N., Riise J.C.. Benthic metabolism and the effect of bioturbation in a fertilized polyculture fish pond in northeast Thailand[J]. Aquaculture,1997,150:46-52.
    Rysgaard S., Thastum P., Dalsgaard t.et al. Effects of salinity on NH4+ adsorption capacuity, nitrification, and denitrification in Danish Estuarine sediments[J]. Estuaries,1999,22(1):21-30.
    Sakadevan K. Impact of heavy metals on denitrification in surface wetland sediments receiving wastewater[J]. Water Science Technology,1999,40(3):349-355.
    Schroeder L. The dominance of algal-based food webs in fish ponds receiving chemical fertilizers plus organic manures[J]. Aquaculture,1990,86:219-229.
    Schroedel P.S. C and N budgets in manured fish ponds on Isrel’s coastal plain[J]. Aquaculture, 1994,62:259-279.
    Seiki T., Hirofumi I., Etsuji D.. Benthic nutrient remineraliztion and oxygen consumption in the coastal area of Hiroshima Bay[J]. Water Research,1989,23(2):219-228.
    Sertzinger S. P., Nielsen L.P., Christensen. Denitrification measurements in aquatic sediments: A comparison of three methods[J]. Biogenchemistry,1993,3(3):147-167.
    Seitzinger S.P., Giblin A.E.. Estimating denitrification in North Atlantic continental shelf sediments[J]. Biogeochemistry,1996,35:235-260.
    Seitzinger S.P.. Denitrification in freshwater and coastal ecosystem; ecological and geochemical significance[J]. Limnological Oceanographer,1988,44(4):702-724.
    Sun Yao, Chen Ju Fa, Yin Li et al. In-situ determination of sediment oxygen demand in cultivation ponds, Chinese Journal of Oceanology and Limnology,2000,18(2):157-161.
    Sundby B.C., Gobeil N., Silverberg N. et al. The phosphorus cycle in costal marine sediments[J]. Limnological Oceanographer.1992,37:1129-1145.
    Tanaka T.,Guo.L.D., Deal C.et al. N deficiency in a well-oxygenated cold bottom water over the Bering Sea shelf: Influence of sedimentary denitrification[J]. Continental Shelf Reaearch, 2004,24:1271-1283.
    Tuominen M., Heinanen A., Nielsen L P. Spatial and temporal variability of denitrification in the sediments of the northern Baltic Proper[J]. Marine Ecology Progress Series, 1998,163:109-124.
    Uthicke.S., Nutrient regeneration by abundant coral reef holothurians[J]. Journal Experiment Marine Biology Ecology,2001,265:153-170.
    Van Raaphorst, Kloosterhuis H.T.. Phosphate sorption in superficial intertidal sediments[J]. Marine Chemisty,1994,48:1-16.
    曹文卿,刘素美.海洋沉积物中硝化和反硝化过程研究进展[J].海洋科学进展,2006,24(2):259-264.
    常杰,田相利.对虾、青蛤和江蓠混养系统氮磷收支的实验研究[J].中国海洋大学学报,2006,36(5)33-39.
    董双林,潘克厚,Brockmann.海水养殖对沿岸生态环境影响的研究进展[J].中国海洋大学学报[J]. 2000, 30(4): 575-582.
    郭劳动,洪华生,庄继浩.闽东罗源湾沉积物—水界面磷、硅的交换[J].热带海洋,1989,8(3):60-67.
    何清溪,张穗,方正信,等.大亚湾沉积物中氮和磷的地球化学形态分配特征[J].热带海洋,1992,11(2):38-44.
    胡佶,张传松,王修林,等.东海春季赤潮前后沉积物—海水界面营养盐交换速率的研究[J].环境科学,2007,28(7):1442-1446.
    蒋增杰、崔毅、陈碧鹃.唐岛湾网箱养殖区沉积物—水界面溶解无机氮的扩散通量[J].环境科学,2007,28(5):1001-1004.
    金相灿,王圣瑞,庞燕.太湖沉积物磷形态及pH值对磷释放的影响[J].中国环境科学,2004,24(6):707-711.
    刘培芳,陈振楼,刘杰.盐度和pH对崇明东滩沉积物中氨氮释放的影响研究[J],上海环境科学,2002,21(5):271-273.
    刘素美,张经,于志刚,等.渤海莱州湾沉积物—水界面溶解无机氮的扩散通量[J],环境科学,1999,20(2):12-16.
    刘石林,杨红生,周毅,等.刺参对筏式养殖海区生物消除作用的模拟研究[J],海洋科学,2006,20(12):21-24.
    吕莹,陈繁荣,杨永强,等.春季珠江口内营养盐剖面分布和沉积物—水界面交换通量的研究[J].地球与环境,2006,34(4):1-6.
    潘建明,周怀阳,张美,等.夏季珠江口沉积物中营养盐剖面分布和界面交换通量[J],海洋学报,2002,24(3):52-59.
    戚晓红,刘素美,张经.东、黄海沉积物—水界面营养盐交换速率的研究[J],海洋科学,2006,30(3):9-15.
    齐振雄,张曼平,李德尚.对虾养殖实验围隔中的解氮作用氮输出[J].海洋学报,1999,21(6):130-133.
    石峰.营养盐在东海沉积物—海水界面交换速率和交换通量的研究[D].青岛:中国海洋大学,2003.
    宋金明.中国近海沉积物—海水界面化学[M].北京:海洋出版社,1997,166-170.
    宋金明,李鹏程.南沙群岛海域沉积物—海水界面营养物质的扩散通量[J],海洋科学,1996,5:43-50.
    孙耀.丁字湾沉积物间隙水N、P营养盐的分布及其在沉积物—水界面的扩散通量研究[J].海洋水产研究,1993,14:105-111.
    孙耀,崔毅,李健,等.虾塘沉积物—水界面营养盐扩散通量及其在个繁殖季节的变化[J],海洋水产研究,1997,18(1):60-66.
    王东启,陈振楼,王军,等.夏季长江口潮间带反硝化作用和N2O的排放与吸收[J].地球化学,2006,35(3):271-279.
    王少梅..武汉东湖沉积物N、P、释放实验[J].水生生物学报,1991,15(4):390-397.
    吴耀国.地下水中反硝化作用[J].环境污染治理技术与设备,2002,3(3):27-31.
    徐继荣,王友绍,孙松.海岸带地区的固氮、氨化、硝化与反硝化特征[J].生态学报,2004,24(12):2907-2914.
    徐继荣,王友绍,殷建平,等.珠江口入海河段DIN形态转化与硝化和反硝化作用[J].环境科学学报,2005,25(5):686-692.
    徐继荣,王友绍,王清吉,等.大亚湾海域沉积物中的硝化与反硝化作用[J].海洋与湖沼,2007,38(3):206-211.
    薛清儒.我国海参技术养殖发展状况和存在的问题[J].齐鲁渔业, 2007,24(11):14-16.
    杨红生,周毅,王健,等.烟台四十里湾栉孔扇贝、海带和刺参负荷力的模拟测定[J],中国水产科学,2001,7(4):27-31.
    杨红生,王健,周毅,等.烟台浅海区不同养殖系统养殖效果的比较[J].水产学报,2000,24(2):140-145.
    杨红生,周毅.滤食性贝类养殖海区环境影响的研究进展[J].海洋科学,1998,(2):42-44.
    周毅,杨红生,张福绥.海水双壳贝类的生物沉积及其生态效应[J].海洋科学,2003,27(2):23-27.
    周毅,杨红生,张福绥.海水双壳贝类的N、P排泄及其生态效应[J].中国水产科学,2003,10(2):165-169.
    Acosta-Nassar M V, Morell J M, Corredor J E. Nitrogen budgets of a tropical semi-intensive freshwater fish culture pond[J]. World. Aquac. Soc. 1994, 25, 261-227
    Aller R C, Aller J Y. The effect of biogenic irrigation intensity and solute exchange on diagenetic reaction rates in marine sediments[J]. Mar. Res, 1998,56, 905–936
    Aller R C, Yinst J Y. Effects of the marine deposit-feeders Heteromastus filiformis (Polychaeta), Macoma balthica (Bivalvia), and Tellina texana (Bivalvia) on averaged sedimentary solute transport, reaction rates, and microbial distributions [J]. Mar Res, 1985, 43: 615-645
    Aller R C. The effects of macrobenthos on chemical properties of marine sediment and overlying water. In:McCall, P.L., Tevessz,M.J.S.(Eds.), Animal-Sediment Relations. P. Press, New York, 1982,pp. 53–102
    Alongi D M , Tirendi F, Trott L A. Rates and pathways of benthic mineralization in extensive shrimp ponds of the Mekong delta, Vietnam[J]. Aquaculture 1999, 175, 269-292
    Alongi D M, Johnston D J, Xuan T T.Carbon and nitrogen budgets in shrimp ponds of extensive mixed shrimp-mangrove forestry farms in the Mekong delta, Vietnam[J]. Aquac. Res. 2000,31, 387-399
    Alongi D M,Tirendi F,Dixon Petal. Mineralization of organic matter in niter tidal sediments of tropical semi-enclosed delta. Estuarine[J]. Coastal and Shelf Science,1999,48:451-467
    APHA. AWWA.WPCF, Standard Method for the Examination of Water and Wastewater, Washington DC 1980, 370-373
    Bakus G J. Defensive mechanisms and ecology of some tropical holothurians[J]. Mar.Biol,1968,2:23-32
    Bell J D, Agudo N N, Purcell S W, Blazer P, et al., Grow-out of sandfish Holothuria scabra in ponds shows that co-culture with shrimp Litopenaeus stylirostris is not viable[J]. Aquaculture 2007, 273, 509-519.
    Berthelson C R, Cathcart T P, Pote J W. In situ measurement of sediment oxygen demand in catfish ponds [J]. Aquac Eng, 1996, 15(4): 261-271
    Blackburn T H, Lund Bonte A, Krom M D. C and N mineralization in the sediment of earthen marine ponds [J]. Mar Ecol Prog Ser, 1998, 44: 221-227
    Blomquist S, Hak?nson L. A review on sediment traps in aquatic environments[J]. Arch. Hydrobiol. 1981, 91, 101-132
    Boudreau B P. Mathematics of tracer mixing in sediment:I. Spatially-dependent, diffusive mixing. II: Non local mixing and biological conveyor-belt phenomena[J]. Am. J. Sci,1986, 286, 161–238.
    Boyd C E , Romaire R P. Predicting early morning dissolved oxgen concentrations in channel catfish ponds[J]. Trans. Am. Microsc. Soc. 1978, 107, 484-492
    Boyd C E. Bottom soils, sediment and pond aquaculture [M]. New York: Chapman & Hall, 1995: 340
    Burdige D, Homstead J. Fluxes of dissolved organic carbon from Cheseapeake Bay sediments[J]. Geochim. Cosmochim. Acta 1994, 58, 3407-3424
    Cerco C F. Measured and modeled effects of temperature, dissolved oxygen and nutrient concentration on sediment-water nutrient exchange[J]. Hydrobiologia,1989,174(3);185-194
    Chen J X.Present status and prospects of sea cucumber industry in China. In: A. Lovatelli, C. Conand, S. Purcell, S. Uthicke, J.F. Hamel, A. Mercier, (Eds.), Advances in sea cucumber aquaculture and management, 463. FAO, Rome 2004, pp. 25-38
    Cowan J L W, Pennock J R, Boynton W R. Seasonal and interannual patterns of sediment-water nutrient and oxygen fluxes in Mobile Bay, Alabama (USA): Regulation factors and ecological significance [J]. Mar Ecol Prog Ser,1996, 141: 229-245
    Daniel H V, Boyd C E. Chemical budgets for polyethylene-lined, brackish water ponds[J]. World. Aquac. Soc. 1989, 20, 53-60
    Dedieu K, Rabouille C, Gilbert F, Soetaert K, et al., Coupling of carbon, nitrogen and oxygen cycles in sediments from a Mediterranean lagoon: a seasonal perspective[J]. Mar. Ecol. Prog. Ser. 2007, 346, 45-59
    Do-Hee Kim,Osamu Matsuda, et al. Nitrification, Denitrificatlon and Nitrate Rates in the Sediment of Hiroshima Bay [J]. Journal of Oceanography,1997,53:317-324
    Dorota M B, Halina P J. Seasonal variability of benthic ammonium release in the surface sediments of the gulf of Gdansk (southern Baltic Sea) [J]. Oceanologia, 2001, 43: 113-136
    Edwards P.Environmental issues in integrated agriculture-aquaculture and wastewater-fed fish culture systems. In: Environment and Aquaculture in Developing Countries. R.S.V. Pullin, H. Rosenthal, J.L. Maclean, Editors, ICLARM Conf. Proc. 1993, 31, 139-170
    Fenchel T. Worm burrows and oxic microniches in marine sediments: 2. Distribution patterns of ciliated protozoa[J]. Mar. Biol, 1996,127, 297–301.
    Fisher J B , Lick W L , Mc Call P L , Robbins J A. Vertical mixing of lake sediments by tubicids ologochaetes[J]. Geophys.Res. 1980,85, 3997–4006.
    Florence Vocuve,Gerade Gulraud, Vhristine Marol. NH4+ turnover in intertidal sediments of Marennes-Oleron(France): Effect of sediment temperature[J]. Oceanological Acta, 1998,23:575-548
    Gao Q F, Shin P K S, Lin G H,Chen S P, et al., Stable isotope and fatty acid evidence for uptake of organic waste by green-lipped mussels Perna viridis in a polyculture fish farm system[J]. Mar. Ecol. Prog. Ser. 2006, 317, 273-283
    Gao Q F, Xu W Z,Liu X S, Cheung S G,et al., Seasonal changes in C, N and P budgets of green-lipped mussels Perna viridis and removal of nutrients from fish farming in Hong Kong[J]. Mar. Ecol. Prog. Ser. 2008, 353, 137-146
    Gao Q F,. Cheung K L, Cheung S G, Shin P K S. Effects of nutrient enrichment derived from fishfarming activities on macroinvertebrate assemblages in a subtropical region of Hong Kong[J]. Mar. Pollut. Bull. 2005, 51, 994-1002
    Gilbert E, Stora G, Bonin P. Influence of bioturbation on denitrification activity in Mediterranean coastal sediments: an in situ experiment approach[J]. Marine Ecology Progress Series,1998,163:99-107
    Giles H, Pilditch C A. Effects of mussel (Perna canaliculus) biodeposit decomposition on benthic respiration and nutrient fluxes[J]. Mar. Biol. 2006, 150, 261-271
    Haamer J.Improving water quality in a eutrophied fjuord systemwith mussel farming[J] Amblo,1996,25, 356-362
    Hall P O J, Anderson L G, Holby O, Kollberg S, et al., Chemical fluxes and mass balances in a marine fish cage farm. I. Carbon[J]. Mar. Ecol. Prog. Ser. 1990, 61, 61-73
    Hall P O J, Holby O, Kollberg S, Samuelsson M. Chemical fluxes and mass balances in a marine fish cage farm IV: Nitrogen[J]. Mar. Ecol. Prog. Ser. 1992, 89, 81-91
    Henrikson K, Kemp W M. Nitrification in estuarine and coatal marine sediments. Pages 207-249 in T.H.Blackbum and J.S?rensen, editors. Nitrogen cycling in coastal marine environments[M]. John Wiley and Sons. Let., London. 1981
    Holby O, Hall P O J.Chemical fluxes and mass balances in a marine fish cage farm II: Phosphorus[J]. Mar. Ecol. Prog. Ser. 1991, 70, 263-272
    Holmer M, Anna C H.Distribution and bioturbation effects of the tropical alpheid shrimp alpheus macellarius in sediments impacted by milkfish farming[J]. Estuarine Coastal Shelf Science,2007,7:1-11
    Holmer M, MarbáN, Terrados J, et al. Impacts of milkfish (Chanos chanos) aquaculture on carbon and nutrient fluxes in the Bolinao area, Philippines[J]. Mar Pollut Bull, 2002, 44: 685-696
    Hopkins J S, Hamilton R D, Sandifer P A , Browdy C L, et al., Effect of water exchange rate on production, water quality, effluent characteristics and nitrogen budgets of intensive shrimp ponds[J].World. Aquac. Soc. 1993, 24, 304-320
    Hulth S , A R C , Canfield D E, Dalsgaard T, Engstrom P, Gilbert F, Sundback K, Thamdrup B. Nitrogen removal in marine environments: recent findings and future research challenges[J]. Mar. Chem, 2005, 94 (1-4), 125–145
    Hung J-J, Hung P-Y. Carbon and nutrient dynamics in a hypertrophic lagoon in southwestern Taiwan[J]. Mar. Syst. 2003, 42, 97-114
    Jiang Z J, Cui Y, Chen B J. Diffusive fluxes of dissolved inorganic nitrogen across sediment-w ater interface in net-cage culture area of Tangdao Bay. Environ. Sci. 2007, 28, 1001-1005 (in Chinese with English abstract)
    Kaspar H F,Gilles P A, Boyer I C, et al. Effects of mussel aquaculture on the nitrogen cycle and benthic communities in Kenepuru Sound, Marlborough Sound,New Zealand[J]. Mar. Bio.1988,85:127-136
    Koroleff F. Determination of nutrients. In: K. Grasshof, M. Ehrhardt, K. Kremling, (Eds.), Methodsof Seawater Analysis. Verlag Chemie, Weinheim, New York 1983, 125-139
    Lefebvre S, Bacher C, Meuret A, Hussenot J. Modeling approach of nitrogen and phosphorus exchanges at the sediment–water interface of an intensive fishpond system[J]. Aquaculture 2001, 195, 279-297
    Lefebvre S, Bacher C,Meuret A, et al. Modeling approach of nitrogen and phosphorus exchanges at the sediment-water interface of an intensive fishpond system [J]. Aquaculture, 2001, 195: 279-297
    Madenjian C P.Patterns of oxygen production and consumption in intensively managed marine shrimp ponds[J]. Aquac. Fish. Manage. 1990, 21, 407-417
    Massin C. Effects of feeding on the environment:Holothuroidea.in Echinoderm Nutrition, M. Jangoux, & J. M. Lawrence,(Eds). 1982a,pp,493-497
    Massin C. Food and feeding mechanisms:Holothuroidea.In:Echinoderm Nutrition, M. Jangoux, &J. M. Lawrence, (Eds). 1982b,pp,43-53
    Masuda K, Boyd C E.Chemistry of sediment pore water in aquaculture ponds built on clayey Ultisols at Auburn, Alabama[J]. World. Aquac. Soc. 1994, 25, 396-404
    Michaud E, Desrosiers G, Mermillod-Blondin F, Sundby B, et al.. The functional group approach to bioturbation: II. The effects of the Macoma balthica community on fluxes of nutrients and dissolved organic carbon across the sediment–water interface[J]. Exp. Mar. Biol. Ecol. 2006, 337, 178-189
    Michaud E, Desrosiers G, Mermillod-Blondin F, Sundby B,Stora G. The functional group approach to bioturbation:The effects of biodiffusers and gallery-diffusers of the Macoma balthica community on sediment oxygen uptake[J]. Exp. Mar. Biol. Ecol, 2005,326, 77–88
    Mortimer R J G, Davey J T, Krom M D, et al. The Effect of Macrofauna on Porewater Profiles and Nutrient Fluxes in the Intertidal Zone of the Humber Estuary [J]. Est Coast Shelf Sci, 1999, 48, 683-699
    Mosher C. Distribution of Holothuria arenicola Semper(Echinoderata:Holothuroidea)in the Bahamas with observations on habitat,behavior andfeeding activity[J]. Bull. Mar. Sci, 1980, 30:1-12
    Mudroch A , Azcue J M , Mudroch P. Manual of Physicochemical Analysis of Aquatic Sediments. CRC Press Inc., Boca Raton 1997
    Myers A C. Sediment processing in a marine subtidal sandy bottom community:Ⅰ.Physical aspects[J]. Mar.Res,1977a,35:609-632
    Myers A C. Sediment processing in a marine subtidal sandy bottom community:Ⅱ. Biological consequences[J]. Mar.Res, 1977b,35:633-647
    Nancy Lopez, Carlos M Duarte, Ferran Vallespino. The effect of nutrient additions on bacterial activity in sea grass sediment[J]. Journal of Experiment Marine Biology and Ecology,1998,224:155-166
    Nickell L A , Black K D, Hughes D J, Overnell J, et al., Bioturbation, sediment fluxes and benthic community structure around a salmon cage farm in Loch Creran, Scotland.[J]. Exp. Mar. Biol.Ecol. 2003, 285-286, 221-233
    Officer C B,Smayda T J, Mann R.Benthic filter feeding:a natural eutrophication contro1[J]. Mar. Ecol. Prog. Ser,1982,9:203-210
    Olah J, Sinha V R P, S.Ayyappan D S. Purushothaman, Radheyshyam S. Sediment oxygen consumtion in tropical undrainable fish ponds. Int. Reven ges[J]. Hydrobiol. 1987, 72: 297-305
    Paavolainen L, Kitunen V, Smolander A. Inhibition of nitrification in forest soil by monoterpenes[J]. Plant Soil,1998,205:147-154
    Powell E N. Particle size selection and sediment reworking in a funnel-feeder,Leptosynapta tenuis(Holothuroidea:Synaptidae).Int.Rev.Ges.Hydrobiol,1977,62:485-508
    Qi Z X, Zhang M P, Li D S, Dong S L. Denitrification as a nitrogen output in experimental shrimp culture enclosures[J]. Acta. Oceanol. Sin. 1999, 21, 130-133
    Reddy K R, Patrick W H. Nitrogen transformations and loss in flooded soil and sediment[J]. CRC Critical Reviews in Environmental Control, 1984, 13:373-307
    Rhoads D C&Young D K. Animal sediment relations in Cape Cod Bay,MassachusettsⅡ. Reworking by Molpadia oolotica(Holothuroidea) [J].Mar.Biol, 1971.,11:255-261
    Rhoads D C&Young D K. The influence of deposit-feeding organisms on sediment stability and community tropical structure[J].Mar.Res, 1970,28:150-175
    Rhoads D C. Organism-sediment relations on the muddy sea floor[J]. Oceanogr. Mar. Biol. Ann. Rev,1974,12, 263–300
    Riise J C , Roos N. Benthic metabolism and the effects of bioturbation in a fertilised polyculture fish pond in northeast Thailand[J]. Aquaculture 1997, 150, 45-62
    Rodhouse P G, Roden C M, Carbon budget for a coastal inlet in relation to intensive cultivation of suspension-feeding bivalve molluscs[J]. Mar.Ecol.Prog.Ser,1987,36,225-236
    Rysgaard S R, Christensen P B, Nielsen L P. Seasonal variation in nitrification and denitrification in estuarine sediments colonized by benthic microalgae and bioturbating infauna[J]. Mar. Ecol. Prog. Ser. 1995, 126, 111-126
    Smith J N, Boudreau B P, Noshkin V. Plutonium and 210Pb distributions in Northeast Atlantic sediments subsurface anomalies caused by non local mixing[J]. Earth Planet. Sci. Lett, 1986, 28 (1), 15–28.
    Steeby J A. Factors affecting sediment oxygen demand in commercial channel catfish ponds [J]. J World Aquac Soc, 2004, 35(3): 322-334
    Strauss E A, Lamberti G A. Regulation of nitrification in aquatic sediment by organic carbon[J]. Limnoloy and Oceanography, 2000, 45(8):1854-1859
    Sun Y, Cui Y, Yang Q, et al., Diffusion flux of nutrient salts between sediment and waters in shrimp pond and its seasonal change[J]. Mar.Fish. Res. 1997, 18, 60-66. (in Chinese with English abstract)
    Sun Y, Torgersen T. Adsorption-desorption reactions and bioturbation transport of 224Ra in marine sediments: a onedimensional model with applications[J]. Mar. Chem, 2001, 74, 227–243
    Tanaka T, Guol D, Deal C, et al. N deficiency in a well-oxygenated cold bottom water over the Bering Sea shelf: Influence of sedimentary denitrification[J]. Continental Shelf Research, 2004, 24:1271-1283
    Thayer C W. Biological bulldozers and the evolution of marine benthic communities. Science[J], 1979, 203, 458–461
    Tomaszek J A, Czerwieniec E. In situ chamber denitrification measurements in reservoir sediments: An example from southeast Poland[J]. Ecological Engineering, 2000,16:61-71
    Tucker C S, van der Ploeg M. Seasonal changes in water quality in commercial channel catfish ponds in Mississippi[J]. Journal of the world aquaculture society, 1993, 24:180-191
    Wang J L, Yang N. Partial nitrification under limited dissolved oxygen conditions[J]. Process Biochemistry,2004,3(9):1223-1229
    Wang X P, Guo F, Huang D J.Nutrient fluxes in sediment-water interface in marine culture area of Daya Bay and its environmental significance[J]. Mar. Environ. Sci. 2008, 27, 6-12 (in Chinese with English abstract)
    Wotton R S, Malmqvist B. Feces in aquatic ecosystems[J]. BioScience 2001, 51, 537-544
    Xia X H, Yang Z F,Huang G H, et al. Nitrification in natural waters with high suspended-solid content-A study for the Yellow River[J]. Chemosphere, 2004,57:1017-1029
    Xiao P H, Tan F Y, Zhang S S, Yu L H.Feed of jellyfish and its effect on seacucumber aquaculture. Shangdong Fish. 2007, 24, 36-38 (in Chinese)
    Yang H, Wang J, Zhou Y, Zhang T, et al., Comparison of efficiencies of different culture systems in the shallow sea along Yantai[J]. Fish. China 2000a, 24, 140-145 (in Chinese with English abstract)
    Yang H, Zhou Y, Wang J, Zhang T, et al., A modelling estimation of carrying capacities for Chlamys farreri, Laminaria japonica and Apostichopus japonicus in Sishiliwan Bay, Yantai[J], China. J. Fish. Sci. China 2000b, 7, 27-31 (in Chinese with English abstract)
    Yin S X, Cheng L M, Shen Q R. Denitrification and nitrate reduction to ammonium in Taihu Lake and Yellow Sea inter-tidal marine sediments[J]. Pedosphere,1999,9(4): 305-309
    Zar J H.Biostatistical analysis, Fourth ed. Prentice-Hall, New Jersey 1999
    Ziemann D A, , Walsh W A, Saphore E D, Fulton-Bennett K. A survey of water quality characteristics of effluent from Hawaiin a quaculture facilities[J]. Journal of the world aquaculture society, 1992, 23:180-191
    邓华健.渤海湾沉积物-水界面营养盐交换通量的研究[D].天津:天津大学, 2004
    董双林,潘克厚, Brockmann.海水养殖对沿岸生态环境影响的研究进展[J].中国海洋大学学报, 2000, 30(4): 575-582
    董双林,2003.干旱及内陆盐碱地区的水产养殖可持续发展的战略和选择.《世界水产养殖科技大趋势—2002年世界水产养殖大会论文交流综述》,pp.21-25,中国水产学会编。海洋出版社,北京
    董双林,王继业,潘可厚,沙颖文.水产养殖生态学. 2001, pp. 158-166,海洋出版社,北京
    范成新,相崎守弘,福岛武彦,等.霞浦湖沉积物需氧速率的研究[J].海洋与湖沼,1998,29(5):508-512
    甘居利,林钦,黄洪辉,等.大鹏澳网箱养殖海域海水溶解氧浓度影响因素分析[J].海洋环境科学, 2004, 23 (3): 1-3
    胡玲珍.长江口潮滩氮、磷的潮汐循环与反硝化作用研究[D].华东师范大学.2004
    扈传昱,王正方,吕海燕.海洋和海洋沉积物中总磷的测定[J].海洋环境科学, 1999, 18(3): 48-52
    黄福勇,丁理发,竺俊全,可口革囊星虫的生物学特性与养殖技术[J].齐鲁渔业,2004,21(7):11-12.
    雷衍之,朴文豪,白禄君,等.养鱼池底泥耗氧速率的研究[J].大连水产学院学报, 1992, 6(3): 6-13
    雷衍之,朴文豪,白禄君,等.养鱼池底泥耗氧速率的研究[J].大连水产学院学报, 1992, 6(3): 6-13
    雷衍之.养殖水环境化学实验[M].北京:中国农业出版社, 2006
    黎颖治,夏北成,谢小茜,等.沉积物—水界面磷交换模拟研究中环境因子的动态规律分析[J].中山大学学报(自然科学版),2007,46(3):117-121
    黎颖治,夏北成.湖泊沉积物内部因素对沉积物—水界面磷交换的影响[J].土壤通报, 2006, 37(5): 1017-1021
    黎颖治,夏北成.影响湖泊沉积物-水界面磷交换的重要环境因子分析[J].土壤通报,2007,38(1):162-165
    李德尚,杨红生,王吉桥.一种池塘陆基实验围隔[J].青岛海洋大学学报, 1998, 28(2): 199-204
    廖玉麟.中国动物志[M].北京:科学出版社, 1997: 334
    刘培芳,陈振楼,刘杰.盐度和pH对崇明东滩沉积物中氨氮释放的影响研究[J].上海环境科学, 2002, 21(5): 271-273
    刘素美,张经,于志刚,等.渤海莱州湾沉积物-水界面溶解无机氮的扩散通量[J].环境科学,1999,20(2):12~16
    刘素美.黄、渤海沉积物-水界面营养盐的交换及其质量平衡[D].青岛:青岛海洋大学, 2000
    龙爱民,陈绍勇,周伟华,等.南海北部秋季营养盐、溶解氧、pH值和叶绿素a分布特征及相互关系.海洋通报2006.25(5):9~16
    吕莹,陈繁荣,杨永强,等.春季珠江口内营养盐剖面分布和沉积物—水界面交换通量的研究[J].地球与环境,2006,34(4):1-6
    吕莹.珠江口内沉积物-水界面营养盐的累积和迁移研究[D].广州:中国科学院广州地球化学研究所, 2006
    戚晓红,刘素美,张经.东、黄海沉积物-水界面营养盐交换速率的研究[J].海洋科学,2006,30(3):9-15
    齐振雄,张曼平,李德尚,等.对虾养殖实验围隔中的解氮作用氮输出[J].海洋学报,1999(11).21(6):130-133
    齐振雄.对虾池综合养殖生态系统氮磷收支及沉积物在其中作用的研究[D].青岛:中国海洋大学,1998
    乔士斌,林钦.大鹏澳网箱养殖区沉积物耗氧的初步研究[J].南方水产,2006,3(2);51~60
    石峰.营养盐在东海沉积物—海水界面交换速率和交换通量的研究[D].青岛:中国海洋大学,2003
    孙耀.虾塘底质的总耗氧量及其季节变化[J].应用生态学报,1996,7(1):110-112
    王东启,等.夏季长江河口潮间带反硝化作用和N2O的排放与吸收[J].地球化学,2006(5),5(35):271-279
    王吉桥,郝玉冰.栉孔扇贝与海胆和海参混养的净化水质作用[J].水产科学, 2007(1),1:1-6
    王李宝,万夕和.海水养殖池塘底泥异养硝化作用的研究[J].海洋渔业,2006, (5), 28(2): 147-151.
    王彦波,岳斌,许梓荣,等.池塘养殖系统氮、磷收支研究进展[J].饲料工业,2005,26(18): 50-51
    谢珊,李小明,曾光明,等.同步硝化反硝化实现途径的探讨[J].环境科学与技术.2004,27(2):107-109
    徐继荣,王友绍,孙松.海岸带地区的固氮、氨化、硝化与反硝化特征[J].生态学报,2004,24(12):2907-2914
    徐继荣,王友绍,殷建平,等.大亚湾海域沉积物中的硝化与反硝化作用[J].海洋与湖沼, 2007,38(3):206-211
    徐继荣,王友绍,殷建平,等.珠江口入海河段DIN形态转化与硝化和反硝化作用[J].环境科学学报,2005,25(5):686-692
    杨龙元,Wayne S, Gardner.休伦湖Saginaw湾沉积物反硝化率的测定及其时空特征[J].湖泊科学,10(3):32-38
    余瑞兰,聂湘平,魏泰莉,等.分子氨和亚硝酸盐对鱼类的危害及其对策[J].中国水产科学,1999,6(3):73-77
    袁秀堂.刺参生理生态学及其生物修复作用的研究[D].青岛:中国科学院海洋研究所, 2005
    张宝琳,孙道元.灵山岛浅海岩礁区刺参食性初步分析[J].海洋科学,1995, 5(3): 11-13
    赵化德,姚子伟,关道明.河口区域反硝化作用研究进展[J].海洋环境科学,2007(6),26(3):296-300
    赵志梅.渤海湾沉积物磷形态及营养盐在沉积物—水界面交换的研究[D].杨凌:西北农林科技大学,2005
    赵志梅.渤海湾沉积物磷形态及营养盐在沉积物—水界面交换的研究[D].杨凌:西北农林科技大学,2005
    周毅,杨红生,张福绥.海水双壳贝类的生物沉积及其生态效应[J].海洋科学,2003,27(2): 23-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700