用户名: 密码: 验证码:
荒漠矿区关键环境要素的监测与采动影响规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为研究地下煤炭开采对荒漠区脆弱环境的影响规律,论文选择了植被、水体(土壤水、包气带水、地下水)作为荒漠矿区的关键环境要素,以具有代表性的神东矿区为研究区域,集RS、GIS、GPR、现场调查等多种技术手段,多尺度监测研究关键环境要素的时空演变规律,并在监测技术与采动影响规律方面取得了以下成果:
     在宏观尺度上,利用MODIS-NDVI实现了区域植被的月际时序监测分析,以及与气温、降水等气象因素的关联分析。结果表明研究区植被具有明显的物候年周期性,植被与气象因素具有明显的相关性,其中植被对降水变化的响应最为敏感。总体来讲,矿区植被呈现出区域性变化,近年来开展的生态建设影响,使得植被有明显好转,空间变异性增强。然而小尺度的植被现场调查与Landsat-NDVI监测表明,地下开采导致了部分矿井采区植被相对非采区小幅下降。
     为解释采矿对植被的影响规律,论文对矿区浅层土壤含水率进行了遥感定量反演。研究表明,相对于土壤反射率、土壤湿度、地形湿度指数,土壤含水率与表观热惯量之间具有更加显著的相关性。通过改进的土壤温度预测模型,建立了适用于TM或ETM+的土壤温差转换模型。利用该模型能更准确地提取任意深度的土壤温差信息,这比单纯利用MODIS影像能提取更高分辨率的表观热惯量。改进后的表观热惯量与10cm埋深土壤含水率的R2由0.264提高到了0.789。从而首次实现了基于表观热惯量法与TM/ETM+、MODIS影像相结合的土壤含水率高分辨率反演。反演结果与现场调查一致发现,受地表沉陷影响,采区土壤含水率均略偏小于非采区。
     对工作面上方地下水采前、采中、采后的长期观测表明,采矿对地下水具有显著的负面影响,且采后地下水的恢复过程缓慢。但是,该工作面上方植被并没有明显衰退。其原因在于,通过探地雷达(GPR)对包气带土壤含水的垂向分布研究给出了风积沙区地下水的临界作用埋深为8m,而该工作面的初始水位埋深远远大于临界埋深。此外,本文首次结合GPR与开采沉陷预计理论对沉陷变形影响下的包气带土壤含水的横向分布规律进行了分区研究,分析了土壤压缩、拉伸变形对包气带土壤含水分布的影响规律,指出今后沉陷变形区土壤特性的实验研究应分区进行。
     最后,根据对矿区植被、水体的地空一体化监测结果,给出了植被与土壤水的负倒数关系模型,地下水与土壤含水、植被的指数关系模型,以及地下水深埋区植被受采动影响的判别模型,提出了适用于荒漠矿区资源环境协调开采的建议与措施。
The objective of this dissertation is to find the impact law of underground mining on the fragile environment at desert area. Therefore, the worldwide known Shendong mining area was taken as a case study area. The vegetation and water resource including the surface soil moisture, unsaturated zone water, and groundwater, were selected as the key environment elements based on abundant literature reviews. The spatiotemporal evolution law of which was monitored by integrating with RS, GIS, GPR, field investigation etc. The conclusions were made as follows.
     On large scale, monthly Series of MODIS-NDVI-250m/1km were summarized from 2000 to 2005, which showed the vegetation varied circannian, corresponding with the circannian variation of air temperature, rainfall, air pressure etc. Therefore, there was apparent relativity between NDVI and climate factors; however, vegetation is more susceptible to rainfall. Overall, the vegetation of study area varied regionally, and improved since 2002, and no abnormal was detected. On micro-scale, it was observed by both TM and field investigation that the vegetation of mined area was a slight less than the unmined area.
     The surface soil moisture of the study area was retrieved by advanced RS to further interpret the vegetation variation due to the underground mining. Compared with soil reflectance, soil wetness, topography wetness index, soil albedo, the apparent thermal inertia has a distinct relationship with soil moisture. For improving the resolution of predicted soil moisture, the soil temperature difference model was developed to model the soil moisture with higher resolution by method of apparent thermal inertia (ATI) and TM image. The ATI has stronger relationship between the observed soil moisture at depth of 10cm, than that of 20cm, and 40cm. Therefore, the square of correlation coefficients (R2) was improved to 0.789 by improved soil temperature difference model at depth of 10cm. Moreover, the nonlinear relationship between soil moisture and vegetation or topography was found. Also, it is observed by both the TM image and Field investigation that surface soil moisture at mined area is slight lower than at unmined area, especially the variation of loess region is more apparent than sand region. Overall, the difference was not remarkable, so the vegetation did not get worse very much.
     The groundwater (aquifer thickness, relative and absolute groundwater table) at 32201 mining face was observed from the beginning to the third year after the end of mining. It indicated that the groundwater was disturbed seriously by underground mining. But the vegetation on the 32201 mining face did not get worse as great loss of groundwater, which was explained by the GPR detection of unsaturated zone. The critical groundwater table depth (8m) was found by the analysis of vertical distribution of soil moisture at unsaturated zone. Because the original groundwater table depth before mining was already 30m, which meant that the vegetation did not depend on the groundwater and would not change dramatically, no matter how the groundwater table drop. Additionally, it was the first time to integrate GPR with Mining Subsidence Predicting Theory, then the lateral variation of soil moisture at different deform region was detected. It demonstrated that the compression and stretch deformation due to mining subsidence would change the soil moisture. So, more attention is needed to study the soil characteristics at deformation area in future.
     Finally, an inverse model of soil moisture and NDVI, and two exponential models of groundwater and NDVI, or soil moisture were developed based on the monitoring results. Furthermore, some recommendations were provided for green-mining at desert mining area.
引文
[1]钱鸣高.对中国煤炭工业发展的思考[J].中国煤炭,2005,(6):5-10.
    [2]李树志.西部煤炭开发引起的主要生态问题及防治对策[J].选煤技术,2003(1):1-3.
    [3]叶贵均.西北五省(区)的煤炭资源水资源及生态环境[J].煤田地质与勘探,2000(28)6:39-42.
    [4]邹光富,毛英.中国西部地区矿产资源开发与环境保护[J].地球科学进展,2004,(19)S1:444-448.
    [5]师文林.论西部矿业开发与生态保护[J].西安科技学院学报,2000,20(S1):55-62.
    [6]吴立新.西北矿业开发与水资源矛盾分析及其对策[J].南水北调与水利科技,2003,1(1):35-37.
    [7]科技部基础研究司,国家重点基础研究发展计划(含重大科学研究计划)2007年度重要支持方向,http://www.most.gov.cn/tztg/200702/t20070216_41410.htm, 2007.2.15.
    [8]美国地质调查局,2005至2015年地理科学研究战略规划,中国地质环境信息网,http://www.cigem.gov.cn/qingbao_ReadNews.asp?NewsID=4782#.
    [9]许家林,钱鸣高.绿色开采的理念与技术框架[J].科技导报(北京),2007,25(7):61-65.
    [10]钱鸣高.绿色开采的概念与技术体系[J].煤炭科技,2003(4):1-3.
    [11]钱鸣高,许家林,缪协兴.煤矿绿色开采技术[J].中国矿业大学学报,2003,32 (4) :343-348.
    [12]钱鸣高.资源与环境协调(绿色)开采[J].煤炭科技,2006 (1):1-4.
    [13] Deichmann, U., Eklundh, L. Global Digital Datasets for Land Degradation Studies: A GIS Approach. GRID Case Study Report Series 4, 1991.
    [14] UNSO Office to Combat Desertification and Drought. Aridity Zones and Dry land Populations: An Assessment of Population Levels in the World’s Dry lands. UNSO/UNDP, New York, 1997:23.
    [15] J.F. Reynolds, D.M. Stafford Smith (Eds.), Dahlem. Global Desertification: Do Humans Cause Deserts? Workshop Report 88, Dahlem University Press, Berlin, 2002:437.
    [16] Wilhite, D.A. Drought as a Natural Hazard: Concepts and Definitions. In: Wilhite, D.A. (ed.) Drought: A Global Assessment. Routledge Publishers, London, U.K, 2000(1): 3-18.
    [17]D S G.Science and the desertification debate.Journal of Arid Environments, 1997, 37:599-608.
    [18]杨晓晖,张克斌,慈龙骏.中国荒漠化评价的现状、问题及其解决途径[J].中国水土保持科学,2004,1(3):22-28.
    [19]李孝泽,董光荣.中国西北干旱环境的形成时代与成因探讨[J].第四纪研究,2006,26(6) :895-904.
    [20]朱震达.中国沙漠、沙漠化、荒漠化及其治理对策[M].北京:中国环境科学出版社,1999.
    [21]朱震达,陈广庭.中国沙质荒漠化[M].北京:科学出版社,l994.
    [22]朱震达.我国北方沙漠化的现状和趋势[J].中国沙漠, 1985,5 (3) :3一l1.
    [23]高尚武,王葆芳,朱灵益等.中国沙质荒漠化土地监测评价指标体系[J].林业科学,1998,34(2):1-10.
    [24]王涛,吴薇,王熙章.沙质荒漠化的遥感监测与评估——以中国北方沙质荒漠化区内的实践为例[J] .第四纪研究,1998(2):108-118.
    [25]吴薇,王熙章,姚发芬.毛乌素沙地沙漠化的遥感监测[J].中国沙漠,1997,12(4):415-420.
    [26]吴波,慈龙骏.毛乌素沙地荒漠化的发展阶段和成因[J].科学通报,1998,43(22):2437-2440.
    [27]王建,董光荣,李文君.利用遥感信息决策树方法分层提取荒漠化土地类型的研究探讨[J].中国沙漠,2000(20):243—247.
    [28] Takeuchi K,Katoh K,and Nan Y,et a1 .Vegetation coversheet in decertified Kerqin sandy land,Inner Mongolia,Geographical Reports,Tokyo Metropolitan University,1995,30.
    [29]颉耀文,陈发虎.干旱区土地利用/土地、覆盖变化与全球环境变化[J].地域研究与开发,2002,21(2):22-26.
    [30]程国栋,肖笃宁,王根绪.论干旱区景观生态特征与景观生态建设[J].地球科学进展1999,14(1):11-15.
    [31]赵睿,塔西甫拉提·特依拜,瓦哈甫·哈力克.中国西部干旱区LUCC空间影响因子的合理性验证--以新疆于田绿洲为例[J].资源科学,2006年28(4):97-103.
    [32]阎金凤,陈曦.基于GIS的干旱区LUCC分析和模拟方法探讨[J].干旱区地理,2003,26(2):185-191.
    [33]罗格平,周成虎.干旱区绿洲土地利用与覆被变化过程[J].地理学报.2003,58(1):63-72.
    [34]陈玉福,于海飞,董鸣.毛乌素沙地沙生半灌木群落的空间异质性[J].生态学报,2000,20(1):568-572 .
    [35]Chen Yaning, Li Weihong, Chen Yapeng et al. Water resources and ecological problems in Tarim River Basin, Xinjiang, China. In: Wilderer P A et al. Water and Environmental Management. London: IWA Publishing, 2003, 3–12.
    [36]陈亚宁,崔旺诚,李卫红,张元明.塔里木河的水资源利用与生态保护[J].地理学报,2003,58(2):215-222.
    [37]陈亚宁,李卫红,徐海量,刘加珍,张宏峰,陈亚鹏.塔里木河下游地下水位对植被的影响[J]地理学报,2003,(58):542-549
    [38] Wassen M.J.M.J. Ecohydrology - Eco-hydrology: Plants and Water in Terrestrial and Aquatic Environments edited by A.J. Baird and R.L. Wilby. Trends in Ecology and Evolution, 2000(15):174-175.
    [39]郑丹,李卫红,陈亚鹏,刘加珍.干旱区地下水与天然植被关系研究综述[J].资源科学,2005,27 (4):160-167.
    [40]Li Y S. Effects of forest on water circle on the Loess Plateau. [J] .Natural Resources, 2001, 16 (5) : 427-432.
    [41]杨建锋,万书勤,邓伟,章光新.地下水浅埋条件下包气带水和溶质运移数值模拟研究述评[J].农业工程学报,2005,21(6):158-165.
    [42]徐海量,宋郁东,王强,艾合买提.塔里木河中下游地区不同地下水位对植被的影响[J].植物生态学报,2004 , 28 (3): 400-405.
    [43]宋郁东,樊自立,雷志栋等.中国塔里木河水资源与生态问题研究[M] .乌鲁木齐:人民出版社,2000.
    [44]S.B. Pan, Z.J. Wang, Q. X. Su , T. Sun, Y. Zhang . GROUNDWATER LEVEL MONITORING MODEL USING MULTI-TEMPORAL IMAGES IN ARID REGION OF NORTHWEST CHINA. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B8. Beijing 2008:745-749
    [45]张丽,董增川,黄晓玲.干旱区典型植物生长与地下水位关系的模型研究[J].中国沙漠,2004 ,24(1):110-113.
    [46]张发旺,王贵玲,候新伟.矿业开发环境地质链及其控制[J].地学前缘,2001,8(1):107-111.
    [47]张发旺,李铎.煤矿开采条件下地下水资源破坏及其控制[J].河北地质学院学报, 1996,19(2):110~115.
    [48]张发旺.干旱地区采煤条件下煤层顶板含水层再造与地下水资源保护[M].北京:地质出版社,2006.
    [49]侯新伟,张发旺,李向全,陈浩.神府东胜矿区主要地质生态环境问题及其效应[J].地球与环境,2005,33 (4) :43-46.
    [50]卞正富,张国良,胡喜宽.矿区水土流失及其控制研究[J].土壤侵蚀与水土保持学报,1998,4(4):31-36.
    [51]http://ecow.jogmec.go.jp/page/page01/pdf/97/97-2.pdf
    [52] Charles H. Gardner and James D.Simons . N.C. Department of Natural Resources & Community Development. www.p2pays.org/ref/19/18793.pdf
    [53]杨本志,卞正富.我国东部矿区生态系统退化机理初探[J].煤矿环境保护,2000(4):44-47.
    [54]吕涛,聂锐.东部煤炭企业跨区域资源开采模式研究[J].中国矿业,2005(6):37-39.
    [55]张慧明,周德群,曹细玉.东部枯竭型煤炭企业参与西部小煤矿改造的模式分析[J].工业技术经济,2005(6):112-114.
    [56]杨本志,卞正富.浅议我国东部矿区的生态重建技术[J].煤矿环境保护.2000(3):7-10.
    [57]卞正富,许家林,雷少刚.论矿山生态建设[J].煤炭学报,2007,32(1):13-19.
    [58]周进生,石森.矿区生态恢复理论综述[J].中国矿业,2004,13(3):10-12.
    [59]李娟,赵竟英,陈伟强.矿区废弃地复垦与生态环境重建[J].国土与自然资源研究,2004(1):27-28.
    [60]王改玲,白中科,赵景逵,郭青霞.矿区生态重建中生物多样性与可持续发展[J].能源环境保护,2002,16(4):7-10.
    [61]黄铭洪,骆永明.矿区土地修复与生态恢复[J].土壤学报,2003,40(2):161-169.
    [62]白中科,朱荫湄.试论矿区生态重建[J].自然资源学报,1999,14(1):35-41.
    [63]卞正富.我国煤矿区土地复垦与生态重建研究[J].资源产业,2005,7(2):18-24.
    [64] Thomas and N.J. Middleton. Desertification, exploding the myth : D.S.G. Wiley, Chichester, 1994:194 .
    [65]Hudak A T.Wessman C A,Textural analysis of historical aerial photography to characterize woody plant encroachment in South African savanna.Remote Sensing of Environment,1998 (66) :317.
    [66] Mouat D,Lancaster J,Wade T,et a1.Desertiflcation evaluated using an integrated environmental assessment model.Environmental Monitoring an d Assessment,1997(48):139-156.
    [67] Weiss E, Marsh S E,Pfirman E S.Application of NOAA.AVHRR NDVI time—series data to assess changes in Saudi Ara—BIA’s rangelands,Int J Remote Sensing,2001 (22) :1005—1027.
    [68] Runnstrom M C.Is northern China winning the battle against desertification? Satellite Remote Sensing as a Tool to Study Biomass Trends on the Ordos Plateau in Semiarid China.A Journal of the Human Environment,2000(29):468-476.
    [69]杨晓晖,慈龙骏.基于遥感技术的荒漠化评价研究进展[J].世界林业研究,2006,19(6):11-17.
    [70] Tucker C J,Dregne H E,Newcomb W W.Expansion and contraction of the SaharaDesert from 1980 to 1990.Science, 1991(253) :299-301.
    [71] H.A. Barbosa, A.R. Huete, W.E. Baethgen.A 20-year study of NDVI variability over the Northeast Region of Brazil. Journal of Arid Environments, 2006 (67): 288-307.
    [72] S.M. Vicente-Serranoa, J.M. Cuadrat-Pratsc, A. Romo. Aridity influence on vegetation patterns in the middle Ebro Valley (Spain) : Evaluation by means of AVHRR images and climate interpolation techniques Journal of Arid Environments, 2006 (66):353-375.
    [73] K.J. Wesselsa, S.D. Princea, J. Malherbeb, J. Small. Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. Journal of Arid Environments, 2007 (68): 271-297.
    [74] N.J. Enrighta, B.P. Millera, R. Akhter .Desert vegetation and vegetation-environment relationships in Kirthar National Park, Sindh,Pakistan. Journal of Arid Environments, 2005 (61) :397-418.
    [75] S. Huanga, F. Siegert. Land cover classification optimized to detect areas at risk of desertication in North China based on SPOT VEGETATION imagery. Journal of Arid Environments, 2006 (67):308-327.
    [76] Z. Qin, W. Lia, J. Burgheimerc, A. Karnieli. Quantitative estimation of land cover structure in an arid region across the Israel–Egypt border using remote sensing data. Journal of Arid Environments, 2006 (66): 336-352.
    [77] Amy Leigh Kaleita, soil moisture estimation from soil spectral characteristics in a precision farming environment,Dissertation, University of Illinois at Urbana- Champaign, (2003):3-5.
    [78] Jeffrey P. Walker, Paul R. Houser. Requirements of a global near-surface soil moisture satellite mission: accuracy, repeat time, and spatial resolution. Advances in Water Resources, 2004 (27):785-801.
    [79]赵立军.基于MODIS数据的北京地区土壤含水量遥感信息模型研究[D].北京:中国农业大学,2004,1-6.
    [80]田国良.黄河流域典型地区遥感动态研究[M].北京:科学出版社,1990.
    [81]张灿龙,倪绍祥,刘振波,陈健.遥感监测土壤含水量方法综述[J].农机化研究,2006(6):58-61.
    [82]陈怀亮,毛留喜,冯定原.遥感监测土壤水分的理论、方法及研究进展[J].遥感技术与应用,1999, 14(2):55-65.
    [83]张霄羽,毕于运,李召良.遥感估算热惯量研究的回顾与展望[J].地理科学进展,2008 ,27(3):166-171.
    [84]何玲,汪志农,莫兴国.基于遥感信息预测土壤水分研究[J].水土保持研究,2006,13(2):168-171.
    [85] M. Susan Moran, Christa D. Peters-Lidard, Joseph M. Watts, and Stephen McElroy. Estimating soil moisture at the watershed scale with satellite-based radar and land surface models [J]. Can. J. Remote Sensing, 2004(30):805–826.
    [86] Moran, M.S., Hymer, D.C., Qi, J., and Sano, E.E. Soil moisture evaluation using multi-temporal synthetic aperture radar SAR in semiarid rangeland[J]. Agricultural and Forest Meteorology, 2000(105):69–80.
    [87]纪万斌.我国采煤塌陷生态环境的恢复及其开发利用[J].中国地质灾害与防治学报,1998,9(增刊):47-51.
    [88]李惠娣,杨琦,聂振龙,张光,尚海涛.土壤结构变化对包气带土壤水分参数的影响及环境效应[J].水土保持学报,2002(6):100-104.
    [89]宋亚新.神府-东胜采煤塌陷区包气带水分运移及生态环境效应研究[D].北京:中国地质科学院,2007.
    [90]赵红梅.采矿塌陷条件下包气带土壤水分布与动态变化特征研究[D].北京:中国地质科学院,2006.
    [91]雷少刚,卞正富.探地雷达测定土壤含水率研究综述[J].土壤通报,2008,39(5):1179-1182.
    [92]李大心.探地雷达方法与应用[M].北京:地质出版社,1994.
    [93]王兴泰.工程与环境物探新方法新技术[M].北京:地质出版社,1996.
    [94] H. Stoffregen, U. Yaramanci, T. Zenker, et al. Accuracy of soil water content measurements using ground penetrating radar: comparison of ground penetrating radar and lysimeter data[J]. Journal of Hydrology, 2002 (267):201–206.
    [95] J.A. Huismana, C. Sperlb, W. Boutena, et al. Soil water content measurements at different scales accuracy of time domain reflectometry and ground-penetrating radar[J]. Journal of Hydrology, 2001 (245):48-58.
    [96] J.A. Huisman, J.J.J.C. Snepvangers, W. Bouten, G.B.M. Heuvelink. Mapping spatial variation in surface soil water content: comparison of ground-penetrating radar and time domain reflectometry [J]. Journal of Hydrology, 2002:194–207.
    [97] Smith, M.C., Vellidis, G., Thomas, D.L., Breve, M.A. Measurement of water table fluctuations in a sandy soil using ground penetrating radar[J]. Transactions of the American Society of Agricultural Engineers, 1992(35):1161–1166.
    [98] Van Overmeeren, R.A. Georadar for hydrogeology [J]. Fastbreak, 2004(12): 401–408.
    [99] J.A.Doolittle, B.Jenkinson, D.hopkins et al. Hydropedological investigations with ground-penetrating radar (GPR) Estimating water-table depths and local ground-water flow pattern in areas of coarse-textured soils [J]. Geoderma, 2006 (131):317–329.
    [100] Daniels, D.J. Ground Penetrating Radar [M]. The Institute of Electrical Engineers, 2nd edition.London, UK, 2004.
    [101]阿布都瓦斯提·吾拉木,秦其明.地下水遥感监测研究进展[J].农业工程学报,2004,20(1):184-188.
    [102]傅碧宏,史基安,张中宁等. Landsat TM热红外遥感数据定量反演地下水富集带的温度信息[J].遥感技术与应用,1999,14 (2) : 34- 38.
    [103]王飞跃,孙顺新.环境遥感信息分析法在干旱区找水中的应用——以内蒙锡林浩特地区为例[J].国土资源遥感,1999(1):36-41.
    [104]San Ringrose, Cornelis Vanderpost,Wilma Matheson Evaluation of vegetative criteria for near-surface groundwater detection using multispectral mapping and GIS techniques in semi-arid Botswana [J]. Applied Geography, 1998(18): 331–354.
    [105]塔西甫拉提·特依拜,阿布都瓦斯提·吾拉木.绿洲-荒漠交错带地下水位分布的遥感模型研究[J].遥感学报,2002,6 (4): 299-306.
    [106]阿布都瓦斯提·吾拉木.绿洲-荒漠交错带地下水位分布的遥感模型研究[D].乌鲁木齐:新疆大学,2001.
    [107]塔西甫拉提·特依拜,崔建永,丁建丽.热红外遥感技术探测干旱区绿洲一荒漠交错带地下水分布的方法研究[J].干旱区地理,2005,28(2):252-257.
    [108] S A Komarov, VL Mironov, A N Romanov, et al. Remote Sensing of Water Table: Measurement and Data Processing Algorithm [J] .Mapping Science and Remote Sensing, 1999, 36(1):1-10.
    [109]张发旺,周俊业,侯新伟,韩占涛.神府矿区煤炭开发面临的地质生态环境问题及对策研究[J].地球学报,2002,23(B03):59-64.
    [110]武强,安永会,刘文岗,张福存,李建军.神府东胜矿区水土环境问题及其调控技术[J].煤田地质与勘探,2005,33(3):54-58.
    [111]杨选民,丁长印.神府东胜矿区生态环境问题及对策[J].煤矿环境保护,2000,14(1):69-72.
    [112]张发旺,侯新伟,韩占涛,杨会峰,宋亚欣.采煤塌陷对土壤质量的影响效应及保护技术[J].地理与地理信息科学,2003,19 (3):67-70.
    [113]侯新伟,张发旺,韩占涛,陈浩.神府—东胜矿区生态环境脆弱性成因分析[J].干旱区资源与环境,2006,20(3):54-57.
    [114]神华集团神东分公司,内蒙古农业大学,中国矿业大学.神东矿区采煤塌陷区生态恢复技术试验与示范研究报告[R].神华科技创新项目(SH-04-02-01),2007.
    [115]黄明斌,康绍忠,李玉山.黄土高原森林与草地流域水文动态比较[J].自然资源学报,1999,14(3):226-231.
    [116]沈慧,姜凤歧.森林的水土保持效益评价综述[J].应用生态学报,1999,10(4):492-496.
    [117]贾艳红,赵传燕,南忠仁.西北干旱区黑河下游植被覆盖变化研究综述[J].地理科学进展,2007,26(4):64-73.
    [118]齐述华,王长耀,牛铮,刘正军.利用NDVI时间序列数据分析植被长势对气候因子的响应[J].地理科学进展,2004,23(3):91-99.
    [119]顾娟,李新,黄春林.NDVI时间序列数据集重建方法述评[J].遥感技术与应用,2006,21(4):391-395.
    [120] L.Jarlan, S.Mangiarotti,E.Mougin, P.Mazzega, P.Hiernaux, V.Le Dantec. Assimilation of SPOT/VEGETATION NDVI data into a sahelian vegetation dynamics model.Remote Sensing of Environment, 2008(112):1381-1394.
    [121]牛宝茹,刘俊蓉,王政伟.干旱区植被覆盖度提取模型的建立[J].地球信息科学,2005,7(1):84-86.
    [122]刘瑶,江辉,吴春波.鄱阳湖区植被覆盖度的遥感估算[J].2006,25(1):52-56.
    [123]田静,阎雨,陈圣波.植被覆盖率的遥感研究进展[J].国土资源遥感,2004(1):1-5.
    [124]方秀琴,张万昌.叶面积指数(LAI)的遥感定量方法综述[J].国土资源遥感,2003(3):1-5.
    [125]李开丽,蒋建军,茅荣正,倪绍祥.植被叶面积指数遥感监测模型[J].生态学报,2005,25(6):1491-1496.
    [126]惠凤鸣,田庆久,金震宇,李海涛.植被指数与叶面积指数关系研究及定量化分析[J].遥感信息,2003(2):10-12.
    [127] Baret, F., Guyot, G., Major, D.J TSAVI . A vegetation index which minimizes soil brightness effects on LAI and APAR estimation. Proceedings of the 12th Canadian Symposium on Remote Sensing. Vancouver ,Canada,1989: 1355-1358.
    [128] Rouse, J.W. Monitoring the vernal advancement of retrogradation of natural vegetation. NASA/GSFC, Type III, Final Report, Greenbelt, MD, 1974 : 371.
    [129]陈晋,陈云浩,何春阳等.基于土地覆盖分类的植被覆盖率估算亚像元模型与应用[J].遥感学报,2001,5(6):416-422.
    [130]李苗苗,吴炳方,颜长珍等.密云水库上游植被覆盖度的遥感估算[J].资源科学,2004,26(4):153-159.
    [131]朱玉霞,覃志豪,徐斌.基于MODIS数据的草原荒漠化年际动态变化研究——以内蒙古自治区为例[J].中国草地学报,2007,29(4):2-7.
    [132]王正兴,刘闯.植被指数研究进展:从AVHRR-NDVI到MODIS-EVI[J].生态学报,2003,23(5):979-987.
    [133]姚春生.使用MODIS数据反演土壤水分研究[D].北京:中科院遥感应用研究所,2003,17-18.
    [134]李红军,郑力,雷玉平,李春强,周戡.基于EOS/MODIS数据的NDVI与EVI比较研究[J].地理科学进展,2007,26(1):26-32.
    [135]卢丽萍,赵成义.基于MODIS数据不同荒漠植被指数的空间变化研究[J].干旱区地理,2005,28(3):381-384.
    [136]赵伟,李召良.利用MODIS/EVI时间序列数据分析干旱对植被的影响[J].地理科学进展,2007,26(6):40-47.
    [137]郭铌.植被指数及其研究进展[J].干旱气象,2003,21(4):71-75
    [138]马黎春,盛建东,蒋平安等.克拉玛依地区土壤速效微量养分空间变异特征[J].干旱区地理,2004,27(2):203—206.
    [139] Webster R,Oliver M A.Geostatistics for environmental scientists [M] .John Wiley & Sons,Ltd,West Sussex,UK.1990.
    [140]钱静,陈曦等.基于GIS的绿洲土壤含水量空间变异性研究[J].干旱区研究,2004,21(1):49-54.
    [141] P.R.S. Farias, J.C. Barbosa, S.R. Vieira, X. Sánchez-Vila and L.C.C.B. Ferraz. Geostatistical analysis of the spatial distribution of Rotylenchulus reniformis on cotton cultivated under crop rotation, 2002(10):1-9.
    [142]基于DEM和地统计的森林资源空间格局分析——以武夷山山区为例[J].地球信息科学,2005,7(2):82-88.
    [143]李月臣,杨华,张锦水,刘眷霞,赵纯勇.土地利用/覆盖变化空间变异特征与遥感影像空间分辨率的选取——以北京地区为例[J].干旱区地理,2006,29(4):570-575.
    [144]中国神华集团神东煤炭分公司,http://www.shendong.com.cn/Page/64/Default.aspx
    [145] Research System Inc. FLAASH User’s Guide. ENVI FLAASH Version 1.0, 2001: 8-40.
    [146]李国砚,张促元,郑艳芬,刘晓玫.MODIS影像的大气校正及在太湖蓝藻监测中的应用[J].湖泊科学,2008,20(2):160-166.
    [147]郝建亭,杨武年,李玉霞,郝建园.基于FLAASH的多光谱影像大气校正应用研究[J].遥感信息,2008(1):78-81.
    [148] Matthew M W, Bernstein LS. Atmospheric correction for Short-wave spectral imagery based on MODTRAN4[C]. SPIE Proceeding, Imaging Spectrometry V, 1999:3753.
    [149]池宏康,周广胜,许振柱,肖春旺,袁文平.表观反射率及其在植被遥感中的应用[J].植物生态学报,2005,29(1):74-80.
    [150]国务院国有资产管理委员会,http://www2.sasac.gov.cn/xlbd/04/new/xlbd_04_007.htm
    [151]王安.神东矿区生态环境综合防治体系构建及其效果[J].中国水土保持科学,2007,5(5):83-87.
    [152]全占军,程宏,于云江等.煤矿井田区地表沉陷对植被景观的影响——以山西省晋城市东大煤矿为例[J].植物生态学报,2006,30(3):414-420.
    [153] Lei SG,Bian ZF,Zhang RC,Li L. Study on the change rule of groundwater level and its impacts on vegetation at arid mining area [J]. Journal of Coal Science & Engineering, 2007,13(2):179-182.
    [154]白国良,梁冰.煤矿开采对阜新地下水环境影响的研究[J].矿业安全与环保,2006, 33(4):24-27.
    [155] Bian ZF, Shaogang Lei, Hilary I Inyang, Luqun Chang, Richen Zhang, Chengjun Zhou and Xiao He. Integrated method of RS and GPR for monitoring the changes of soil moisture and ground water environment due to underground coal mining [J]. Environmental Geology, Springer-2008: http://www.springerlink.com/content/58204124860rk952/fulltext.html
    [156] Bian ZF,Zhang YP. Land Use Changes in Xuzhou Coal Mining Area [J]. Acta Geographica Sinica,2006,61(4):349-358.
    [157]Bian ZF , Zhang G. The effect of mining subsidence on the environment of phreatic water and its control [J]. Nonferrous Metal, 1999,51(1): 4-7.
    [158]张红梅,沙晋明.遥感监测土壤湿度的方法综述[J].中国农学通报,2005,21(2):307-311.
    [159] Etienne MULLER,Henri DECAMPS ,modeling soil moisture–reflectance [J]. Remote sensing of environment,2001,76(2):173-180.
    [160] David B. Lobell and Gregory P. Asner Moisture Effects on Soil Reflectance[J]. Am. J. Soil Sci. Soc., 2002(66) :722–727.
    [161]范文义,李明泽.应天玉荒漠化地区土壤含水量的遥感定量反演[J].应用生态学报,2008,19(5):1046-1051.
    [162]张成才,吴泽宁,余弘婧.遥感计算土壤含水量方法的比较研究[J].灌溉排水学报,2004,23(2):69-72.
    [163] Beata Hejmanowska,Stanislaw Mularz .Integration of multitemporal ERS SAR and Landsat tm data for soil moisture assessment. LAPRS,Vol. XXXIII, Amsterdam, 2000.
    [164]常鲁群.GIS支持下的矿区土壤含水率的遥感反演方法及变化规律研究—以神东矿区为例[D].徐州:中国矿业大学,2006,6.
    [165] Weidong, L.Baret, F. Xingfa, G, Qingxi, T, Lanfen, Z, Bing, Z .Relating soil surface moisture to reflectance [J].Remote Sensing of Environment,2002,81(2): 238-246.
    [166]王军邦,牛铮,胡秉民,王长耀,王政权.定量遥感在生态学研究中的基础应用[J].生态学杂志,2004,23(2):152-157.
    [167]马蔼乃.遥感信息模型[M].北京:北京大学出版社,1997.
    [168] Crust Eric P. and Richard C·Cicone. Application of the Tasseled Cap concept to simulated Thematic Mapper data·Photogrammetric Engineering and Remote Sensing.1984 (50):343-352.
    [169]贾海峰,刘雪华.环境遥感原理与应用[M].北京:清华大学出版社,2006:81-83.
    [170] Simon Wu, Jonatham Li, G.H. Huang.a study on DEM derived primary topographic attributes for hydrologic,Applied Geography ,2008:210-223.
    [171]张彩霞,杨勤科,李锐.基于DEM的地形湿度指数及其应用研究进展[J].地理科学进展,2005,24(6):116-122.
    [172] K J Beven, M J Kirk. A physically based,variable contributing area model of basin hydrology. Hydrological Sciences Bulletin,1979(24):43-68.
    [173] Ambroise B, Beven K J, Freer J. Towards a generalization of the TOPMODEL concepts: Topographic indices of hydrologic similarity. Water Resour. Res., 1996,32(7): 2135-2145.
    [174]邓慧平,李秀彬.地形指数的物理意义分析[J].地理科学进展,2002,21 (22):103-110.
    [175] CGIAR Consortium for Spatial Information, http://srtm.csi.cgiar.org/
    [176] Richard Bamler, Wessling. The SRTM Mission:A world wide 30 m resolution DEM from SAR interferometr in 11 days.http://www.ifp.uni-stuttgart.de/publications/phowo99/bamler.pdf
    [177] Andy Jarvis, Jorge Rubiano, Andy Nelson,Andrew Farrow and Mark Mulligan. Practical use of SRTM data in the tropics– Comparisons with digital elevation models generated from cartographic data. http://srtm.csi.cgiar.org/PDF/Jarvis4.pdf
    [178] Rauf Ludwig,Philipp Schneider, Validation of digital elevation models from SRTM X-SAR for applicatios in hydrologic modeling.journal of photogrammetry & Remote Sensing 2006:339-358
    [179] Cracknell A P Xue Y. Review article:Thermal inertia determination from space - a tutorial review [J]. International journal of remote sensing,1996,17 (3) :431-461.
    [180] John C Price. On the analysis of thermal infrared imagery:The limited utility of apparent thermal inertia [J]. Remote Sensing of Environment,1985,18:59-78.
    [181]牛振华,赵英时.遥感热惯量反演表层土壤水的方法研究[J].中国科学D辑,2006,36(6):552-556.
    [182]覃志豪,Li Wenjuan,Zhang Minghua,Arnon Karnieli,Pedro Berline.单窗算法的大气参数估计方法[J].国土资源遥感,2003(2):37-43.
    [183] John Daniels, Shaogang Lei et al. Report of Subgrade Stabilization Alternatives to Lime and Cement. NCDOT, USA, 2009.
    [184] Hillel D. Introduction to soil physics. Academic Press, San Diego, CA, 1982.
    [185] Marshall, T.J. and J.W.Holmes. Soil physics.2nd . Cambridge Univ.Press, New York, 1988.
    [186] Elimoel A. Elias, Rogerio Cichota, Hugo H. Torriani and Quirijn de Jong van Lier (2004).Analytical soil–temperature model correction for temporal variation of daily amplitude. Soil Sci.Soc.Am.J.68:784-788.
    [187] Tessy Chacko P and G Renuka. Temperature mapping, thermal diffusivity and subsoil heat flux at Kariavattom of Kerala.Proc. Indian Acad. Sci. 2002(111):79-85.
    [188] Gao Z., Bian L., Hu Y., Wang L., Fan J. (2007). Determination of soil temperature in an arid region. Journal of arid environments 71:157-168.
    [189] D.Li, M.Volterrani, N.E. Christians, D.D. Minner. THERMAL PROPERTIES OF SAND-BASED ROOTZONE MEDIA MODIFIED WITH INORGANIC SOIL AMENDMENTS. International Conference on Turfgrass Management and Science for Sports Fields
    [190] Andersland, O.B. and Ladanyi, B. Frozen Ground Engineering, The American Society of Civil Engineers and John Wiley and Sons, New York, 2004:363.
    [191] Z. Wan and J. Dozier. A generalized split-window algorithm for retrieving land surface temperature from space[J].IEEE Trans. Geosci. Remote Sens, 1996, 34(4):892-905.
    [192] Z. Wan, Y. Zhang, Q. Zhang, Z.-L. Li. Validation of the land–surface temperature products retrieved from Terra Moderate Resolution Imaging Spectrum radiometer data[J].Remote Sens. Environ.,2002(83):163-180.
    [193] Wang Zhengming. MODIS Land-Surface Temperature Algorithm Theoretical Basis Document. http://MODIS.gsfc.nasa.gov/data/atbd/atbd_mod11.pdf
    [194]盂宪红,吕世华,张宇等.使用Landsat-5 TM数据反演金塔地表温度[J].高原气象,2005,24(5):721~726.
    [195]杨青生,刘闯. MODIS数据陆面温度反演研究[J].遥感技术与应用,2004,19(2):90-94.
    [196]宫阿都,江樟焰,李京,陈云浩,胡华浪.基于Landsat TM图像的北京城市地表温度遥感反演研究[J].遥感信息,2005(3):18-20.
    [197]黄妙芬,邢旭峰,王培娟,王昌佐.利用LANDSAT/TM热红外通道反演地表温度的三种方法比较[J].干旱区地理,2006,29(1):132-137.
    [198]李净.基于Landsat-5 TM估算地表温度[J].遥感技术与应用,2006,21(4):322-327.
    [199]覃志豪,ZhangMinghua,ArnonKarnieli,PedroBerliner.用陆地卫星TM6数据演算地表温度的单窗算法[J].地理学报,2001,56(4):456-466.
    [200] Markham BL, Barker JL. Landsat-MSS and TM post calibration dynamic ranges, atmospheric reflectance and at-satellite temperature [J].EOSATL and sat TechnicalNotes .1986(1):3-8.
    [201] SchneiderK, MauserW. Processing and accuracy of Landsat Thematic Mapper data for lake surface temperature measurement[J].International Journal of Remote ensing,1996(17):2027-2041.
    [202] Goetz S J, Halthore R N.Hall F G,et al.Surface temperature retrieval in a temperate grassland with multiresolution sensors [J] Journal of Geophysical Research,1996(100):25397-25410.
    [203] Schneider K, Mauser W.Processing and accuracy of Landsat Thematic Mapper data for lake surface temperature measurement [J].International journal of Remote Sensing,1996(17):2027 -2041.
    [204] Van De Griend A A, Owe M. On the Relationship Between Thermal Emissivity and the Normalized Difference Vegetation Index for Natural Surface [J]. International Journal of Remote Sensing.1993,14(6):1119~1131.
    [205] Masuda,K.,Takashima,T. and Takayama,Y. Emissivity of pure and sea waters for the model sea surface in the infrared window region [J]. Remote Sensing of the Environment, 1988(24):313-332.
    [206]谢燕,刘志辉,王云丰.基于MODIS乌昌地区春季地表温度反演[J].甘肃科技,2008,(24)3:37-40.
    [207] Yoram J Kaufman, Gao Bo-Cai. Remote Sensing of Water Vapor in the Near IR from EOS/MODIS [J]. IEEE Transactions on Geoscience and Remote Sensing,1992, 5(30):871-884.
    [208]刘传孝,蒋金泉,杨永杰等.国内外探地雷达技术的比较与分析[J].煤炭学报,2002,27(2):123-127.
    [209]刘敦文,黄仁东,徐国元等.探地雷达技术在西部大开发中应用展望[J].金属矿山,2001,(9):1-4.
    [210]刘敦文,徐国元,黄仁东.浅谈探地雷达技术在环境工程中的应用[J].环境保护,2001(8):14-16.
    [211]邓春为,李大洪.地质雷达资料解释方法综述[J].矿业安全与环保,2004,31(6):23-25.
    [212]袁明德.浅析探地雷达的分辨率[J].物探与化探,2003,27(1):28-31.
    [213] Van Oevelen, P.J. Estimation of areal soil water content through microwave remote sensing. PhD-thesis Wageningen University, The Netherlands, 2000.
    [214] HUISMAN J A ,HUBBARD S S ,REDMAN J D ,et al. Measuring soil water content with ground penetrating radar :a review .Vadose Zone Journal ,2003(2):476-491.
    [215] Endres, A.L., W.P. Clement, and D.L. Rudolph. Ground penetrating radar imaging of an aquifer during a pumping test. Ground Water, 2000 (38):566-576.
    [216] Nakashima, Y., H. Zhou, and M. Sato. Estimation of groundwater level by GPR in an area with multiple ambiguous reflections. J. of Appl. Geophysics, 2001(47):241-249.
    [217] D Redman, L Galagedara, G Parkin.Measuring Soil Water Content with the Ground Penetrating Radar Surface Reflectivity Method. ASAE-CIGR Meeting Paper, 2003.
    [218] U Wollschl?ger, K Roth.Estimation of Temporal Changes of Volumetric Soil Water Content from Ground-Penetrating Radar. Subsurface Sensing Technologies and Applications, 2005(6):2.
    [219] G Cassiani, C Strobbia. GPR guided waves for the estimation of water content in shallow soil layers. American Geophysical Union, Fall Meeting, 2005.
    [221] B. Schmalz, B. Lennartz. Wachsmuth. Analyses of soil water content variations and GPR attribute distributions. Journal of Hydrology, 2002, (267):217–226.
    [222] D Redman, G Parkin, P Annan.Borehole GPR measurement of soil water content during an infiltration experiment, 2000(4084):501-505.
    [223] J.L.Davis ,欧秀华.用于高分辨率土壤、岩石地层填图的探地雷达技术[J].地球物理学进展,1990,5(4):87-102.
    [224]胡振琪,陈宝政,王树东等.应用探地雷达测定复垦土壤的水分含量[J].河北建筑科技学院学报,2005,22 (1):1-3.
    [225] Dobson, M.C., Ulaby, F.T., Hallikainen,et al. Microwave dielectric behavior of wet soil. Part II.Dielektric mixing models. IEEE Trans. Geosci. Rem. Sensing GE, 1985(23): 35–46.
    [226] Topp,G.C., Davis, J.L., Annan, A.P. Soil water content: measurements in coaxial transmission lines. Water Resour. Res, 1980(16):574–582.
    [227] Roth, C.H., Malicki, M.A., Plagge, R. Empirical evaluation of the relationship between soil dielectric constant and volumetric water content as the basis for calibrating soil moisture measurements by TDR. Soil Sci., 1992(43): 1–13.
    [228]雷少刚,卞正富,张日晨,李林.探地雷达探测干旱区潜水埋深研究[J].中国雷达, 2008(1):17-20.
    [229]王清玉.地质雷达在工程勘察中的应用与分析[J].广西水利水电,2000,21(1):18-22.
    [230]樊自立,马英杰,张宏等.塔里木河流域生态地下水位及其合理深度确定[J].干旱区地理,2004,27 (1) :8-13.
    [231]李金柱,包气带土壤水分动态分析[J],山西水利,2002,(6):30-31.
    [232]邹友峰,邓喀中,马伟民.矿山开采沉陷工程[M].徐州:中国矿业大学出版社,2003.
    [233]谭志祥,邓喀中.综放面地表变形预计参数综合分析及应用研究[J].岩石力学与工程学报,2007,26(5):1041-1046.
    [234]郭文兵,邓喀中,邹友峰.条带开采地表移动参数研究[J].煤炭学报,2005,30(2):182-186.
    [235]单秀枝,魏由庆.土壤有机质含量对土壤水动力学参数的影响[J].土壤学报,1998,35(1):1-9.
    [236]雷少刚,卞正富.探地雷达与3S技术集成研究[J].测绘通报,2008(2):23-25.
    [237]建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程.国家煤炭工业局.北京:煤炭工业出版社, 2000。
    [238]崔亚莉,邵景力,韩双平.西北地区地下水的地质生态环境调节作用研究[J].地学前缘,2001,8(1):191-196.
    [239]郭占荣,韩双平.西北干旱地区凝结水试验研究[J].水科学进展,2002,13(5):623-627.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700