用户名: 密码: 验证码:
基于BP神经网络的施工扬尘量化建模研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
施工扬尘是大气颗粒污染物的重要来源,量化扬尘排放量是评价施工扬尘控制措施效果的重要手段。通过监测建筑工地边界附近同一平面坐标3.9-18.9m范围内不同天气条件下、不同高度处的降尘浓度变化,总结出施工扬尘产生的主要影响因素。影响施工扬尘的主要因素为:粉尘含水量、空气温度、空气湿度和施工强度。研究结果表明,建筑施工扬尘污染在地基开挖、地基建设和地基回填阶段最为严重,主体工程施工阶段次之,地面装饰施工阶段产生的扬尘污染可忽略不计,建筑设备安装阶段几乎没有扬尘污染产生。
     利用BP神经网络,对施工扬尘过程进行模拟,得出一定约束条件下的扬尘量化模型。BP神经网络经训练、优化后,采取140个隐含层神经元、最大训练周期为1000周,隐含层激励函数选择Levenberg-Marquardt最优化算法,最终确定一个形为4-140-1的三层网络结构的模型。其输入输出数据的相关度达到0.93786,网络经训练后最终输出性能为5.94×10-28,效果较为理想。结果表明,所建模型能够较好地预测施工扬尘在不同天气条件下的浓度变化趋势,可为工程施工场地扬尘运移、扩散及污染控制提供科学依据,该方法具有较广阔的开发应用前景。
Construction fugitive dust is the main source of atmospheric particulate pollutants, so it deserves to research and control it. Quantization dust emissions are an important means to assess effect of fugitive dust control measures. By monitoring the construction site near the boundary coordinates of the same plane within 3.9~18.9m under different weather conditions, different height of the dust concentration, summed up the construction dust generated by the main factors. The main factors affecting the construction fugitive dust are: dust moisture, air temperature, air humidity and construction strength. The results show that construction dust pollution in the foundation excavation, foundation construction, and backfilling the foundation stage are the most serious, followed by the main construction phase, the dust pollution produced by construction phase surface decoration is negligible, construction equipment Installation phase produces almost no dust pollution.
     Using BP neural network to simulate the process of construction fugitive dust, and get quantitative model under certain constraints. After BP neural network being trained, optimized, take 140 hidden layer neurons and the maximum training period of 1000 weeks; select the Levenberg-Marquardt optimization algorithm as hidden layer activation function to determine a three layer shape network model for 4-140-1 finally. The degree of input and output data related to 0.93786, the network performance of the final output after training is 5.94 x 10'28, results are satisfactory. The results show that the model can predict the dust pollution concentration trend in different weather conditions well, and provide the scientific basis for construction site dust migration, proliferation and pollution control. The method has wider application prospect.
引文
[1]全国文献工作标准化技术委员会第六分委员会.GB6447-86文摘编写规则[S].北京:中国标准出版社,1986.
    [2]全国文献工作标准化技术委员会第七分委员会.GB 7713-87科学技术报告、学位论文和学术论文的编写格式[S].北京:中国标准出版社,1987.
    [3]全国文献工作标准化技术委员会.GB/T 15834-1995标点符号用法[S].北京:中国标准出版社,1995.
    [4]国家语言文字工作委员会语言文字应用研究所.GB/T 15835-1995出版物数字用法的规定[S].北京:中国标准出版社,1995.
    [5]兰州市规划局.兰州市第三版城市总体规划[R].2000.
    [6]Akula Venkatram, Dennis Fitz, Kurt Bumiller ect. Using a dispersion model to estimate emission rates of particulate matter from paved roads[J]. Atmospheric Environment 33 (1999) 1093-1102.
    [7]U.S. Environmental Protection Agency, AP-42 Fifth Edition, Compilation of Air Pollutant Emission Factors, Volume 1:Stationary Point and Area Source,1995.
    [8]U.S. Environmental Protection Agency. Addendum for user's guide for the industrial source complex (ISC3) dispersion models [M]. North Carolina:Research Triangle Park,2002.
    [9]U.S. Environmental Protection Agency. User's guide for the industrial source complex (ISC3) dispersion models, volume I:user's instructions, EPA-454/B-95-003a [M], North Carolina:Research Triangle Park,1995.
    [10]Muleski G E, Cowherd Jr C. Particulate emission measurements from controlled construction activities, EPAP600PR201P031 [R].Washington:U. S. EPA, April 2001.12-14.
    [11]Winges K D. User's guide for the fugitive dust model, Volume Ⅰ:user's instructions, EPA-910/9-88-202R [M]. Washington DC:U.S. Environmental Protection Agency,1992.
    [12]N.S. Holmes, L. Morawska. A review of dispersion modelling and its application to the dispersion of particles:An overview of different dispersion models available[J]. Atmospheric Environment 40 (2006):5902-5928.
    [13]Monn, C, Fuchs, A., et al. Particulate matter less than 10 mm (PM10) and fine particles less than 2.5 mm (PM2.5):Relationship between Indoor and outdoor and personal concentrations[J]. The Science of the Total Environment 208(1997),15-21.
    [14]Clairborn, C., Mitra, A., et al. Evaluation of Pm10 emission rates from paved and unpaved roads using tracer techniques[J]. Atmospheric Environment 29 (10),1995,1075 1089.
    [15]Roorda-Knape, M.C., Janssen, N.A.H., et al. Air pollution from traffic in city districts near major motorways[J]. Atmospheric Environment 32(1998),1921 1930.
    [16]Hitchins, J., Morawska, L., et al. Concentrations of submicrometre particles from vehicle emissions near a major road[J]. Atmospheric Environment 34(2000),51 64.
    [17]Zhu, Y., Hinds, W.C., et al. Concentration and size distribution of ultrafine particles near a major highway[J]. Journal of Air and Waste Management Association 52(2002),1032 1042.
    [18]Morawska, L. Motor vehicle emissions as source of indoor particles. In:Morawska, L. Salthammer, T. (Eds.), Indoor Environment, vol. XVII. Wiley-VCH, Weinheim,2003, pp.297 319.
    [19]Holmes, N.S., Morawska, L., et al. Spatial distribution of submicrometre particles and CO in an urban microscale environment[J]. Atmospheric Environment 39 (22),2005,3977 3988.
    [20]Harrison, R.N., Jones, A.M. Multisite study of particle number concentrations in urban air[J]. Environmental Science & Technology 39 (16),2005,6063 6070.
    [21]Morawska, L.,2003. Motor vehicle emissions as source of indoor particles. In:Morawska, L., Salthammer, T. (Eds.), Indoor Environment, vol. XVII. Wiley-VCH, Weinheim,2003, pp.297 319.
    [22]Cheryl McKenna Neuman, J. Wayne Boulton, Steven Sanderson. Wind tunnel simulation of environmental controls on fugitive dust emissions from mine tailings [J]. Atmospheric Environment 43 (2009)520-529.
    [23]Van Dingenen, R., Raes, F., et al. A European aerosol phenomenology-1:physical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe[J]. Atmospheric Environment 38 (16),2004,2561 2577.
    [24]John R. Stedmana, Andrew J. Kenta.ect. A consistent method for modelling PM10 and PM2.5 concentrations across the United Kingdom in 2004 for air quality assessment[J]. Atmospheric Environment 41 (2007) 161-172.
    [25]Lohmeyer, A. Comparison of the procedures of different modellers for air pollutant concentrations prediction in a street canyon-The Podbielski Street exercise,2001. http://www.lohmeyer.de/podbi/.
    [26]Benson, P.E. CALINE 4 A Dispersion Model for Predicting Air Pollutant Concentrations near Roadways. FHWA User Guide. U. Trinity Consultants Inc.1984.
    [27]Sokhi, R., Fisher, B., et al. Modelling of air quality around roads. In:Proceedings of the 5th International Conference on Harmonisation with Atmospheric Dispersion Modelling for Regulatory Purposes, Greece.1998.
    [28]Sharan, M., Yadav, A.K., et al. Plume dispersion simulation in low-wind conditions using coupled plume segment and Gaussian puff approaches[J]. Journal of Applied Meteorology 35 (10),1996,1625 1631.
    [29]Thomson, D.J., Manning, A J.. Along-wind dispersion in light wind conditions[J]. Boundary-Layer Meteorology 98 (2),2001,341 358.
    [30]Caputo, M., Gimenez, M., et al. Intercomparison of atmospheric dispersion models[J]. Atmospheric Environment 37 (18),2003,2435 2449.
    [31]Oettl, D., Kukkonen, J., et al. Evaluation of a Gaussian and a Lagrangian model against a roadside data set, with emphasis on low wind speed conditions[J]. Atmospheric Environment 35 (12),2001,2123 2132.
    [32]Raza, S.S., Avila, R., et al. A 3-D Lagrangian stochastic model for the meso-scale atmospheric dispersion applications [J]. Nuclear Engineering and Design 208 (1),2001,1528.
    [33]Venkatesan, R., Mathiyarasu, R., et al. A study of atmospheric dispersion of radionuclides at a coastal site using a modified Gaussian model and a mesoscale sea breeze model[J]. Atmospheric Environment 36 (18),2002,293 32942.
    [34]Tsuang, B.J. Quantification on the source/receptor relationship of primary pollutants and secondary aerosols by a Gaussian plume trajectory model:Part I theory [J]. Atmospheric Environment 37 (28),2003,3981 3991.
    [35]Du, S.M. A heuristic Lagrangian stochastic particle model of relative diffusion:model formulation and preliminary results[J]. Atmospheric Environment 35 (9),2001,1597 1607.
    [36]Hurley, P., Manins, P., et al. Year-long, high-resolution, urban airshed modelling:verification of TAPM predictions of smog and particles in Melbourne, Australia[J]. Atmospheric Environment 37 (14), 2003,1899 1910.
    [37]Jung, Y.R., Park, W.G., et al. Pollution dispersion analysis using the puff model with numerical flow field data[J]. Mechanics Research Communications 30 (4),2003,277 286.
    [38]Gidhagen, L., Johansson, C, et al. Simulation of NOx and ultrafine particles in a street canyon in Stockholm, Sweden[J]. Atmospheric Environment 38 (14),2004,20292044.
    [39]Mensink, C., Colles, A., et al. Integrated air quality modelling for the assessment of air quality in streets against the council directives[J]. Atmospheric Environment 37 (37),2003,5177 5184.
    [40]田刚,黄玉虎,李钢.四维通量法施工扬尘排放模型的建立与应用[J].环境科学,2009,30(4):1003-1007.
    [41]田刚,李建民,李钢,等.建筑工地大气降尘与总悬浮颗粒物相关性研究[J].环境科学,2007,28(9):1941-1943.
    [42]黄玉虎,田刚,秦建平,李钢,闫宝林.不同施工阶段扬尘污染特征研究[J].环境科学,2007,28(12):2885-2888.
    [43]田刚,李钢,闫宝林,黄玉虎,秦建平.施工扬尘空间扩散规律研究[J].环境科学,2008,29(1):259-262.
    [44]刘玉峰,丛晓春,张旭.露天堆场扬尘量分布的计算[J].环境污染与防治,2006,28(2):146-148.
    [45]王帅杰.扬尘污染防治理论初探[J].安全与环境工程,2006,13(3):9-12.
    [46]周淑贞,束炯.城市气候学.北京:气象出版社,1994.558-561.
    [47]李红,曾凡刚,邵龙义等.可吸入颗粒物对人体健康危害的进展[J].环境与健康杂志,2002,19(10):85-87.
    [48]马彩霞,张朝能,宁平.城市建筑施工主要环境污染及其防治对策[J].环境科学导刊.2007,26(4):213-216.
    [49]刘立忠,张承中,李冶婷.道路人工清扫扬尘中PM10污染影响因素研究[J].西北大学学报(自然科学版).2005,35(3):363-366.
    [50]倪国强,魏强,左海峰.公共建筑大修施工现场的扬尘控制研究[J].建筑施工.2007,29(12):519-524.
    [51]张洁.工程建设项目环境管理现状分析[J].工程建设与设计,2006(2):69-71.
    [52]赵秀勇,程水源,田刚等.北京市施工扬尘污染与控制[J].北京工业大学学报,2007,33(10):1086-1090.
    [53]张承中,刘立忠,李涛等.机动车二次扬尘机理及影响因素[J].长安大学学报(自然科学版),2003,23(2):88-90.
    [54]田刚,樊守彬,李钢,秦建平.施工工地出口附近道路交通扬尘排放特征研究[J].环境科学,2007,28(11):2626-2629.
    [55]赵星光,谭卓英.露天矿山运输路面扬尘影响因素及机理分析[J].有色金属,2005,57(3)43—46.
    [56]Arun Srivastava, V.K. Jain. Size distribution and source identification of total suspended particulate matter and associated heavy metals in the urban atmosphere of Delhi[J]. Chemosphere 68 (2007)579-589.
    [57]Gregory E. Muleski and Chatten Cowherd, Jr. Particulate Emissions from Construction Activities[J]. Air & Waste Manage. Assoc.2005,55:772-783.
    [58]黄玉虎,邵霞,于萌等.区域环境颗粒物污染特征研究[J].城市管理与科技,2006,8(6):256-258.
    [59]田刚,李建民,李钢等.建筑工地大气降尘与总悬浮颗粒物相关性研究[J].环境科学,2007,28(9):1941-1943.
    [60]Hesketh H E, Cross F L. Fugitive emissions and controls[M].New York:Ann Arbor Science Co, 1982.
    [61]尉元明,潘峰,王静,牛磊.兰州城区TSP高浓度污染与自然降尘的关系[J].中国沙漠,2006,26(5):763-766.
    [62]北京市环境保护监测中心.GB/T 15265—1994环境空气降尘的测定——重量法[S].北京:中国标准出版社,1994.
    [63]孙秉强,张强,董安祥等.甘肃黄土高原土壤水分气候特征[J].地球科学进展.2005,20(9):1041-1046.
    [64]田裘学,周伶芝,王瑞.兰州市空气污染物的变化规律与特征.中国环境监测.2001,17(1):14-18.
    [65]上海市环境监测中心,上海市气象科学研究所.HJ/T 55-2000大气污染物无组织排放检测技术导则[S].2000.
    [66]钱广强,董治宝.大气降尘收集方法及相关问题研究[J].中国沙漠,2004,4(6):779-782.
    [67]曾庆存,胡非,程雪玲.大气边界层阵风扬尘机理[J].气候与环境研究,2007,12(3):251-255.
    [68]黄嫣旻.城市地面扬尘的估算与分布特征研究[D]:[硕士学位论文].上海:华东师范大学,2006.
    [69]中国科学院系统科学研究所.GB/T8170-1987数值修约规则[S].北京:中国标准出版社,1987.
    [70]崔玉理.基于神经网络的污水处理过程建模及仿真的研究[D]:[硕士学位论文].青岛:山东科技大学,2006.
    [71]曹玉珍,莫翠云,蔡明.基于MATLAB的灰色模型在广州市降尘预测中的应用[J].中国环境监测.2006,22(5):54-56.
    [72]郝明亮,徐建英,左玉辉.人工神经网络在环境科学中的应用研究[J].上海环境科学.1999,18(11):510--512.
    [73]刘国东,丁晶.应用BP网络研究气候变化对雅砻江和嘉陵江流域水资源环境的影响[J].中国环境科学.1997,17(5):414-417.
    [74]王瑛等.人工神经网络方法在我国环境预测中的应用[J].环境科学.1997,18(5):81-83.
    [75]张爱茜等.运用回归分析与人工神经网络预测含硫芳香族化合物好氧生物降解速率常数[J].环境科学.1998,19(1):37-40.
    [76]孙唏,鲁生业等.利用神经网络法对胺类有机物急性毒性的分类及定量预测[J].环境科学.1998,19(1):41--45.
    [77]高平平.基于神经网络的污水处理水质预测研究[D]:[硕士学位论文].成都:西南交通大学.2004.
    [78]周秀杰,苏小红,袁美英.基于BP网络的空气污染指数预报研究[J].哈尔滨工业大学学报.2004,36(5):582-585.
    [79]赵翠光.人工神经元网络方法在沙尘暴短期预报中的应用[J].气象.30(4):39-41.
    [80]于文革,王体健,杨诚等.PCA-BP神经网络在S02浓度预报中的应用[J].气象.2008,34(6):97-101.
    [81]李祚泳.B-P网络用于水质综合评价方法的研究[J].环境工程.1995,13(2):51-53.
    [82]刘国东.水质综合评价的人工神经网络模型[J].中国环境科学.1998,18(6):514-517.
    [83]郭宗楼等.环境质量综合评价的径向基函数网络模型[J].环境科学研究.1997,10(4):1-4.
    [84]郭宗楼.水利水电工程环境影响综合评价的人工神经网络专家系统[J].环境科学研究.1998,11(5):29-33.
    [85]于苏俊,夏永秋.基于VB-net.和Matlab的大气扩散模型设计[J].环境与可持续发展,2006(1):22-23.
    [86]赵普生,冯银厂,张裕芬等.建筑施工扬尘排放因子定量模型研究及应用[J].中国环境科学.2009,29(6):567-573.
    [87]钟淑瑛,李陶深.基于MATLAB的BP-LVQ神经网络组合分类模型[J].计算机技术与发展.2006,16(2):114-116.
    [88]Nocedal Jorge, Wright Stephen J. Numerical Optimization,2nd Edition[C]. Springer. ISBN 0-387-30303-0.2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700