用户名: 密码: 验证码:
应用遥感方法估算区域实际蒸散量的时空变异性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
区域蒸散发是陆面生态水文过程的关键环节,也是区域水资源管理和水循环研究的重要内容。传统观测方法获取的实际蒸散量只是单点的数据,缺乏区域代表性。遥感影像具有宏观性、实时性、动态性等特点,在区域蒸散估算方面具有广阔的应用前景。本文借助Landsat TM5遥感数据,用简化的遥感-能量平衡模型进行区域实际蒸散量的估算。在此基础上探讨了不同土地利用类型和城市化对区域实际蒸散量的影响,为区域水资源管理提供依据。本研究还评价了美国地质调查局提供的分辨率为1。、覆盖范围为全球的参考蒸散数据的可靠性。取得以下主要结论:
     (1)本研究分别用国内黄土高原和国外俄克拉荷马州的实测数据对美国地质调查局提供的全球参考蒸散(GDAS ET0)进行验证。结果表明:用中国地面国际交换站气候资料计算的ETo与GDAS ET0在不同的时间尺度上均非常匹配。在日尺度上总体的偏差在为7.26%,总体的相关系数为0.85。在月尺度上所有站点的相关系数都在0.9以上,年尺度上的偏差在4%以内。2005和2006GDAS数据和俄克拉荷马州MESONET实测ETo数据也非常一致,所有点的偏差在10%以内,总体偏差为-2.80%,相关系数在0.9以上。因此,GDAS ETo数据的可靠性很高。
     (2)建立了估算实际蒸散量的简化遥感-能量平衡模型,并分别在单点和流域尺度上进行精度验证。结果表明:遥感蒸散模型计算得到的蒸散量与实测的蒸散量和根据水量平衡方程计算的蒸散量基本接近。两种方法计算的的偏差都在10%以内,相关系数在0.7以上。因此,本文建立的估算实际蒸散量的遥感方法能满足区域尺度陆面蒸散量的估算精度,可用于区域蒸散量的计算。
     (3)利用遥感模型计算了研究地区的日、季度、年蒸散量的时空分布图,并与土地利用/覆被图进行叠加,得到不同土地利用类型及不同时间尺度区域蒸散量。结果表明:不同土地利用/覆盖类型下的月蒸散量虽然大小不一样,但分布规律基本一致,分布曲线变化基本都表现为单峰型变化,4-5月开始进入生长季,ET逐渐升高;6-8月为植被的生长旺盛期,ET达到最高值;9月份ET均逐渐下降;12月至次年2月ET达到最低值。各种土地利用/覆被类型的实际蒸散量为水体的蒸散发最高、湿地次之、开发用地最低,蒸散发量的变化基本受土地利用类型的变化影响。比较农业县Garfield和城镇俄克拉荷马城的蒸散量发现,Garfield县除了水体外其他六类土地利用类型的年实际蒸散量都大于Oklahoma城。
     (4)研究了俄克拉荷马城不同城市化水平的蒸散量,结果表明:不同城市化水平的月蒸散量分布趋势基本一致,均为单峰型曲线,7月份达到最大值,1月份最小,1月和2月份各种程度城市化的蒸散量基本一样,从4-9月不同程度城市化用地的蒸散量差异非常大,表现为未开发的城市用地>低度开发的城市用地>中度开发的城市用地>高度开发的城市用地。年蒸散量也表现为相同的趋势,未开发的城市用地蒸散量最大为778.85 mm,低度开发的城市用地次之为716.04mm,高度开发的城市用地最低为656.50mm。
     (5)比较了不同植被类型的月蒸散量和年总蒸散量,结果表明:无论月蒸散量还是年总蒸散量,林地均大于草地;而对于不同林分而言,年总蒸散量常绿林最高,落叶林次之,混交林最低;混交林的月蒸散量除在1月和12月高于落叶林外,2-11月都明显低于落叶林和常绿林,3-8月落叶林的蒸散量与常绿林相当,甚至高于常绿林。总的来讲,混交林的蒸散耗水量最少。对不同城市绿地而言,俄克拉荷马的草地和雪松月蒸散量动态变化仍为单峰型曲线,7月份达到最大值,1月份最小;1-2月雪松和草地的蒸散量基本一样,3-6月雪松和草地的蒸散量差异非常大,雪松明显高于草地;年蒸散雪松明显高于草地。
Regional evapotranspiration (ET) is among the major components of the ecological processes and hydrological processes for land surface and is arguably the most important component of the water cycle and regional water resource management. Traditional methods can only provide point estimates of ET, which are not sufficient for large-scale assessment. Remotely sensed data has the advantage of large area coverage, frequent updates, and consistent quality, Remotely sensed data methods provide a powerful means to compute regional ET. The main works of this study are:(1) a Simple-Surface-Energy-Balance ET algorithm was implemented to estimate ETa at a higher spatial resolution using Landsat 5 satellite images (2) to estimate ETa and determine the variation with regards to varying types of land use and land cover in urban settings. (3) to evaluate the potential utility of the USGS Global Data Assimilation System (GDAS) 1-degree, daily reference Evapotranspiration (ETO) products. Main results in this study are as followed:
     (1) The central objective of this work was to evaluate the utility of the operational USGS/EROS GDAS 1-degree daily ETo product in regional water resource research. For the evaluation we used Chinese International exchange of ground stations climate data and the Oklahoma MESONET's daily ETo data. By comparing with ETo data from Chinese International exchange of ground stations climate data.The result showed a close match between the two independent ETo products, with overall bias of 7.26% and overall correlation coefficient of 0.85 at a daily time scale. The temporal patterns were strongly correlated, with a monthly correlation coefficient above 0.9 and annual bais within 4%.By comparing with ETo data from the Oklahoma Regional Mesoscale Meteorological Observational Network (MESONET). The comparison showed a close match between the two independent ETo products, with bias within a range of 10% for most of the sites and the overall bias of-2.80%. The temporal patterns were strongly correlated, with a correlation coefficient above 0.9 for all groups.The result confirmed the reliability and potential of using GDAS reference ET
     (2) We utilized a modified version of the Surface Energy Balance (SSEB) approach to estimate ET, The accuracy of remotely sensed ET results was validated by using site-specific flux towers and a water balance model at the basin scale. In general, bias ratios were less than 10% and a correlation coefficient of 0.7. Results showed that SSEB algorithms can be used to effectively estimate ET at the regional level
     (3) This study presented the estimates of remotely sensed ETa using Simple Surface Energy Balance method and examines the spatiotemporal variations of ETa. Different types of LULC actual ET were extracted by overlaying the LULC map of study area. In general, all types of LULC showed similar seasonal dynamic trends for ETa throughout the year. The value of ETa started to rise rapidly in April, reached peak values in July, and then declined to the lowest levels in January. The results also showed that water bodies had the highest ETa values over the whole year. Wetlands and forests had higher average ETa than agriculture land, and grass land. Similar to the annual analysis, the lowest ET values occured at the developed areas throughout the year.The results clearly indicated that ETa values in the agriculturally dominant Garfield County are generally higher than those in Oklahoma County except for water bodies.
     (4) In general, all types of urban areas showed similar ET trends throughout the year. The values of ETa started to rise rapidly in May, reached peak values in July, and then declined for the rest of the year. The results also show that open land areas had the highest ETa values during the whole year. The lower the urban development level, the higher the annual ETa values. The result also indicated that the relative differences of the ETa occur in association with urban development levels from April to September, whereas the difference was negligible in fall and winter seasons. The estimates ETa revealed that the higher the ET the lower development levels in urban regions.
     (5) Comparing the monthly ET and annual ET among different land cover, the results showed that forests had higher average ETa than grass land all over the year. For different forest types, the annual ET was the highest for the evergreen forest, the medium for the deciduous forest, and the lowest for the mixed forest. The monthly ET of mixed forest was lower than the evergreen forest and deciduous forest except for January and December. From March to August, the ET of evergreen forest and deciduous forest were the same. In genral, the water consumption of the mixed forest was the lowest.For different Green land, grass and cedar had similar ET trends throughout the year, reaching the minimum in January and the maximum in July. Annual ET of Ceder was generally higher than grass land.
引文
卜兆宏,孙金庄,等.1999.应用水土流失定量遥感方法监测山东全省山丘区的研究.土壤学报36(001):1-8.
    卜兆宏,孙金庄,等.1997.水土流失定量遥感方法及其应用的研究.土壤学报(03):235-245.
    卜兆宏,孙金庄,周伏建.1995.水土流失的定量遥感及其应用研究进展.农村生态环境(04):35-39.
    曹明奎,李克让.2000.陆地生态系统与气候相互作用的研究进展.地球科学进展(04):446-452.
    查书平.2004.基于RS与GIS的长江三角洲蒸散量研究.[Doctorial thesis/M].
    查勇,高家庆,等.1997.遥感技术在荒漠化滥测中的应用——以陕西榆林市芹河乡为例.中国沙漠(03):286-290.
    陈玲.2007.基于改进的SEBAL模型估算区域蒸散发.[Doctorial thesis/M].
    陈添宇,陈乾,等.2006.用卫星资料反演中国西北地区东部蒸散量的遥感模型.水科学进展(06):834-840.
    陈云浩,李晓兵,等.2002.非均匀陆面条件下区域蒸散量计算的遥感模型.气象学报(04):508-512.
    樊军,王全九,等.2006.利用小蒸发皿观测资料确定参考作物蒸散量方法研究.农业工程学报(07):14-17.
    范爱武,刘伟,等.2004.环境因子对土壤水分蒸散的影响.太阳能学报(01):1-5.
    傅抱璞.1981.论陆面蒸发的计算.大气科学(01):23-31.
    高彦春,龙笛.2008.遥感蒸散发模型研究进展.遥感学报(03):515-528.
    葛伟强,周红妹,等.2006.基于遥感和GIS的城市绿地缓解热岛效应作用研究.遥感技术与应用(05):432-435.
    郭晓寅,程国栋.2004.遥感技术应用于地表面蒸散发的研究进展.地球科学进展(01):107-114.
    韩惠.2006.基于遥感技术的祖厉河流域土地利用/土地覆盖变化与蒸散发研究.[Doctorial thesis/M].
    何红艳,郭志华,等.2007.遥感在森林地上生物量估算中的应用.生态学杂志(08):1317-1322.
    洪刚,李万彪,等.2001.卫星遥感估算淮河流域区域能量通量的方法研究.北京大学学报(自然科学版)(05):693-700.
    金亚秋.1997.加强定量遥感几个方面的综合研究.遥感信息(01):12-14.
    敬书珍.2008.基于遥感的城市蒸散发对土地利用/覆盖的响应研究.《2008年全国城市水利学术研讨会暨工作年会资料论文集》:163-170.
    李红军,雷玉平,等.2005.SEBAL模型及其在区域蒸散研究中的应用.遥感技术与应用(03).
    李金柱.2003.区域蒸散发影响因素综合分析.山西水利(03):23-24.
    李林.1997.城市化对西宁市区的气候影响.青海环境(04):171-174.
    李小文.2001.多角度与热红外对地遥感北京:科学出版社.
    李小文,赵红蕊,等.2002.全球变化与地表参数的定量遥感.地学前缘(02):365-370.
    李星敏,卢玲,等.2009.遥感技术在区域农田蒸散研究中的应用.西北农林科技大学学报(自然科学版)(08):161-170.
    梁薇,刘永朝,等.2007.ET管理在馆陶县水资源分配中的应用.海河水利(02):52-54.
    刘昌明,孙蓉.1999.水循环的生态学方面:土壤—植被—大气系统水分能量平衡研
    究进展.水科学进展10:251—259.
    刘朝顺,高炜,等.2009.应用MODIS数据推估区域地表蒸散.水科学进展(06):782-788.
    刘朝顺,高志强,等.2007.基于遥感的蒸散发及地表温度对LUCC响应的研究.农业工程学报(08):1-8.
    刘绍民,孙中平,等.2003.蒸散量测定与估算方法的对比研究.自然资源学报(02):161-167.
    吕晓东,王鹤龄,等.2010.河西地区近50年参考作物蒸散量的演变趋势及其影响因素.生态环境学报(07):1550-1555.
    马耀明,李茂善,等.2003.西北干旱区及高原上卫星遥感非均匀地表区域能量通量研究.干旱气象(03):34-42.
    马耀明,刘东升,等.2004.卫星遥感藏北高原非均匀陆表地表特征参数和植被参数.大气科学(01):23-31.
    马耀明,王介民,等.1999.卫星遥感结合地面观测估算非均匀地表区域能量通量.气象学报(02):180-189.
    马柱国,符淙斌,等.2001.土壤湿度和气候变化关系研究中的某些问题.地球科学进展(04):563-568.
    潘志强,刘高焕.2003.黄河三角洲蒸散的遥感研究.地球信息科学(03):91-96.
    宋小宁.2004.基于植被蒸散法的区域缺水遥感监测方法研究.[Doctorial thesis/M].
    孙敏章,刘作新,等.2005.基于陆面能量平衡方程的遥感模型.灌溉排水学报(03).
    孙敏章,刘作新,等.2005.基于陆面能量平衡方程的遥感模型.灌溉排水学报(03):74-76.
    孙敏章,刘作新,等.2005.卫星遥感监测ET方法及其在水管理方面的应用.水科学进展(03):468-474.
    孙菽芬.P天文学、地球科学P000021陆面过程的物理、生化机理和参数化模型:中国图书年鉴.
    覃志豪,Minghua Z,等.2001.用陆地卫星TM6数据演算地表温度的单窗算法.地理学报(04):456-466.
    覃志豪,Minghua Z,等.2001.用陆地卫星TM6数据演算地表温度的单窗算法.地理学报(04).
    王春梅,王鹏新,等.2008.区域蒸散和表层土壤含水量遥感模拟及影响因子.农业工程学报(10):127-133.
    王介民,高峰,等.2003.流域尺度ET的遥感反演.遥感技术与应用(05):332-338.
    王介民,刘绍民,等.2005.ET的遥感监测与流域尺度水资源管理.干旱气象(02):1-7.
    王军邦,牛铮,等.2004.定量遥感在生态学研究中的基础应用.生态学杂志(02):152-157.
    王黎明.2005.吉林省西部区域遥感蒸散模型研究及其应用.[Doctorial thesis/M].
    王黎明,周云轩,等.2010.吉林省西部区域蒸散时空变化分析.遥感信息(02):103-108.
    王书功,康尔泗,等.2003.黑河山区草地蒸散发量估算方法研究.冰川冻土(05):558-565.
    吴忠义.1994.我国城市气候研究概况.贵州气象(02):32-33.
    谢贤群.2003.我国北方地区农业生态系统水分运行及区域分异规律研究的内涵和研究进展.地球科学进展(03):440-446.
    辛晓洲.2003.用定量遥感方法计算地表蒸散.[Doctorial thesis/M].
    辛晓洲,田国良,等.2003.地表蒸散定量遥感的研究进展.遥感学报(03):233-240.
    熊绍钧.2006.长江中游涨渡湖的水平衡分析与研究.水利水电快报(24).
    杨德保,王式功,王玉玺.1994.兰州城市气候变化及热岛效应分析.兰州大学学报(04):161-167.
    杨何群.2006.基于遥感和DEM的山区—平原地表水热通量估算及对比分析研究.[Doctorial thesis/M].
    杨建军.2009.基于遥感的新疆潜在蒸散模式研究.[Doctorial thesis/M].
    杨士弘.1994.城市绿化树木的降温增湿效应研究.地理研究(04):74-80.
    叶笃正,陈泮群.1992.中国的全球变化预研究.
    易永红.2008.植被参数与蒸发的遥感反演方法及区域干旱评估应用研究.[Doctorial thesis/M].
    虞静明,詹兴伴,等.1988.山区小地形对温湿度影响的确定.地理学报(03).
    詹志明,冯兆东,等.2004.陇西黄土高原陆面蒸散的遥感研究.地理与地理信息科学(01):16-19.
    张东,张万昌,等.2005.汉江上游流域蒸散量计算方法的比较及改进.资源科学(01):97-103.
    张和喜,迟道才,等.2007.东北丘陵半干旱区参考作物蒸散量计算方法比较.安徽农业科学(03):636-640.
    张劲松孟平,尹昌君.2001.植物蒸散耗水量计算方法综述.世界林业研究14(002):23-28.
    张仁华.1996.试验遥感模型及地面基础北京::科学出版社.
    张仁华.1999.对于定量热红外遥感的一些思考.国土资源遥感(01):1-6.
    张仁华,孙晓敏,等.1997.IMGRASS中的尺度转换和现实的定量遥感.气候与环境研究(03):310-315.
    赵英时.2003.遥感应用分析原理与方法北京:科学出版社:309-336.
    周云轩,王黎明,等.2005.吉林西部陆面遥感蒸散模型研究.吉林大学学报(地球科学版)(06):812-817.
    Allen R, Bastiaanssen W et al. Evapotranspiration on the watershed scale using the SEBAL model and Landsat images.
    Allen R, Pereira L et al.1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome 300.
    Allen R, Smith M et al.1994. An update for the calculation of reference evapotranspiration. ICID bulletin 43(2):35-92.
    Allen R, Smith M et al.1994. An update for the definition of reference evapotranspiration. ICID bulletin 43(2):1-34.
    Allen R, Tasumi M et al.2007. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-Model. Journal of irrigation and drainage engineering 133:380.
    AmericanFactFinder and Bureau U S C. United States Census Bureau .Baldocchi D, Falge E et al.2001. FLUXNET:A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities.
    Barton I.1979. A parameterization of the evaporation from nonsaturated surfaces. Journal of Applied Meteorology 18(1):43-47.
    Bastiaanssen W.1995. Regionalization of surface flux densities and moisture indicators in composite terrain:A remote sensing approach under clear skies in Mediterranean climates:Wageningen: SC-DLO.
    Bastiaanssen W, Menenti M et al.1998. A remote sensing surface energy balance algorithm for land (SEBAL).1. Formulation. Journal of Hydrology 212:198-212.
    Bastiaanssen W, Pelgrum H et al.1998. A remote sensing surface energy balance algorithm for land (SEBAL).::Part 2:Validation. Journal of Hydrology 212:213-229.
    Bastiaanssen W G M, Menenti M et al.1998. A remote sensing surface energy balance algorithm for land (SEBAL).1. Formulation. Journal of Hydrology 212:198-212.
    Bastiaanssen W G M, Noordman E J M et al.2005. SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. Journal of irrigation and drainage engineering 131:85.
    Brotzge J and Crawford K.2003. Examination of the surface energy budget:A comparison of eddy correlation and Bowen ratio measurement systems. Journal of Hydrometeorology 4(2):160-178.
    Brown K and Norman J. A Resistance Model to Predict Evapotranspiration and Its Application to a Sugar Beet Field1. Agronomy Journal 65(3):341.
    Brutsaert W.1982. Evaporation into the atmosphere:Theory, history, and applications:Springer.
    Brutsaert W and Sugita M.1992. Application of self-preservation in the diurnal evolution of the surface energy budget to determine daily evaporation. J. Geophys. Res 97(18):377-18.
    Budyko M, Berlyand T et al.1958. The Heat Balance of the Earth's Surface. TTranslated by N.A. Stepanova, U.S. Dept. of Commerce,259 pp.
    Carlson T, Capehart W et al.1995. A new look at the simplified method for remote sensing of daily evapotranspiration. Remote Sensing of Environment 54(2):161-167.
    Caselles V, Artigao M et al.1998. Mapping actual evapotranspiration by combining Landsat TM and NOAA-AVHRR images:application to the Barrax area, Albacete, Spain. Remote Sensing of Environment 63(1):1-10.
    Chehbouni A, Nouvellon Y et al.2001. Estimation of surface sensible heat flux using dual angle observations of radiative surface temperature. Agricultural and Forest Meteorology 108(1):55-65.
    Chen J, Kan C et al.2002. Use of spectral information for wetland evapotranspiration assessment. Agricultural Water Management 55(3):239-248.
    Choudhury B and DiGirolamo N.1998. A biophysical process-based estimate of global land surface evaporation using satellite and ancillary data Ⅰ. Model description and comparison with observations. Journal of Hydrology 205(3-4):164-185.
    Cleugh H, Leuning R et al.2007. Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sensing of Environment 106(3):285-304.
    Climatography of the United States No.20:Oklahoma City AP O-h c n n g c c o p N O a A.
    Crago R.1996. Conservation and variability of the evaporative fraction during the daytime. Journal of Hydrology 180(1-4):173-194.
    Crago R D.1996. Comparison of the evaporative fraction and the Priestley-Taylor alpha for parameterizing daytime evaporation. Water Resources Research 32(5):1403-1409.
    Dickinson R E.1984. Modeling evapotranspiration for three-dimensional global climate models.58-72.
    Doorenbos J and Pruitt W O.1977. Guidelines for predicting crop water requirements:Food and Agriculture Organization of the United Nations (FAO). Rome, IT.
    French A, Jacob F et al.2005. Surface energy fluxes with the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) at the Iowa 2002 SMACEX site (USA). Remote Sensing of Environment 99(1-2):55-65.
    Friedl M.1995. Modeling land surface fluxes using a sparse canopy model and radiometric surface temperature measurements. Journal of Geophysical Research 100(D12):25435.
    Goetz S, Halthore R et al.1995. Surface temperature retrieval in a temperate grassland with multiresolution sensors. Journal of Geophysical Research 100(D12):25.
    Golubev V, Lawrimore J et al.2001. Evaporation changes over the contiguous United States and the former USSR:A reassessment. Geophysical Research Letters 28(13):2665-2668.
    Granger R.2000. Satellite-derived estimates of evapotranspiration in the Gediz basin. Journal of Hydrology 229(1-2):70-76.
    Hatfield J, Perrier A et al.1983. Estimation of evapotranspiration at one time-of-day using remotely sensed surface temperatures. Agricultural Water Management 7(1-3):341-350.
    Hatfield J, Reginato R et al.1984. Evaluation of canopy temperature--evapotranspiration models over various crops. Agricultural and Forest Meteorology 32(1):41-53.
    Hillel D.1982. Advances in irrigation:Academic Press. http://www.liuxue.ne http://www.cnattract, http://www.usastudy et al.
    Jackson R, Reginato R et al.1979. Plant canopy information extraction from composite scene reflectance of row crops. Applied Optics 18(22):3775-3782.
    Jensen M, Burman R et al.1990. Evapotranspiration and irrigation water requirements:American society of civil engineers.
    Krishnan A and Kushwaha R.1973. A multiple regression analysis of evaporation during the growing season of vegetation in the arid zone of India. Agricultural Meteorology 12:297-307.
    Kustas W. A two-source energy balance approach using directional radiometric temperature observations for sparse canopy covered surfaces.
    Lambin E and Ehrlich D.1996. The surface temperature-vegetation index space for land cover and land-cover change analysis. International Journal of Remote Sensing 17(3):463-487.
    Le Jiang S.2001. Estimation of surface evaporation map over southern Great Plains using remote sensing data. Water Resources Research 37(2):329-340.
    Lhomme J, Monteny B et al.1994. Estimating sensible heat flux from radiometric temperature over sparse millet. Agricultural and Forest Meteorology 68(1-2):77-91.
    Li Z and Becker F.1993. Feasibility of land surface temperature and emissivity determination from AVHRR data. Remote Sensing of Environment 43(1):67-85.
    Menenti M.1984. Physical aspects of and determination of evaporation in deserts applying remote sensing techniques. Report 10 (special issue) Institute for Land and Water Management Research (ICW) remote sensing techniques.
    Menenti M, Lorkeers A et al.1986. An application of thematic mapper data in Tunisia; estimation of daily amplitude in near-surface soil temperature and discrimination of hypersaline soils. ITC-Journal (Netherlands).
    Milly P.1994. Climate, interseasonal storage of soil water, and the annual water balance. Advances in Water Resources 17(1-2):19-24.
    Monteith J.1965. Evaporation and environment.
    Moran M, Jackson R et al.1989. Mapping surface energy balance components by combining Landsat Thematic Mapper and ground-based meteorological data. Remote Sensing of Environment 30(1): 77-87.
    Morgan R.1988. Soil erosion and conservation. Soil Science 145(6):461.
    Morton F I.1983. Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. Journal of Hydrology (Amsterdam) 66(1/4):1-76.
    Mu Q, Heinsch F et al.2007. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sensing of Environment 111 (4):519-536.
    Nemani R and Running S.1989. Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data. Journal of Applied Meteorology 28(4):276-284.
    Nishida K, Nemani R et al.2003. An operational remote sensing algorithm of land surface evaporation. Journal of Geophysical Research 108(D9):4270.
    Njoku E and Patel I.1986. Observations of the seasonal variability of soil moisture and vegetation cover over Africa using satellite microwave radiometry.
    Olioso A, Chauki H et al.1999. Estimation of evapotranspiration and photosynthesis by assimilation of remote sensing data into SVAT models. Remote Sensing of Environment 68(3):341-356.
    Penman H.1948. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 193(1032):120-145.
    Reginato R, Jackson R et al.1985. Evapotranspiration calculated from remote multispectral and ground station meteorological data. Remote Sensing of Environment 18(1):75-89.
    Renard K, Foster G et al.1994. RUSLE revisited:status, questions, answers, and the future. Journal of Soil and Water Conservation 49(3):213.
    Rosenberg N, Blad B et al.1983. Microclimate:the biological environment:Wiley-Interscience.
    Sandholt I, Rasmussen K et al.2002. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment 79(2-3):213-224.
    Schneider K and Mauser W.1996. Processing and accuracy of Landsat Thematic Mapper data for lake surface temperature measurement. International Journal of Remote Sensing 17(11):2027-2041.
    Schott J and Volchok W.1985. Thematic Mapper thermal infrared calibration. Photogrammetric Engineering and Remote Sensing 51:1351-1357.
    Seguin B and Itier B.1983. Using midday surface temperature to estimate daily evaporation from satellite thermal IR data. International Journal of Remote Sensing 4(2):371-383.
    Sellers P, Heiser M et al.1997. The impact of using area-averaged land surface properties--topography, vegetation condition, soil wetness--in calculations of intermediate scale (approximately 10 km2) surface-atmosphere heat and moisture fluxes. Journal of Hydrology 190(3-4):269-301.
    Sellers P, Los S et al.1996. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part II: The generation of global fields of terrestrial biophysical parameters from satellite data. Journal of Climate 9(4):706-737.
    Senay G B, Budde M et al.2007. A coupled remote sensing and simplified surface energy balance approach to estimate actual evapotranspiration from irrigated fields. Sensors 7(6):979-1000.
    Sepaskhah A and Ilampour S.1995. Effects of soil moisture stress on evapotranspiration partitioning. Agricultural Water Management 28(4):311-323.
    Shuttleworth W and Wallace J.1985. Evaporation from sparse crops(?)\an energy combination theory. Quarterly Journal of the Royal Meteorological Society 111(469):839-855.
    Shuttleworth W J.1993. Evaporation in Handbook of Hydrology. McGraw-Hill Inc., New York.
    Shuttleworth W J, Gurney R J et al.1989. FIFE:the variation in energy partition at surface flux sites. IAHS Publ 186:67-74.
    Soer G. 1980. Estimation of regional evapotranspiration and soil moisture conditions using remotely sensed crop surface temperatures. Remote Sensing of Environment 9(1):27-45.
    Spanner M, Strahler A et al.1982. Soil loss prediction in a geographic information system format: University of California, Santa Barbara.
    Su Z.2002. The Surface Energy Balance System(SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences 6(1):85-99.
    Su Z, Wen J et al.2003. A methodology for the retrieval of land physical parameter and actual evaporation using NOAA/AVHRR data. Journal ofJilin University (Earth Science Edition) 33(1):106-118.
    Thorn A.1972. Momentum, mass and heat exchange of vegetation. Quarterly Journal of the Royal Meteorological Society 98(415):124-134.
    Thomas A.2000. Spatial and temporal characteristics of potential evapotranspiration trends over China. International Journal of Climatology 20(4):381-396.
    Thornton P, Hasenauer H et al.2000. Simultaneous estimation of daily solar radiation and humidity from observed temperature and precipitation:an application over complex terrain in Austria. Agricultural and Forest Meteorology 104(4):255-271.
    Tucker C, Holben B et al.1981. Remote sensing of total dry-matter accumulation in winter wheat. Remote Sensing of Environment 11:171-189.
    Wukelic G, Gibbons D et al.1989. Radiometric calibration of Landsat Thematic Mapper thermal band. Remote Sensing of Environment 28:339-347.
    Yunusa I, Walker R et al.2004. Evapotranspiration components from energy balance, sapflow and microlysimetry techniques for an irrigated vineyard in inland Australia. Agricultural and Forest Meteorology 127(1-2):93-107.
    Zhang L, Dawes W et al.2001. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resources Research 37(3):701-708.
    Zhang L, Lemeur R et al.1995. A one-layer resistance model for estimating regional evapotranspiration using remote sensing data. Agricultural and Forest Meteorology 77(3-4):241-261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700