用户名: 密码: 验证码:
野生狗牙根分子遗传多样性及优异种质筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
狗牙根(Cynodon dactylon L.Pers.),属于禾本科(Gramineae)狗牙根属(Cynodon)。广泛分布于东西半球热带、亚热带甚至温带地区。在欧亚大陆、印尼、马来西亚和印度等地均有分布。在我国,狗牙根主要分布于黄河流域及其以南地区,此外新疆、吉林、青海、甘肃、河北等地均有分布。狗牙根植株低矮,繁殖能力强、抗旱、耐践踏、质地纤细、色泽好,是优良的暖季性草坪草,被广泛地用于运动场草坪、观赏草坪、机场草坪、水土保持、护坡护堤等诸多领域。试验以栽培品种为对照,从DNA分子标记等方面进行系统的遗传多样性研究和优异种质筛选。主要结果如下:
     1.利用SRAP分子标记技术,对采自中国西南五省区的44份野生普通狗牙根(C. dactylon)及8份非洲狗牙根(C. transvalensis)材料进行遗传多样性研究。结果表明:18对引物组合共得到扩增总条带236条,多态性条带数206条,平均每对引物扩增出11.4条带,多态性位点百分率为87.29%,材料间的遗传相似系数范围在0.569到0.929之间,平均GS值为0.723。聚类分析结果表明,52份材料可聚为5类;基于Shannon多样性指数估算了8个狗牙根生态地理类群内和类群间的遗传分化,类群内的遗传变异占总变异的63.81%,类群间的遗传变异占总变异的36.19%,表明这些种源材料遗传差异较大,各生态地理类群间的遗传分化与其所处的生态地理环境具有一定的相关性。
     2.以采自中国西南五省区的55份野生普通狗牙根(C. dactylon)和8份非洲狗牙根(C transvalensis)材料,利用SSR标记技术进行群体遗传结构的研究。结果表明,在6个地理类群中:(1)18对引物组合共获得353条清晰可辨的总条带,多态性条带数267条,平均每对引物扩增出19.61条带,多态性位点百分率为75.10%,材料间的遗传相似系数(GS)范围在0.687到0.904之间,平均GS值为0.788,变幅为0.217,说明供试材料具有比较丰富的遗传多样性。(2) UPGMA聚类分析结果表明,GS=0.81时,63份材料可聚为7类,大部分来自相同或相似生态地理环境的材料聚为一类,表明供试材料的聚类和其生态地理环境间有一定的相关性。(3)基于Shannon多样性指数估算了7个狗牙根生态地理类群内和类群间的遗传分化,类群内的遗传变异占总变异的66.57%,类群间的遗传变异占总变异的33.43%。(4)对各生态地理类群基于Nei氏无偏估计的遗传一致度的聚类分析表明,各生态地理类群间的遗传分化与其所处的生态地理环境具有一定的相关性。上述结果为保护和利用野生狗牙根资源提供了科学依据。
     3.利用AFLP标记对采自中国西南五省区的51份野生普通狗牙根(C. dactylon)和8份非洲狗牙根(C. transvalensis)为材料进行遗传多样性分析。获得结果如下:11对引物共扩增出670个条带,其中多态性条带有663条,多态性条带比率为98.74%,材料间的遗传相似系数(GS)范围在0.64~0.96之间,平均GS值为0.78;基于Shannon多样性指数估算了7个狗牙根生态地理类群内和类群间的遗传分化,类群内的遗传变异占总变异的51.68%,类群间的遗传变异占总变异的48.32%;聚类分析和主成分分析显示,可将供试材料分成5大类,分类结果与材料的地理分布大致相符,呈现出一定的地域性分布规律。由此可见,丰富的地理生态条件造就了狗牙根资源丰富的遗传多样性和明显的地域性分布规律。对制定科学的资源保护策略、促进其开发利用以及新品种的选育具有重要的意义。
     4.本研究采用了SRAP、SSR、AFLP三种分子标记分析了中国西南区野生普通狗牙根及采自非洲的野生狗牙根种质的遗传多样性及地理分化。三种分子标记都揭示了供试种质间具有丰富的遗传多样性并存在一定的地理分化。相关性结果表明了三种标记之间具有显著的相关性,但相关系数存在差异,其中SRAP和SSR的相关性较高。
     5.在遗传多样性研究基础上,对初步筛选表现较好的五个野生狗牙根品系以“南京”和‘Tifway"作为对照品种,分别在雅安、眉山、成都、重庆和黔南五个试验点进行了周期3年的区域性试验研究,观测指标有草坪密度、质地、均一性、色泽、成坪密度以及抗性等。经试验观察以及Excel 2007和SPSS12.0软件对试验数据进行的分析表明,材料Sau9926的绿色期长、成坪速度较快、密度较高、抗逆性强,具有良好的坪用特性。在五个试验点的平均绿色期天数为295d,成坪天数为45d左右,密度为200枝/100cm2左右。从五份狗牙根新品系及两份对照品种的质地、色泽、密度、抗逆性、成坪速度和绿色期等方面综合分析,Sau9926的综合表现最佳,优于两个对照品种。
Cynodon dactylon L.Pers.belongs to Cynodon L.C.Rich.,Gramineae.It distributed in tropical, subtropical and even temperate regions of eastern and western hemispheres widely, and it also distributed in Eurasia, Indonesia, Malaysia and India and other places. In China, C.dactylon mainly distributed in the south of the Yellow River, and also distributed in Xinjiang, Jilin, Qinghai, Gansu, Hebei and other places. C. dactylon own low plants, strong breeding ability, high drought resistance, forbear trampling, delicate texture, good color, it is an excellent warm-season turf grass,which is widely used as playground lawn, ornamental turf, airport lawn, soil and water conservation, slope protection berm and other areas. The cultivars were selected as control varieties in the experiment.The systematic study of the genetic diversity and excellent germplasm filtration were from the DNA molecular markers and field test. The main results were as follows:
     1. Sequence-related amplified polymorphism (SRAP) markers were used to detect the genetic diversity of 44 wild accessions of C.dactylon collected from Sichuan, Chongqing,Yunnan, Guizhou and Tibet in China and 8 wild accessions of C.dactylon collected from Africa.The results showed that Eighteen primer pairs produced 236 polymorphic bands, among which 206 bands were found to be polymorphic.averaged 11.4 bands per primer pair. The percentage of polymorphic bands in average was 87.29%.The Nei's genetic similarity coefficient of the tested accessions ranged from 0.569 to 0.929, and the average Nei's coefficient was0.723.The 52 accessions were classified into five major groups:Ⅰ,Ⅱ,Ⅲ,ⅣandⅤby cluster analysis using UPGMA. Genetic differentiation between and within five eco-geographical groups of C. dactylon was estimated by Shannon's diversity index, which showed that 63.81% genetic variance existed within group, and 36.19% genetic variance was among groups. which showed that these materials have great differences in heredity, and own significant relationship with the origin regions of accessions.
     2. The population's genetic structure of 63 agrestal accessions of C.dactylon collected from Sichuan, Chongqing, Guizhou, Yunnan, Tibet and Africa were analyzed using simple sequence repeat (SSR) molecular markers. The results showed that, In the six populations: (1) Eighteen primer pairs produced 353 polymorphic bands, among which 267 bands were found to be polymorphic.averaged 19.61 bands per primer pair. The percentage of polymorphic bands in average was 75.10%.The Nei's genetic similarity coefficient of the tested accessions ranged from 0.687 to 0.904, and the average Nei's coefficient was 0.788,the range was 0.217. It showed that the test materials have ample genetic diversity. (2) Analysis of cluster showed that all the accessions could be divided into 5 groups when the genetic similarity coefficient is 0.81. accessions from the same area were almost classified into the same group associated with their geographical distributions. (3) Genetic differentiation between and within seven eco-geographical groups of C. dactylon was estimated by Shannon's diversity index, which showed that 66.57% genetic variance existed within group, and33.43% genetic variance was among groups. (4) Analysis of cluster in every eco-geographical groups by Shannon's diversity index showed that they own significant relationship with the origin regions of accessions. The results provided a scientific basis for the conservation and use of the wild resources of Cynodon dactylon.
     3. Amplified fragment length polymorphism (AFLP) molecular markers were applied to detect the genetic variation of 59 agrestal accessions of C.dactylon collected from Africa, Sichuan, Chongqing, Yunnan, Guizhou and Tibet in China. The following results were obtained,A total of 670 bands were amplified by eleven AFLP primer pairs from C.dactylon genetic DNA, among which 663 (98.74%) bands were found to be polymorphic.The AFLP-based genetic similarity values among 59 C.dactylon accessions ranged from 0.64 to 0.96,and the average Nei's coefficient was 0.78. Genetic differentiation between and within seven eco-geographical groups of C. dactylon was estimated by Shannon's diversity index, which showed that 51.68% genetic variance existed within group, and48.32% genetic variance was among groups.Analysis of cluster and principal component analysis showed that all the accessions could be distinguished by AFLP markers and divided into 5 groups, accessions from the same area were almost classified into the same group associated with their geographical distributions.Therefore, complex geographical ecological environment is important factor to the genetic diversity and geographical distribution of C.dactylon.It will own great significance in constituting the scientific protected strategy,promoting its exploitation and utilization, and breeding new varieties.
     4. Sequence-related amplified polymorphism (SRAP), simple sequence repeat (SSR) and Amplified fragment length polymorphism (AFLP) molecular markers were applied to detect the genetic diversity and geographical differentiation of wild accessions of C.dactylon collected from Southwest China and Africa. The three molecular markers all showed the ample genetic diversity and geographical differentiation of the tested Germplasm. In this paper, three kinds of molecular markers'correlation were analysed. The result indicated that three molecular markers' correlation was remarkable.but the correlation coefficients were different, and the correlation between SRAP and SSR was higher.
     5. The adaptability of five new wild accessions of C.dactylon were evaluated comprehensively in five regions of southwest China for 3 years. The introduction variety Tifway and national variety Nanjing were selected as control varieties. The trial sites were located at Ya'an, Meishan and Chengdu in Sichuan, Rongchang in Chongqing and Dushan in Guizhou. Comprehensively analysising density, texture, homogeneity, color, mature time, resistance and so on. The test observations and Excel 2007, SPSS 12.0 software analysis showed that, Sau9926 has long green period, fast grow speed,high density,strong resistance, and it is own good turf characteristics. In the five pilot sites, the average number of the green period is 295d, the mature time is about 45d, and the density is about 200/100 cm2. Comprehensively analysising texture, color, density, resistance, mature time and green period of five new Bermudagrass lines and two control Varieties, overall performance of Sau9926 is best, which is better than two control Varieties.
引文
[1]林忠平等.草坪草生物技术及应用[M].北京:化学工业出版社,2006:1-5.
    [2]张新全等.草坪草育种学[M].北京:中国农业出版社,2004
    [3]赵锋等.厚叶旋蒴苣苔BcWRKY2基因5’端调控区的克隆及功能元件分析[J].石河子大学学报(自然科学版),2007,25(1):1-4
    [4]吴关庭,胡张华,朗春秀.高羊茅CBF转录激活因子基因片段的克隆[J].核农学报,2004,18(5):353-356
    [5]黄景文,吴文祥,陈冬梅等.沟叶结缕草高温胁迫的基因差异表达及其作用机制[J].草地学报,2009,17(4):435-439
    [6]胡张华,陈火庆,吴关庭等.高羊茅悬浮细胞系的建立及绿色植株的高频再生[J].草业学报,2003,12(3):95-99
    [7]杨帆,韩烈保.高羊茅胚性悬浮细胞系的快速建立及其单细胞培养[J].生物技术通报,2009,(4):71-76
    [8]李莹.中华结缕草节间组织培养及无性系建立的研究[J].辽宁农业科学,2009(1):10-13
    [9]白且史,沈翼,高荣等.假俭草过氧化物同工酶的遗传多样性研究[J].四川大学学报(自然科学版),2002,39(5):952-956
    [10]白且史,高荣,沈翼等.假俭草遗传多样性的AFLP指纹分析[J].高技术通讯,2002,10:45-49
    [11]田志宏,邱永福,严寒等.用RAPD标记分析高羊茅的遗传多样性[J].草业学报,16(1):58-63
    [12]郭海林,刘建秀,周志芳等.结缕草属植物种间关系和遗传多样性的SSR标记分析.草地学报,16(6):552-558
    [13]刘伟,张新全,李芳等.西南横断山区野生狗牙根遗传多样性的RAMP分析.种子,27(10):56-59
    [14]陈灵芝.中国的生物多样性[M]北京:科学出版社,1993:99-113.
    [15]麦克尼利等著.1990.李文军等译.1992.保护世界的生物多样性[M].见:中国科学院生物多样性委员会编.北京:中国科学技术出版社,1-199.
    [16]严学兵.披碱草属植物遗传多样性研究.博士论文,中国农业大学,2005.施立明.遗传多样性极其保护[J].生物科学信息,1990(2):158-164.
    [17]马克平.试论生物多样性的概念[J].生物多样性,1993,1(1):20-22.
    [18]施立明.遗传多样性及其保存.生物科学信息,1990,(2):158-164.
    [19]张大勇,姜新华.遗传多样性与濒危植物保护生物学研究进展[J].生物多样性,1999,7(1):31-37.
    [20]张春晓,李悦,沈熙环.林木同工酶遗传多样性研究进展.北京林业大学学报,1998,20(3):58-66.
    [21]贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农业科学,1996,29(4):1-10.
    [22]Graham, J.,McNicol, R. and McNicol, J. A comparison of methods for the estimation of genetic diversity in strawberry [J], Theor. Appl. Genet.
    [23]钱迎倩,马克平.生物多样性研究的原理与方法[M].北京:中国科学技术出版社,1994.
    [24]任旭琴.遗传多样性及其研究方法.淮阴工学院学报.2002,11(5):6-8
    [25]吴舒致,黎裕.谷子种质资源的主成分分析和图论主成分分类[J].西北农业学报,1997,6(2):46-50.
    [26]胡延吉,赵檀力.小麦农艺性状主成分分析与种质资源评价的研究,1994,8(2):31-34.
    [27]王述明,曹永生,R.J.Redden等.我国小豆种质资源形态多样性的鉴定和分类研究[J].作物学报,2000,28(6):729-733.
    [28]孔秋生.罗卜种质资源遗传多样性和亲缘关系的研究[学位论文].华中农业大学,2003.
    [29]Meeeell D J.1981,黄瑞复等译.生态遗传学[M]北京:科学出版社,1991.
    [30]沈永宝,施季森.植物种或品种鉴定的展望.江苏林业科技[J].2004,31(5):41-45.
    [31]陈佩度.作物育种生物技术[M].北京:中国农业出版社,2001:124-125.
    [32]胡守荣,扩夏铬,郭长英等.林木遗传多样性研究方法概况[J].东北林业大学学报,2001,29(3):72-75.
    [33]夏兰琴,蒋尤泉,阎福林.扁蓿豆遗传多样性的研究[J].中国草地,1997,19(2):30-35.
    [34]于林清,王照兰,萨仁等.黄花苜蓿野生种群遗传多样性的初步研究[J].中国草地,2001,23(1):23-25.
    [35]郭江波,赵来喜.中国苜蓿育成品种遗传多样性及亲缘关系研究[J].中国草地,2004,26(1):9-13.
    [36]Fang D Q, Roose M L.Identification of closely related citrus with inter-simple sequence repeat makers[J]. Theor Appl Genet,1997,95:408-417.
    [37]郎萍,黄宏文.栗属中国特有居群的遗传多样性及地域差异[J].植物学报,1999,41(6):51-57.
    [38]王述民,谭富娟,胡家蓬.小豆种质资源同工酶遗传多样性的分析与评价[J].中国农业科学,2002,35(1):1311-1318.
    [39]Santalla M, Rodino A P, De Ron A M, Allozyme evidence supporting southwestern Europe as a secondary center of genetic diversity for the common bean. Theor Appl Genet,2002,104: 934-944.
    [40]张玉良,张晓芳,舒卫国.小麦醇溶蛋白电泳技术及应用[J].作物品种资源,1994,(1):33-34.
    [41]张学勇,杨欣明,董玉琛.醇溶蛋白电泳在小麦种质资源遗传分析中的应用[J].中国农业科学,1995,28(4):25-32.
    [42]Draper S. R. ISTA variety committee report of the workinggroup for biochemical tests for cultivar identification 1983-1986[J].Seed Sci.& Technol,1987,15:431-434.
    [43]ZillmanR. R,Bushuk W. Wheat cultivar identification bygliadin electrophoregrams. Ⅱ.Effects of environmental and experimental factors on the gliadin electrophoregrams[J].CanJ.Plant Sci.,1979,59:281-286.
    [44]Zillman R. R, Bushuk W. Wheat cultivar identification by gliadin electrophoregrams. Ⅲ. Catalogue of electrophoregrams formul as of Canadian wheat cultivars[J].Can J.Plant Sci. 1979,59:287-288.
    [45]王学路,钱曼懋,宋春华等.改良ISTA醇溶蛋白电泳方法及其应用[J].作物品种资源,1994,(2):32-34.
    [46]傅宾孝,于光华,王乐凯等.小麦醇溶蛋白电泳分析的新方法[J].作物学报,1993,9 (2):15-187.
    [47]鲍晓明,黄百渠.小麦-冰草异附加系种子醇溶蛋白基因表达的分析[J].作物学报,1993,19(3):233-238.
    [48]Beckmann J S, Soller M. Restriction fragment length polymorphisms in plant genetic improvement. Oxford Surveys of Plant Molecular and Cell Biology,1986,3,196-205.
    [49]张德水,陈受宜.DNA分子标记基因组作图及其在植物遗传育种上的应用[J].生物技术通报,1998,5:15-22
    [50]Gale M.D. Genetic maps of heraploid wheat, Proc.8th,Interm, Wheat Genet Sgmp,Beijing.1993,29-31
    [51]Peterson L. Genetic diversity among wild and cultivated barley as revealed by RFLP.Theor Appl Genet.1989,94:597-602
    [52]Song Y.C. The physical location of 14 RFLP markers in rice. Theor Appl Genet.1995,90 (1):113-119
    [53]Sarfatti M.,Katan J.,Fluhr R.A RFLP marker in tomato linked to the Fusarium oxysporum resistance gene 12.Theor Appl Genet.1989,78 (5):755-759
    [54]Mansur L.M. Determining the linkage of quantitative trait loci to RFLP markers using extreme phenotypes of recombinant inbreds of soybean. Theor Appl Genet.1993,86 (8): 914-918
    [55]Leon A.J. Use of RFLP markers for genetic linkage analysis foil percentage in sunflower seed. Crop Sci.1995,35 (2):558-564
    [56]张修军.微生物融合重组学的鉴定—DNA分子检测技术[J].生物学杂志,1999,16(2):5-7
    [57]Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers [J]. Nucleic Acids Res,1990,18:7213-7218
    [58]Williams J G, Kubelik A R, Livak K J, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers [J]. Nucleic Acids Res,1990,8:6531-6535
    [59]Yu L.X.,Nguyen. Genetic variation detected with RAPD markers among upland and lowland rice cultivars (Oryza sativa L).Theor. Appl. Genet.1992,87(6):668-672
    [60]孔秀英,葛春民.山羊草属五个基本基因组系统发育的RAPD分析[J].植物学报,1999,41(4):393-397
    [61]夏光敏,向凤宁.小麦与高冰草属间体细胞杂交获可育杂种植株[J].植物学报,1999,41(4):349-352
    [62]邱红波,戴保威,彭忠华RAPD和SSR标记在玉米遗传多样性分析中的应用[J].山地农业生物学报,2005,24(2):99-104
    [63]潘宁,赵琦,王振莲等.矮化早熟高粱突变体的RAPD分析等的研究[J].生物技术通讯,2005,2:29-31
    [64]朱睦元,黄培忠等.大麦育种与生物工程[M].上海:上海科学技术出版社,1999
    [65]Budak H,Shearman RC,Parmaksiz I, Gaussoin RE, Riordan TP, Dweikat I. Molecular characterization of Buffalograss germplasm using sequence-related amplified polymorphism markers. Theor Appl Genet,2004 108:328-334
    [66]Li QQuiros C F.Sequence—related amplified polymorphism(SRAP),A new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica. Theor Appl Genet,2001,103:455-461
    [67]Li G,Gao M,Yang b,et al. Gene for gene alignment between the brassica and Arabidopsis genomes by direct transcriptome mapping.Theor Appl Genet,2003,107:168-180
    [68]Ferriol M,Pico B,Nuez F.Genetic diversity of a germplasm collection of Cucuibita pepo using SRAP and AFLP markers. Theor Appl Genet,2003,107:271-282
    [69]金洪.中国结缕草(Zoysia japonica Steud.)遗传多样性研究[C].2004
    [70]Zabeau, M. Vos, P. Selective restriction fragment amplification:a general method for DNA fingerprinting.1993. European Patent Application No.92402629. Publication No.0-534-858-A.
    [71]梁惠玲,梁月荣.植物分子标记技术原理及其在茶树育种中的应用[J].茶叶,2003,29(4):191-194
    [72]沙爱华,林兴华,黄俊斌等.水稻白叶病成株抗性相关基因的表达谱[J].分子植物育种,2006,4(4):469-476
    [73]唐梅,何光华,斐炎.中籼杂交水稻亲本多态性的AFLP分析[J].遗传,2002,24(4):439-441
    [74]陈万权,漆小泉,R E Niks.利用AFLP遗传连锁图定位大麦苗期对叶锈病的部分抗性基因[J].遗传学报,1999,26(6):690-694
    [75]田清震,盖钧镒,喻德跃等.我国野生大豆与栽培大豆AFLP指纹图谱研究[J].中国农业科学,2001,34(5):480-485
    [76]Zietkiewicz E, Rafalak I. A, Labud A., Labuda D. Genome fingerprinting by simple sequence repeat(SSR)-anchored polymerase chain reaction amplification. Genomic,1994,20:176-183
    [77]Davila J A, Loarce Y, Ferrer E. Molecular characterization and genetic mapping of random amplified microsatellite polymorphism in barley. Theor Appl Genet,1999,98:265-273.
    [78]吴卫.鱼腥草种质资源研究.四川农业大学博士论文,四川农业大学图书馆,2002
    [79]Ajibade S R, Weeden N F, Chite S M. Inter simple sequence repeat analysis of geneticrelationships in the genus vigna. Euphytica,2000,111:47-55
    [80]Huang J C, Sun M. Genetic diversity and relationships of sweetpotato and its wild relatives in Ipomoea series Batatas (Convolvulaceae) as revealed by inter-simple sequence repeat (ISSR) and restriction analysis of chloroplast DNA. Theor Appl Genet,2000,100:1050-1060
    [81]Blair M W, Panaud O, McCouch. Inter-simple sequence repeat(ISSR) amplification foranalysis of microsatellite motif frequency and finfprinting in rice(Oryza saliva L.). Theor Appl Genet,1999,98:780-792.
    [82]Moreno, Martin J P, Ortiz J M. Inter simple sequebce repeat PCR for characterization of closely related grapevine germplasm. Euphytica,1998,101:117-125.
    [83]Fang D Q, Krueger R R, Roose M L.1998. Phylogenetic relationships among selected Citrusgermplasm accessions revealed by inter-simple sequence repeat (ISSR) marker. J Amer Soc Hort Sci,123 (4):612-617.
    [84]Akagi H, Yokozeki Y, Inagaki A, et al. A co-dominant DNAmarker closely linked to the rice nuclear restorer gene, Rf-1, identified with inter-SSR fingerprinting. Genome,1996,39: 1205-1209.
    [85]Romero C, Pedryc A, Munoz V. Genetic Diversity of Diferent Apricot Geographical Groups Determined by SSR Markers. Genome.2003,46 (2):244-252
    [86]高翔,庞江喜,斐阿卫.分子标记技术在植物遗传多样性研究中的应用.河南农业大学学报,2002,36(4):
    [87]Rochecouste E. Botanical study on the biotypes of Cynodon dactylon. Weed res,1962, (2): 1-23.
    [88]Harlan J R, De wet J M J. Sources of viration in Cynodon dactylon (L.) Pers. Crop Sci.,1969, 36:774-748
    [89]Vermeulen P H. Stach gel electronphoresis used for identification of turftype Cynodon dactylon genetype. Crop Sci,1991,31:233-237
    [90]Wofford D S, Baltensperger A A. Heritability estimates for turfgrass characteristics in bermudagrass. Crop Sci.,1985,25:133-136
    [91]Taliaferro C M. Diversity and vulnerability of bermuda turfgrass species. Crop Sci.,1995,35: 327-331
    [92]Jack R. Harlan, J. M. J. de Wet, K. M. Rawal, et al. Cytogenetic Studies in Cynodon L. C. Rich.(Gramineae). Crop Sci.1970,10:288-291
    [93]谭继清,谭志坚.中国草坪地被[M].重庆出版社,1999
    [94]中国科学院中国植物志编委会.《中国植物志》(第十卷第一分册).北京:科学技术出版社,1990,82-84.
    [95]刘建秀,贺善安,刘永冬.华东地区狗牙根外部形态变异规律的研究.中国草地科学进展.中国农大出版社,1998,240-244.
    [96]郑玉红,刘建秀,陈树元等.我国狗牙根种质资源根状茎特征的研究[J].草业学报,2003,4:76-81
    [97]刘玲珑,吴彦奇.狗牙根种质资源及抗寒性研究进展.中国草地,2000,(6):26-30.
    [98]吴彦奇,刘玲珑,熊曦,等.四川野生狗牙根的利用和资源.草原与草坪,2001,(3):32-34.
    [99]张国珍,干友民,魏萍,等.四川野生狗牙根外部性状变异及形态类型研究.中国草地,2005,27(3):21-25,40.
    [100]刘伟.西南区野生狗牙根种质资源遗传多样性与坪用价值研究[学位论文].四川农业大学,2006
    [101]马克群,刘建秀,高鹤等.狗牙根与非洲狗牙根形态鉴别性状的筛选.植物资源与环境学报,2007,16(3):23-26
    [102]王志勇,刘建秀,郭海林.狗牙根种质资源营养生长特性差异的研究.草业学报,18(2):25-32
    [103]Wofford D S, Baltensperger A A. Heritability estimates for turfgrass characteristics in bermudagrass. Crop Sci.,1985,25:133-136
    [104]郭海林.刘建秀,郭爱桂等.中国狗牙根染色体数变异研究初报[J].草地学报.2002.10(1):70-73.
    [105]龚志云,高清松,苏艳等.三倍体狗牙根染色体数变异的分子细胞学鉴定.园艺学报,2007,34(6):1509-1514
    [106]马克群,刘建秀,胡化广等.狗牙根属部分优良选系染色体倍性的初步研究.草业科 学,2006,23(4):82-85
    [107]Wilkinson JF and JB Beard.Electrophretic identification of Agrostis palustris and Poa pratensis cultivars. Crop Sci,1972,12:833-834.
    [108]Dabo S M. Bermudagrass cultivar identifacation by use of isoenzyme electrophoretic patterns. Euphytica,1990,51:25-31.
    [109]郑玉红,刘建秀,陈树元等.我国狗牙根种质资源多样性研究——Ⅰ.同工酶分析[J].中国草地,2003,25(5):52-57
    [110]王赞.攀西地区野生狗牙根遗传多样性与坪用价值研究.四川农业大学硕士论文,四川农业大学图书馆,2002
    [111]张小艾.西南地区野生狗牙根种质资源性状综合评价及同工酶比较研究.四川农业大学硕士论文,四川农业大学图书馆,2002.
    [112]Marcone C. Ragozzino A.Seemuller E. Detection of Bermudagrass white leaf disease in Italy and characterization of the associated phytoplasma by RFLP analysis[J].Plant Disease,1997,81 (8):862-866
    [113]Gustavo Caetano-Anolles, Lloyd M, Callahan, et al. The Origin of Bermudagrass (Cynodon) off-Types Inferred by DNA Amplification Fingerprinting.Crop Sci.,1997,37:81-87
    [114]Gustavo Caetano-Anolles.Genetic instability of bermudagrass (Cynodon) cultivars 'Tifgreen'and'Tifdrawf detected by DAF and ASAP analysis of accession and off-types.Euphytica,1998,101:165-173
    [115]Mehmet Karaca, Sukumar Saha, Allan Zipf, etal. Genetic Diversity among Forage Bermudagrass (Cynodon spp.):Evidence from Chloroplast and Nuclear DNA Fingerprinting.Crop Sci.,2002,42:,2118-2127
    [116]Wu Y Q, Taliaferro C M, Bai G H, et al. AFLP analysis of Cynodon dactylon (L.) Pers. var.dactylon genetic variation.Genome,2004,47:689-696
    [117]梁慧敏.狗牙根种质资源遗传标记和耐盐性生物技术辅助育种[学位论文].北京林业大学,2003
    [118]谢永丽,王自章,刘强等.草坪草狗牙根中抗逆基因BeDREB的克隆及功能鉴定[J].中国生物化学与分子生物学报,2005,21(4):521-527
    [119]刘伟,张新全,李芳等.西南区野生狗牙根遗传多样性的ISSR标记与地理来源分析[J].草业学报,2007,16(3):55-61
    [120]易杨杰,张新全,黄琳凯,凌瑶,马啸,刘伟.野生狗牙根种质遗传多样性的SRAP研究[J].遗传,2008,30(1):94-100
    [121]汪殿蓓,暨淑仪,陈飞鹏.植物群落物种多样性研究综述[J].生态学杂志,2001,20(4):55-61.
    [122]胡志昂.遗传多样性的定义、研究新进展和新概念生物多样性与人类未来[M].中国林业出版社,北京.
    [123]Liu C.J.. Geographical distribution of genetic in stylosanthes scabra revealed by RAPD analysis[J]. Euphytica,1997,98:2122.
    [124]张小艾,张新全等.狗牙根种质资源遗传多样性的研究概况[J].草原与草坪,2003,(3):17-21
    [125]张小艾,张新全。西南区野生狗牙根形态多样性研究。草原与草坪2006,116(3): 35-37
    [126]方宜钧,吴为人,唐纪良.作物DNA标记辅助育种[M].北京:科学出版社,2002:1-9.
    [127]马朝芝,傅廷栋,Stine Tuevesson, et al.用ISSR标记技术分析中国和瑞典甘蓝型油菜的遗传多样性[J].中国农业科学,2003,36(11):1403-1408.
    [128]Melchinger A E, Lee M, Lamkey K R, et al. Genetic diversity for restriction fragment length polymorphism:Relation to estimated genetic effect in maize inbreds[J]. Crop Science,1990,30(1):1033-1040.
    [129]许绍斌,陶玉,杨昭庆,等.简单快速的DNA银染和胶保存方法[J].遗传,2002,24(3):335-336.
    [130]车永和,李立会,何蓓如.冰草属(Agropyron Gaertn.)植物遗传多样性取样策略基于醇溶蛋白的研究.植物遗传资源学报,2004,5:216-221.
    [131]Wachira FN, Waugh R, Hackett CA, Powell W. Detection of genetic diversity in tea (Camellia sinensis) using RAPD Markers. Genome,1995,38:201-210.
    [132]Persson K, Diaz O, von Bothmer R. Extent and patterns of RAPD variation in landraces and cultivars of rye (Secale cereale L.) from Northern Europe. Hereditas,2001,134:237-243.
    [133]Nei M, Li WH. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Nat Acad Sci USA,1979,76:5269-5273.
    [134]Nei M. Genetic distance between populations. American Naturalist,1972,106:283-292.
    [135]赵汝植.西南区自然区划探讨[J].西南师范大学学报(自然科学版),1997,22(2):193-198.
    [136]Hamrick, J L, Godt M J W. Allozyme diversity in plant species[A]. In:Brown A H D, Clegg M T, Kahler A L, et al. Plant population genetics, breeding and genetic resources. Sunderland MA:Sinauer Associates Press,1989,43-63
    [137]刘伟,张新全,WuYanqi,干友民。狗牙根属植物多样性与品种选育研究概况。园艺学报2003,30(5):623-628
    [138]董宽虎,沈益新.饲草生产学.北京:中国农业出版社,2003,7.
    [139]Burton G W. Breeding better bermudagrass[A]. Process Ⅸ:Internation Grassland Congress, Jan[C~. Brazil:Sao Paulo,1965.93-96.
    [140]Richardson W I, Taliaferro C M, Ahring R M. Fertility of eight bermudagrass clones and open-pollinated progeny from them[J]. Crop Science,1978,18:332-334.
    [141]Boune J M. Morocco s native perennial turfgrasses are atreasure trove of diversity and they re disappearing[J]. Diversity.2000.16:1-2.53-54.
    [142]郭海林,刘建秀,高鹤等.结缕草属优良品系SSR指纹图谱的构建[J].草业学报,2007,16(2):53-59.
    [143]卢杰,吕媛媛,李杰勤等.高丹草SSR引物设计及分子遗传框架图谱构建[J].中国草地学报,2009,31(2):28-33.
    [144]詹秋文,李杰勤,汪保华等.42份高梁与苏丹草及其2个杂交种DNA指纹图谱的构建[J].草业学报,2008,17(6):85-92.
    [145]栾维江,刘章雄,关荣霞等.东北春大豆样本的代表性及其SSR位点的遗传多样性分析.应用生态学报,2005,16(8):1469-1476.
    [146]何天明,陈学森,高疆生等.新疆栽培杏群体遗传结构的SSR分析.园艺学报,2006,33(4):809-812.
    [147]马殿荣,李茂柏,王楠等.中国辽宁省杂草稻遗传多样性及群体分化研究.作物学报,2008,34(3):403-411.
    [148]宋振巧,王建华,王洪刚等.山东丹参(Salvia miltiorrhiza)不同地理居群的遗传多样性.生态学报,2008,28(11):5370-5376.
    [149]Vos, P. Hogers, R. Bleeker, M. Reijans, M. etal. AFLP:a new technique for DNA fingerprinting.Nucleic Acids Res,1995,23:4407-4414.
    [150]Guo X-Mi(郭雄明),Xue X(薛霞),Chen Hi[陈华).Progress in research on amplified fragment length polymorphism (AFLP).China J Comparative Med(中国比较医学杂志),2006,16(6):369-372(in Chinese with English abstract)
    [151]田松杰,石云素,宋燕春,等.利用AFLP技术研究玉米及其野生近缘种的遗传关系[J].作物学报,2004,30(4):354-359.
    [152]Roodt R,Spies JJ,Burger TH.Preliminary DNA fingerprinting of the turfgrass Cynodon dactylon(Poaceae:Chloridoideae).Bothealia,2002,32:117-122
    [153]Doyle J J. DNA protocols for plants-CTAB total DNA isolation. In:Hewitt GM, Johnston A(ed.) Molecular Techniques in Taxonomy. Springer-Verlag, Berlin, Germany.1991, pp 283-293.
    [154]Xu A-Xi(徐爱遐),Ma C-Zi (马朝芝), Xiao E-S(肖恩时),Quan J-C(权景春),Ma C-Z(马长珍),Tian G-W(田广文),Tu J-X(涂金星),Fu T-D(傅廷栋),Zhang G-Si(张改生).Genetic diversity of Brassica juncea from western China. Acta Agron Sin(作物学报),2008,34(5):754-763(in Chinese with English abstract)
    [155]Yan L(闫龙),Guan J-P(关建平),Zong X-X(宗绪晓).Genetic diversity analysis of pigeonpea germplasm resources by AFLP.Acta Agron Sin(作物学报),2007,33(5):790-798(in Chinese with English abstract)
    [156]Aitken K S, Li J C, Jackson P, Piperidis G, Mcintyre C L. AFLP analysis of genetic diversity within Saccharum officinarum and comparison with sugarcane cultivars. Aust J Agric Res, 2006,57:1167-1184
    [157]Selvi A, Nair N V, Noyer J L, Singh N K, Balasundaram N,Bansal K C, Koundal K R, Mohapatra T. AFLP analysis of the phenetic organization and genetic diversity in the sugarcane complex,Saccharum and Erianthus. Genet Resour Crop Evol,2006,53: 831-842
    [158]Wilson BL, Kitzmiller J, Rolle W, Hipkins VD. Isozyme variation and its environmental correlates in Elymus glaucus from the California Floristic Province. Can J Bot,2001,79: 139-153.
    [159]Powell, W., Morgante, M,, Andre, C., Hanafey, M., Vogel, J., Tingey, S., Rafalski, A.:The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) marker for germplasm analysis. Mol. Breed.2:225-230,1996.
    [160]严学兵,周禾,郭玉霞等.披碱草属植物形态多样性及其主成分分析.草地学报,2005,13(2):111.116.
    [161]解新明,云锦凤.植物遗传多样性及其检测方法.中国草地,2000,6:51-59.
    [162]Wu Y Q, Taliaferro C M, Martin D L, et al. Genetic variability and relationships for adaptive, morphological.and biomass traits in Chinese bermudagrass accessions. Crop Sci,2007, 1985-1994
    [163]周寿荣.草坪地被与人类环境[M].成都:四川科学技术出版社,1996.74-75.
    [164]孙吉雄.草坪学[M].北京:中国农业出版社,2003.3
    [165]杨继.植物种内形态变异的机制及其研究方法.武汉植物学研究,1991,20(4):429-434.
    [166]王金龙,高玉葆,赵念席,等.内蒙古中东部草原克氏针茅形态特征和RAPD遗传分化的相关性研究.植物研究,2006,26(6):709-714.
    [167]杨允菲,李东.东北羊草草原种群单穗数量性状的生态可塑性.生态学报,2001,21(5):753-758.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700