用户名: 密码: 验证码:
奇异变形杆菌可移动耐药基因岛研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着奇异变形杆菌(Proteus mirabilis)耐药菌株不断增加,其耐药机制成为研究人员关注的热点。沙门氏基因组岛(Salmonella Genomic Island 1, SGI1)作为细菌编码抗性的可移动元件,于2007年在P. mirabilis菌株中发现,它在细菌多重耐药基因传播和转移过程中发挥重要的作用。本论文主要研究P. mirabilis中SGI1介导耐药基因的水平传播。通过对广州市天河区食品和临床P. mirabilis菌株的分离,研究这些菌株对17种常用抗生素的耐药性以及Ⅰ类、Ⅱ类和Ⅲ类整合子,耐药基因盒的携带情况。采用PFGE方法分析Ⅰ类整合子阳性菌株、Ⅱ类整合子阳性菌株的同源性以及携带相同耐药基因盒菌株间的亲缘关系。结合耐药基因盒信息,对P. mirabilis分离株中SGI1的携带情况、基因岛的结构与序列进行解析,结果如下:
     使用传统分离培养法和建立的靶基因为tuf基因的变形杆菌属PCR方法对肉类产品中分离的可疑菌株和P. mirabilis临床分离株进行鉴定,PCR方法和生化实验结果完全一致,从食品中分离到14株P. mirabilis菌株并验证了46株P. mirabilis临床分离株的准确性。
     46株P. mirabilis临床分离株普遍具有多重耐药性,其中耐10种以上抗生素高达69.6%。14株P. mirabilis食品分离株均耐5种以下抗生素,28.6%耐3-5种抗生素。氯霉素、四环素、红霉素、复方新诺明抗菌药物不适合治疗本地区P. mirabilis引起的感染。头孢曲松、头孢西丁的敏感率达到88.3%~91.7 %,可作为首选药物。
     Ⅰ类整合子阳性菌株34株(56.7%),其中,4株携带blaP1和aadA2基因盒,对β-内酰胺类和氨基糖苷类药物耐药;19株携带dfrA17和aadA5基因盒,对磺胺类和氨基糖苷类药物耐药;3株分别携带blaP1、dfrA1和aadB基因盒;8株携带dfrA5基因盒。17株(28.3%)菌株携带Ⅱ类整合子和dfrA1、sat2、aadA1基因盒,其中16株(94.1%)携带Ⅰ类整合子且均携带dfrA17和aadA5基因盒,Ⅰ、Ⅱ类整合子阳性率为26.7%。没有检测到Ⅲ类整合子。
     56株P. mirabilis成功分型,相似值为0.40~1.00。12组,42株P. mirabilis的脉冲场凝胶电泳(Pulsed-field gel electrophoresis, PFGE)图谱分别相同,表明在病原学上具有同源性,为克隆相关菌株。同时携带Ⅰ类和Ⅱ类整合子的菌株同源性很高,相似值约0.72~1.00。
     2株P. mirabilis临床分离株分别携带SGI1-B和SGI1-O。4株P. mirabilis临床分离株携带SGI1,且这4株为克隆相关菌株。5株P. mirabilis临床分离株和3株P. mirabilis食品分离株携带一种新型基因岛变异体SGI1-U,且为相同克隆菌株,提示了该岛从食源到人类水平传播的可能性。前三种基因岛均位于染色体thdF和hipB基因间,而SGI1-U染色体缺失了hipB和hipA基因,插入在thdF和PMI3124基因之间。
     综上所述,P. mirabilis菌株携带多种SGI1且携带率很高,研究结果为流行病学研究提供了依据,为了解细菌多重耐药性获得和传播机制奠定了基础。
With Proteus mirabilis resistant isolates increased, the mechanism of antibiotic resistance become focus by researchers in recent years. As a bacterial mobile element encoding resistance, Salmonella genomic island 1, found in the P. mirabilis strains in 2007, which played an important role in transferring resistance genes. The purpose of this study was to determine the key mechanisms in horizontal transfer of antibiotic resistance genes in SGI1. P. mirabilis food and clinical isolates were examined for their susceptibility to 17 antibiotics and the presence of antibiotic resistance integronsⅠ,Ⅱ,Ⅲand gene cassette. After all the P. mirabilis isolates were genotyped by PFGE,the results were analyzed according to integronsⅠ,Ⅱand gene cassettes. The SGI1s were detected in P. mirabilis isolates and their structures were analyzed. The results were as follows:
     P. mirabilis food and clinical isolates were detected by plate-culture and the tuf gene PCR methods, and the results of the both methods were in agreement. 14 P. mirabilis strains were isolated from food. The clinical isolates results of PCR and biochemical test were both consistent with the report from the samples donor the first Affiliated Hospital of Jinan University, indicating that the authenticity of P. mirabilis clinical isolates were proved. Forty-six P. mirabilis clinical isolates with multiple drug resistance in general, of which more than 10 kinds of antibiotic-resistant up to 69.6%. 14 P. mirabilis isolates from food were resistant to antibiotics, 28.6% resistant to 3~5 antibiotics. Chloramphenicol, tetracycline, erythromycin and cotrimoxazole were not suitable for infections caused by P. mirabilis in this region. The sensitive rate of ceftriaxone and cefoxitin were 88.3%~91.7%, indicating that the two antibiotics can be used for patients.
     IntegronⅠwas found in 34 (56.7%) P. mirabilis isolates, of which 4 isolates carring aadA2 and blaP1 gene cassettes, resistance toβ-lactams and aminoglycosides; 19 isolates carrying dfrA17 and aadA5 gene cassettes, resistance to sulfonamides and aminoglycosides; 3 isolates carring blaP1, dfrA1 and aadB gene cassettes, respectively; 8 isolates carrying dfrA5 gene cassette. IntegronⅡand dfrA1, sat2 and aadA1 gene cassettes were found in 17 (28.3%) P. mirabilis isolates, in which 16 (94.1%) isolates carring integronⅠand dfrA17 and aadA5 gene cassettes. IntegronⅠandⅡwere both found in 26.7% P. mirabilis isolates. IntegronⅢwas not detected in all isolates.
     The similarity value of 0.40 to 1.00 in 56 P. mirabilis isolates was shown by PFGE analysis. 12 groups, 42 P. mirabilis isolates had the same PFGE patterns, respectively, indicating that they may be the same clone strains. The value of Phylogenetic relationships of the isolates carring integronⅠandⅡwas up to 0.72 to 1.00.
     Two P. mirabilis clinical isolates were detected to carry SGI1-B and SGI1-O, respectively. 4 P. mirabilis clinical isolates which might be clone to each other were detected to carry SGI1. 5 clinical isolates and 3 food isolates were found to carry a new SGI1 variant SGI1-U, and cloning for the same strain, suggesting that the possibility of SGI1-U horizontal transmission from food to human beings. SGI1, SGI1-B and SGI1-O were located between thdF and hipB genes, and SGI1-U was inserted between thdF and PMI3124 genes and the 8 isolates carring SGI1-U were detected missing hipA and hipB genes.
     In summary, many P. mirabilis isolates carried a variety of SGI1s and the results were useful to the study on epidemiology, bacterial multi-drug resistance mechanisms and dissemination.
引文
[1] Drechsel H., Thieken A., Reissbrodt R., et al. Alpha-keto acids are novel siderophores in the genera Proteus, Providencia, and Morganella and are produced by amino acid deaminases [J]. J Bacteriol, 1993, 175(9): 2727-2733.
    [2] O'Hara C.M., Brenner F.W., Miller J.M. Classification, identification and clinical significance of Proteus, Providencia, and Morganella [J]. Clin Microbiol Rev, 2000, 13(4): 534-546.
    [3] O'Hara C.M., Brenner F.W., Steigerwalt A.G., et al. Classification of Proteus vulgaris biogroup 3 with recognition of Proteus hauseri sp. nov., nom. rev. and unnamed Proteus genomospecies 4, 5 and 6 [J]. Int J Syst Evol Micr, 2000, 50(5): 1869-1875.
    [4] Larsson P. Serology of Proteus mirabilis and Proteus vulgaris [J]. Method Microbiol, 1984, 14: 187-214.
    [5] Petras G., Lanyi B., Bognar S., et al. Microflora of the department of acute respiratory diseases and the spreading of Proteus strains [J]. Orvosi Hetilap, 1972, 113(24): 1399-1403.
    [6] Marcos S.F., Parrilla H.P., Celdran G.J., et al. The efficacy of oral ciprofloxacin in the treatment of Proteus mirabilis infections of the lower respiratory tract [J]. Anales de Medicina Interna (Madrid, Spain : 1984), 1989, 6(11): 605.
    [7] Bahrani F.K., Massad G., Lockatell C.V., et al. Construction of an MR/P fimbrial mutant of Proteus mirabilis: role in virulence in a mouse model of ascending urinary tract infection [J]. Infect Immun, 1994, 62(8): 3363-3371.
    [8] Hossack D.J.N. Proteus vulgaris urinary tract infections in rats; treatment with nitrofuran derivatives [J]. Br J Pharmacol Chemother, 1962, 19: 306-312.
    [9] Memmel H., Kowal-Vern A., Latenser B.A. Infections in diabetic burn patients [J]. Diabetes Care, 2004, 27(1): 229-233.
    [10] Lysy J., Werczberger A., Globus M., et al. Pneumatocele formation in a patient with Proteus mirabilis pneumonia [J]. Postgrad Med J, 1985, 61(7): 255-257.
    [11] Zunino P., Sosa V., Allen A.G., et al. Proteus mirabilis fimbriae (PMF) are important forboth bladder and kidney colonization in mice [J]. Microbiol, 2003, 149(11): 3231-3237.
    [12] Cooper F.B., Gross P., Lewis M. Sulfanilamide therapy of experimental peritonitis due to E. coli, B. proteus and B. pyocyaneous [J]. P Soc Exp Biol Med, 1939, 40: 34-36.
    [13] Tumialan L.M., Lin F., Gupta S.K. Spontaneous bacterial peritonitis causing Serratia marcescens and Proteus mirabilis ventriculoperitoneal shunt infection [J]. J Neurosurg, 2006, 105(2): 320-324.
    [14] Mcgovern F.H., Khuri A. A. Chronic otitis media and mastoiditis due to Proteus vulgaris (Bacillus Proteus) [J]. A.M.A. Arch Otolaryngol, 1958, 67(4): 403-409.
    [15] Dobrzynski Z. Septicemia caused by Proteus vulgaris [J]. Polski Tygodnik Lekarski, 1957, 12(46): 1783-1784.
    [16] Fabiani G., Boulard C., Massonnat J. Septicemia caused by Proteus; streptomycin and sulfamide (sulfafurazol) therapy; recovery [J]. Algerie Medicale, 1955, 59(2): 105-107.
    [17] Rashid T., Ebringer A. Rheumatoid arthritis is linked to Proteus-the evidence [J]. Clin Rheumatol, 2007, 26(7): 1036-1043.
    [18] Tressia M.D., Karen A.D., Michelle L.F., et al. Production of superoxide dismutases from Proteus mirabilis and Proteus vulgaris [J]. BioMetals, 1996, 9: 131-137.
    [19] Mobley H.L., Island M.D., Massad G. Virulence determinant of uropathogenic Escherichia coli and Proteus mirabilis [J]. Kidney Int, 1994, 47: 129.
    [20] Arai Y., Takeuchi H., Tonogoshi T. Experimental bladder stone production by human uropathogenic bacteria [J]. Hinyokike Kiyo, 1997, 43(3): 207.
    [21] Wassif C., Cheek D., Belas R. Molecular analysis of a metallaprotease from Proteus mirabilis [J]. The J Bacteriol, 1995, 177(20): 5790.
    [22] Bondarenko V.M., Parkhomenko L.V., Koval’chuk V.K. The secreted proteolytic enzymes of Proteus mirabilis [J]. Zhurnal Mikrobiologii, Epidemiologii, i Immunobiologii, 1993, (2): 41.
    [23] Wells C.L., Jechorek R.P., Nelson R.D. Interactions of Escherichia coli and Proteus mirabilis with mouse mononuclear phagocytes [J]. Int J Med Microbiol, 1990, 333(3): 153.
    [24]毕水莲,唐书泽,陈守义,等. PCR方法快速检测变形杆菌的研究[J].食品工业科技, 2008, 29(7): 246-253.
    [25]毕水莲,唐书泽,陈守义,等.两种检测变形杆菌PCR方法的比较研究[J].食品与发酵工业, 2008, 34(7): 122-126.
    [26]毕水莲,唐书泽,陈守义,等.食源性变形杆菌属PCR检测方法[J].食品研究与开发, 2010, 31(2): 155-159.
    [27]中华人民共和国国家标准.食物中毒诊断标准及技术处理总则[S].北京, 1994.
    [28]中华人民共和国卫生行业标准.变形杆菌食物中毒诊断标准及处理原则[S].北京, 1996.
    [29] Chandler D.P., Wagnon C.,Bolton H. J. Reverse transcriptase (RT) inhibition of PCR at low concentrations of template and its implications for quantitative RT-PCR [J]. Appl Environ Microb, 1998, 64(2): 669-677.
    [30] Kumar H.S., Otta S.K., Karunasagar I., et al. Detection of Shiga-toxigenic Escherichia coli (STEC) in fresh seafood and meat marketed in Mangalore, India by PCR [J]. Lett Appl Microbiol, 2001, 33(5): 334-338.
    [31] Witham P.K., Yamashiro C.T., Livak K.J., et al. PCR-based assay for the detection of Escherichia coli Shiga-like toxin genes in ground beef [J]. Appl Environ Microb, 1996, 62(4): 1347-1353.
    [32] Aznar R., Solis I. PCR detection of Listeria monocytogenes in different food products compared with the mini-VIDAS LMO system and the standard procedure ISO 11290-1 [J]. J Fuer Verbraucherschutz and Lebensmittelsicherheit, 2006, 1(2): 115-120.
    [33] Kim H.J., Jung S.H., Park J.H.,et al. PCR detection of Listeria monocytogenes using specific virulence factor genes [J]. Agr Chem Biotechnol, 2004, 47(2): 102-105.
    [34] Somer L., Kashi Y.A. PCR method based on 16S rRNA sequence for simultaneous detection of the genus Listeria and the species Listeria monocytogenes in food products [J]. J Food Protect, 2003, 66(9): 1658-1665.
    [35] Levin R.E. Application of the polymerase chain reaction for detection of Listeria monocytogenes in foods: a review of methodology [J]. Food Biotechnol, 2003, 17(2): 99-116.
    [36] Almeida P.F., Almeida R.C.C. A PCR protocol using inl gene as a target for specific detection of Listeria monocytogenes [J]. Food Control, 2000, 11(2): 97-101.
    [37] Sood S.K., Kaur J. PCR-based detection of Listeria monocytogenes in dairy foods [J].Curr Sci India, 1996, 71(6): 449-456.
    [38] Chiang Y.C., Chang L.T., Lin C.W., et al. PCR primers for the detection of staphylococcal enterotoxins K, L, and M survey of staphylococcal enterotoxin types in Staphylococcus aureus isolates from food poisoning cases in Taiwan [J]. J Food Protect, 2006, 69(5): 1072-1079.
    [39] Alarcon B., Vicedo B., Aznar R. PCR-based procedures for detection and quantification of Staphylococcus aureus and their application in food [J]. J Appl Microbiol, 2006, 100(2): 352-364.
    [40] Ercolini D., Blaiotta G., Fusco V., et al . PCR-based detection of enterotoxigenic Staphylococcus aureus in the early stages of raw milk cheese making [J]. J Appl Microbiol, 2004, 96(5): 1090-1096.
    [41] Kim C.H., Khan M., Morin D.E., et al. Optimization of the PCR for detection of Staphylococcus aureus nuc gene in bovine milk [J]. J Dairy Sci, 2001, 84(1): 74-83.
    [42] Kumar R., Surendran P.K., Thampuran N. An eight-hour PCR-based technique for detection of Salmonella serovars in seafood [J]. World J Microb Biot, 2008, 24(5): 627-631.
    [43] Halatsi K., Oikonomou I., Lambiri M., et al. PCR detection of Salmonella spp. using primers targeting the quorum sensing gene sdiA [J]. Fems Microbiol Lett, 2006, 259(2): 201-207.
    [44] Maciorowski K., Pillai S., Jones F., et al . Polymerase chain reaction detection of foodborne Salmonella spp. in animal feeds [J]. Crit Rev Microbiol, 2005, 31(1): 45-53.
    [45] Malorny B., Paccassoni E., Fach P., et al. Diagnostic real-time PCR for detection of Salmonella in food [J]. Appl Environ Microb, 2004, 70(12): 7046-7052.
    [46] Jin U.H., Cho S.H., Kim M.G., et al. PCR method based on the ogdH gene for the detection of Salmonella spp. from chicken meat samples [J]. J Microbiol, 2004, 42(3): 216-222.
    [47] Bhagwat A.A. Rapid detection of Salmonella from vegetable rinse-water using real-time PCR [J]. Food Microbiol, 2003, 2004, 21(1): 73-78.
    [48] Szabo E.A., Pemberton J.M., Gibson A.M., et al. Polymerase chain reaction for detection of Clostridium botulinum types A, B and E in food, soil and infant feces [J]. J ApplBacteriol, 1994, 76(6): 539-545.
    [49] Nol P., Williamson J.L., Rocke T.E., et al. Detection of Clostridium botulinum type C cells in the gastrointestinal tracts of mozambique tilapia (Oreochromis mossambicus) by polymerase chain reaction [J]. J Wildlife Dis, 2004, 40(4): 749-753.
    [50] Sano T., Smith C.L., Cantor C.R. Immuno-PCR: very sensitive antigen detection by means of specific antibody-DNA conjugates [J]. Science 1992, 258(5079): 120-122.
    [51] Haase A.T., Retzel Ernest F., Staskus K.A. Amplification and detection of lentiviral DNA inside cells [J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(13): 4971-4975.
    [52] Long A.A., Komminoth P., Lee E., et al. Comparison of indirect and direct in-situ polymerase chain reaction in cell preparations and tissue sections: detection of viral DNA, gene rearrangements and chromosomal translocations [J]. Histochemistry, 1993, 99(2): 151-162.
    [53] Bobo L., Coutlee F., Yolken R. H., et al. Diagnosis of Chlamydia trachomatis cervical infection by detection of amplified DNA with an enzyme immunoassay [J]. J Clin microbiol, 1990, 28(9): 1968-1973.
    [54] Actor J.K., Limor J.R., Hunter R. L. A flexible bioluminescent-quantitative polymerase chain reaction assay for analysis of competitive PCR amplicons [J]. J Clin Lab Anal, 1999, 13(1): 40-47.
    [55] Schnell S., Mendoza C. Enzymological considerations for a theoretical description of the quantitative competitive polymerase chain reaction (QC-PCR) [J]. J Theor Biol, 1997, 184(4): 433-440.
    [56] Belkum A., Struelens M., Visser A., et al. Role of genomic typing in taxonomy, evolutionary genetics, and microbial epidemiology [J]. Clin Microbiol Rev, 2001, 14(3): 547-560.
    [57] Ward L.R., Desa J.D.H., Rowe B.A phage-typing scheme for Salmonella enteritidis [J]. Epidemiol Infect, 1987, 99(2): 291-294.
    [58] Brawner D.L., Cutler J.E. Oral Candida albicans isolates from nonhospitalized normal carriers, immunocompetent hospitalized patients, and immunocompromised patientswith or without acquired immunodeficiency syndrome [J]. J Clin Microbiol, 1989, 27(6): 1335-1341.
    [59] Poulain D., Hopwood V., Vernes A. Antigenic variability of Candida albicans [J]. Crit Rev Microbiol, 1985, 12(3): 223-270.
    [60] Anderson J.M., MihalikR., Soll D.R. Ultrastructure and antigenicity of the unique cell-wall pimple of the Candida opaque phenotype [J]. J Bacteriol, 1990, 172(1): 224-235.
    [61] Welsh J., McClelland M. Fingerprinting genomes using PCR with arbitrary primers [J]. Nucleic Acids Res, 1990, 18(24): 7213-7218.
    [62] Williams J.G.K., Kubelik A.R., Livak K.J., et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers [J]. Nucleic Acids Res, 1990, 18(22): 6531-6535.
    [63] Sharples G.J., Lloyd R.G.A novel repeated sequence located in the intergenic regions of bacterial chromosomes [J]. Nucleic Acids Res, 1990, 18(22): 6503-6508.
    [64] Wilson L.A., Sharp P.M. Enterobacterial Repetitive Intergenic Consensus (ERIC) sequences in Escherichia coli: evolution and implications for ERIC-PCR [J]. Mol Biol Evol, 2006, 23(6): 1156-1158.
    [65] Versalovic J., Koeuth T., Lupski J.R. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes [J]. Nucleic Acids Res, 1991, 19(24): 6823-6831.
    [66] Gillings M., Holley M. Repetitive element PCR fingerprinting (rep-PCR) using enterobacterial repetitive intergenic consensus (ERIC) primers is not necessarily directed at ERIC elements [J]. Lett Appl Microbiol, 1997, 25(1): 17-21.
    [67] Maiden M.C., Bygraves J.A., Feil E., et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms [J]. P Natl Acad Sci USA, 1998, 95(6): 3140-3145.
    [68] Corich V., Mattiazzi A., Soldati E., et al. Sau-PCR, a novel amplification technique for genetic fingerprinting of microorganisms [J]. Appl Environ Microb, 2005, 71(10): 6401-6406.
    [69] Cocolin L., Stella S., Nappi R., et al. Analysis of PCR-based methods for characterization of Listeria monocytogenes strains isolated from different sources [J]. Int J Food Microbiol, 2005, 103(2): 167-178.
    [70] Iacumin L., Comi G., Cantoni C., et al. Molecular and technological characterization of Staphylococcus xylosus isolated from naturally fermented Italian sausages by RAPD, Rep-PCR and Sau-PCR analysis [J]. Meat Sci, 2006, 74(2): 281-288.
    [71]毕水莲,李琳,张学武等. Sau-PCR和AILP技术对一起副溶血弧菌引起食物中毒的分型研究[J].食品工业科技, 2009, 30(8): 158-161.
    [72] Yan H., Shi L., Alam, M. J., et al. Usefulness of Sau-PCR for molecular epidemiology of nosocomial outbreaks due to Burkholderia cepacia which occurred in a local hospital in Guangzhou, China [J]. Microbiol Immunol, 2008, 52(5): 283-286.
    [73] Hopkins K.L., Hilton A.C. Methods available for the sub-typing of Escherichia coli O157 [J].World J Microbiol Biotechnol, 2000, 16: 741- 748.
    [74] Harsono K.D., Kaspar C.W., Luchansky J.B., et al. Comparison and genomic sizing of Escherichia coli O157:H7 isolates by pulsed-field gel electrophoresis [J]. Appl Environ. Microbiol, 1993,59: 3141- 3144.
    [75] Farber J.M. An introduction to the hows and whys of molecular typing [J]. J Food Prot, 1996, 59: 1091-1101.
    [76] Centers for Disease Control and Prevention. Outbreaks of Shigella sonnei infection associated with eating fresh parsley-Unites States and Canada, July-August 1998 [J]. Mmwr Morb Mortal Wkly Rep, 1999, 48(14): 285-289.
    [77] Schwarz D.C., Cantor C.R. Separation of yeast chromosomesized DNAs by pulsed field gradient gel electrophoresis [J]. Cell, 1984, 37(1): 67-75.
    [78] Adhami E.W., Roberts L.A., Vickery B., et al. Epidemiological analysis of a methicillin-resistant Staphylococcus aureus outbresk using restriction fragment length polymorphisms of genomic DNA [J]. J Gen Microbiol, 1991, 137: 2713- 2720.
    [79] Tenover F.C., Arbeit R.D., Goering R.V., et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing [J]. J Clin Microbiol, 1995, 33: 2233-2239.
    [80] Talon D., cailleaux V., Thouverez M., et al. Discriminatory power and usefulness ofpulsed-field gel electrophoresis in epidemiological studies of pseudomonas aeruginosa [J]. J Hop Infection, 1996, 32: 135-145.
    [81] Murray B.E., Singh K.V., Heath J.D., et al. Comparison of genomic DNAs of different enterococcus isolates using restriction endonucleases with infrequent recognition sites [J]. J Clin Microbiol, 1990, 28(9): 2059-2063.
    [82] Arbeit R.D., Arthur M., Dunn R., et al. Resolution of recent evolutionary divergence among Escherichia coli from related lineages: the application of pulsed field electrophoresis to molecular epidemiology [J]. J Infect Dis, 1990. 161(2): 230-235.
    [83] Poh C.L., Yeo C.C., Tay L. Genome fingerprinting by pulsedfield gel electrophoresis and ribotyping to differentiate Pseudomonas aeruginosa serotype-O11 strains [J]. Eur J Clin Microbiol, 1992, 11(9): 817-822.
    [84] Sonntag A.K., Prager R., Bielaszewska M., et al. Phenotypic and genotypic analyses of enterohemorrhagic Escherichia coli O145 strains from patients in Germany [J]. J Clin Microbiol, 2004, 42(3): 954-962.
    [85] Hardwick T.H., Cassiday P., Weyant R.S., et al. Changes in predominance and diversity of genomic subtypes of Bordetella pertussis isolated in the United States, 1935 to 1999 [J]. Emerg Infect Dis, 2002, 8: 44-49.
    [86] Hunter S.B., Vauterin P., Lambert-Fair M.A., et al. Establishment of a universal size standard strain for use with the Pulsenet standardized pulsed-field gel electrophoresis protocols: converting the national databases to the New Size Standard [J]. J Clin Microbiol, 2005, 43: 1045-1050.
    [87] Boyce J.M., Opal S.M., Potter-Bynoe G., et al. Spread of methicillin-resistant Staphylococcus aureus in a hospital after exposure to a health care worker with clronic sinusitis [J]. Clin Infect Dis, 1993, 17: 496-504.
    [88] Maslow J.N., Mulligan M.E., Arbeit R.D., et al. Molecular epidemiology: the application of contemporary techniques to typing bacteria [J]. Clin Infect Dis, 1993, 17: 153-164.
    [89] McDougal L.K., Steward C.D., Killgore G.E., et al. Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database [J]. J Clin Microbiol, 2003, 41: 5113-5120.
    [90] Saulnier P., Bourneix C., Prevost G., et al. Random amplified polymorphic DNA assay is less discriminant than pulsed-field gel electrophoresis for typing strains of methicillin-resistant Staphylococcus aureus [J]. J Clin Microbiol, 1993, 31(4): 982-985.
    [91] Prevost G., Jaulhac B., Piedmont Y. DNA fingerprinting by pulsed-field electrophoresis is more effective than ribotyping in distinguishing among methicillin-resistant Staphylococcus aureus isolates [J]. J Clin Microbiol, 1992, 30(4): 967-970.
    [92] Martinez-Urtaza J., Liebana E., Garcia-Migura L., et al. Characterization of Salmonella enterica Serovar Typhimurium from marine environments in coastal waters of Galicia (Spain) [J]. Appl Environ Microbiol, 2004, 70(7): 4030-4034.
    [93] Revazishvili T., Kotetishvili M., Colin S.O., et al. Comparative analysis of multilocus sequence typing and pulsed-field gel electrophoresis for characterizing Listeria monocytogenes strains isolated from environmental and clinical sources [J]. J Clin Microbiol, 2004, 42(1): 276-285.
    [94] Kodama A., Kamachi K., Horiuchi Y., et al. Antigenic divergence suggested by correlation between antigenic variation and pulsed-field gel electrophoresis profiles of bordetella pertussis isolates in Japan [J]. J Clin Microbiol, 2004, 42(12): 5453-5457.
    [95] Brian M.J., Van R., Townsend I., et al. Evaluation of the molecular epidemiology of an ourbreak of multiply resistant Shigella sonnei in a day care center by using pulsed-field gel electrophoresis and plasmid DNA analysis [J]. J Clin Microbiology, 1993, 31: 128-133.
    [96] Thomas B., Denise H.B., Roger L.S., et al. A multistate outbreak of Escherichia coli O157:H7 infections linked to alfalfa sprouts grown from contaminated seeds [J]. Emerg Infect Dis, 2001, 7: 977-982.
    [97] Shima K., Terajima J., Sato T., et al. Development of a PCR-restriction fragment length polymorphism assay for the epidemiological analysis of shiga toxin-producing Escherichia coli [J]. J Clin Microbiol, 2004, 42: 5205-5213.
    [98] Mora A., Blanco M., Blanco J.E., et al. Phage types and genotypes of shiga toxin- producing Escherichia coli O157:H7 isolates from humans and animals in Spain: identification and characterization of two predominating phage types (PT2 and PT8) [J]. J Clin Microbiol, 2004, 42: 4007-4015.
    [99] Swaminathan B., Barrett T.J., Hunter S.B., et al. PulseNet: the molecular subtyping network for foodborne bacterial disease surveillance, United States [J]. Emerg Infect Dis, 2001, 7: 382-389.
    [100] Ploy M.C., Lambert T., Couty J.P., et al. Integrons: an antibiotic resistance gene capture and expression system [J]. Clin Chem Lab Med, 2000, 38: 483-487.
    [101] Poyart C., Pierre C., Quesne G., et al. Emergence of vancomycin resistance in the genus Streptococcus: characterization of a anB transferable determinant in Streptococcus bovis [J]. Antimicrob Agent Chemother, 1997, 41: 24-29.
    [102] Venkatesan S. Horizontal spread of transposon mutagenesis: new uses for old elements [J]. Trend Plant Science, 1996, 1: 184-190.
    [103] Kunte H. J., Galinski, E. A. Transposon mutagenesis in halophilic eubacteria: conjugal transfer and insertion of transposon Tn5 and Tn1732 in Halomonas elongata [J]. Fems Microbiol Lett, 1995, 128: 293-299.
    [104] Adam P.R., Jonathan P., Michael W., et al. Transfer of a conjugative transposon, Tn5397 in a model oral biofilm [J]. Fems Microbiol Lett, 1999, 177: 63-66.
    [105] Hall, R.M., Stokes H.W. Integrons or super integrons? [J]. Microbiol, 2004, 150: 3-4.
    [106] Collis C.M., Kim M.J., Partridge S.R., et al. Characterization of the class 3 integron and the site-specific recombination system it determines [J]. J Bacteriol, 2002, 184: 3017-3026.
    [107] Correia, M., Boavida, F., Grosso, F., et al. Molecular characterization of a new class 3 integron in Klebsiella pneumoniae [J]. Antimicrob. Agents Chemother, 2003, 47: 2838-2843.
    [108] Mazel, D., Dychinco B., Webb V. A., et al. A distinctive class of integron in the Vibrio cholerae genome [J]. Science, 1998, 280: 605-608.
    [109] Rowe-Magnus D.A., Guerout A.M., Mazel D. Bacterial resistance evolution by recruitment of super-integron gene cassettes [J]. Mol Microbiol, 2002, 43: 1657-1669.
    [110] Recchia G.D., Hall R.M. Origins of the mobile gene cassettes found in integrons [J]. Trends Microbiol, 1997, 5 (10): 389-394.
    [111] Rech G.D., Hall R.M. Gene cassettes: a new class of mobile element [J]. Microbiol, 1995, 141: 3015-3027.
    [112] Sundstrom L. The potential of integrons and connected programmed rearrangements for mediating horizontal gene transfer [J]. Apmis Supplementum, 1998, 84: 37-42.
    [113] Partridge S.R., Collis C.M., Hall R.M. Class 1 integron containing a new gene cassette, aadA10, associated with Tn1404 from R151 [J]. Antimicrob Agents Chemother, 2002, 46(8): 2400-2408.
    [114] Barlow R.S., Pemberton J.M., Desmarchelier P.M, et al. Isolation and characterization of integron-containing bacteria without antibiotic selection[J]. Antimicrob Agents Chemother, 2004, 48: 838-842.
    [115] Gonzalez G., Mella S., Zemelman R., et al. Integrons and resistance gene cassettes: structure and role against antimicrobials [J]. Rev Med Chil, 2004, 132: 619-626.
    [116] Gassama-Sow A., Diallo M.H., Boye C.S., et al. Class 2 integron-associated antibiotic resistance in Shigellaei isolates in Dakar, Senegal [J]. Antimicrob Agents, 2006, 27: 267-270.
    [117] Hacker J., Carniel E. Ecological fitness, genomic islands and bacterial pathogenicity [J]. EMBO Rep, 2001, 2: 376-381.
    [118].Dobrindt U., Hochhut B., Hentschel U., et al. Genomic islands in pathogenic and environmental microorganisms [J]. Nat Rev Microbiol, 2004, 2: 414-424.
    [119] Holden M.T., Feil E.J., Lindsay J.A., et al. Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance [J]. Proc Natl Acad Sci USA, 2004, 101: 9786-9791.
    [120] Mongkolrattanothai K., Boyle S., Murphy T V., et al. Novel non-mecA-containing staphylococcal chromosomal cassette composite island containing pbp4 and tagF genes in a commensal staphylococcal species: a possible reservoir for antibiotic resistance islands in Staphylococcus aureus [J]. Antimicrob Agents Chemother, 2004, 48: 1823-1836.
    [121] Luck S.N., Turner S.A., Rajakumar K., et al. Ferric dicitrate transport system (Fec) of Shigella flexneri 2a YSH6000 is encoded on a novel pathogenicity island carrying multiple antibiotic resistance genes [J]. Infect Immun, 2001, 69: 6012-6021.
    [122] Boyd D.A., Peters G.A., Ng L. K., et al. Partial characterization of a genomic island associated with the multidrug resistance region of Salmonella enterica Typhimurium DT104 [J]. FEMS Microbiol Lett. 2000, 89: 285-291.
    [123] Boyd D.A., Peters G.A., Cloeckaert A., et al. Complete nucleotide sequence of a 43-kilobase genomic island associated with the multidrug resistance region ofSalmonella enterica serovar Typhimurium DT104and its identification in phage type DT120 and serovar Agona [J]. J Bacteriol, 2001, 183: 5725-5732.
    [124] Briggs C. E., Fratamico P.M. Molecular characterization of an antibiotic resistance gene cluster of Salmonella typhimurium DT104 [J]. Antimicrob Agents Chemother, 1999, 43: 846-849.
    [125] Boyd D., Cloeckaert A., Chalus-Dancla E., et al. Characterization of variant Salmonella genomic island 1 multidrug resistance regions from serovars Typhimurium DT104 and Agona [J]. Antimicrob Agents Chemother, 2002 , 46: 1714-1722.
    [126] Doublet B., Lailler R., Meunier D., et al. Variant Salmonella genomic island 1antibiotic resistance gene cluster in Salmonella enterica serovar Albany [J].Emerg Infect Dis, 2003, 9: 585-591.
    [127] Levings R.S., Lightfoot D., Partridge S. R., et al. The genomic island SGI1, containing the multiple antibiotic resistance region of Salmonella enterica serovar Typhimurium DT104 or variants of it, is widely distributed in other S. enterica serovars [J]. J Bacteriol, 2005, 187: 4401-4409.
    [128] Vo A.T.T., Duijkeren E.V., Fluit A.C., et al. A novel Salmonella genomic island 1 and rare integron types in Salmonella Typhimurium isolates from horses in the Netherlands [J]. J Antimicrob Chemother, 2007, 59: 594-599.
    [129] Doublet B., Praud K., Bertrand S., et al. Novel insertion sequence-and transposon -mediated genetic rearrangements in genomic island SGI1 of Salmonella enterica Serovar Kentucky [J]. Antimicrob Agents Chemother, 2008, 52(10): 3745-3754.
    [130] Targant H., Doublet B., Aarestrup F.M., et al. IS6100-mediated genetic rearrangement within the complex class 1 integron In104 of the Salmonella genomic island 1 [J]. J Antimicrob Chemother, 2010, 65: 1543-1545.
    [131] Ahmed A.M., Hussein A.I., Shimamoto T. Proteus mirabilis clinical isolate harbouring a new variant of Salmonella genomic island 1 containing the multiple antibiotic resistance region [J]. J Antimicrob Chemother, 2007, 59(2): 184-190.
    [132] Boyd D.A., Shi X., Hu Q-H., et al. Salmonella genomic island 1 (SGI1), variant SGI1-I, and new variant SGI1-O in Proteus mirabilis clinical and food isolates from China. Antimicrob Agents Chemother, 2008, 52: 340-344.
    [133] Meunier D., Boyd D., Mulvey M.R., et al. Salmonella enterica serotype Typhimurium DT104 antibiotic resistance genomic island I in serotype Paratyphi B [J]. Emerg Infect Dis, 2002, 8: 430-433.
    [134] Doublet B., Lailler R., Meunier D., et al. Variant Salmonella genomic island 1 antibiotic resistance gene cluster in Salmonella enterica serovar Albany [J]. Emerg Infect Dis, 2003, 9: 585-591.
    [135] Doublet B., Weill F.X., Fabre L., et al. Variant Salmonella genomic island 1 antibiotic resistance gene cluster containing a novel 30-N-aminoglycoside acetyltransferase gene cassette, aac(3)-Id, in Salmonella enterica serovar Newport [J]. Antimicrob Agents Chemother, 2004, 48: 3806-3812.
    [136] Doublet B, Boyd D, Mulvey M R, et al. The Salmonella genomic island 1 is an integrative mobilizable element [J]. Mol Microbiol, 2005, 55: 1911-1924.
    [137] Carattoli A., Filetici E., Villa L., et al. Antibiotic resistance genes and Salmonella genomic island 1 in Salmonella enterica serovar Typhimurium isolated in Italy [J]. Antimicrob Agents Chemother, 2002, 46: 2821-2828.
    [138] Partridge S.R., Hall R.M. In34, a complex In5 family class 1 integron containing orf513 and dfrA10 [J]. Antimicrob Agents Chemother, 2003, 47: 342-349.
    [139] Mead P.S., Slutsker L., Dietz V., et al. Food-related illness and death in the United States[J]. Emerg Infect Dis, 1999, 5: 607-625.
    [140] Antibiotic Resistance in Livestock: More at Stake than Steak. Environmental Health Perspectives. 2002, 110.
    [141] Shoemaker N.B., Vlamakis H., Salyers A.A. Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteroides and other genera in the human colon [J]. Appl Environ Microbiol, 2001, 67: 561-568.
    [142] McDonald L.C., Rossiter S., Mackinson C. Quinupristin-dalfopristin–resistant Enterococcus faecium on chicken and in human stool specimens [J]. N Engl J Med, 2001, 345: 1155-1160.
    [143] Bi S.L., Yan H. Retrospective analysis of the food poisoning incidences caused by Proteus in China: 1961-2007 [C]. First International Conference on Cellular, Molecular Biology, Biophysics and Bioengineering, 2010,Ⅱ: 24-27.
    [144]КрейнинЛ.С.,于守汎.关于变形杆菌感染的某些问题[J].国际流行病学传染病学杂志, 1986, 2: 56-58.
    [145] Paradis S, Boissinot M, Paquette N, et al. Phylogeny of the Enterobacteriaceae based on genes encoding elongation factor Tu and F-ATPase-subunit [J]. Int J Syst Evol Microbiol, 2005, 55(5): 2013-2025.
    [146]颜秉兴. 43株奇异变形杆菌检测及其耐药分析[J].检验医学与临床, 2005, 2(1): 3-5.
    [147]徐文杰,侯兰,尹克启,等.奇异变杆菌致病因素检测[J].中国卫生检验杂志, 2001, 11(2): 206.
    [148]黄锐敏,陈辉,俞慕华. 47株奇异变形杆菌耐药分析[J].河南预防医学杂志, 2009, 20(3): 189-190.
    [149] Sambrook J., Frishch E.F., Maniatis T. Molecular cloning: a laboratory manual [M]. New York: Cold Spring Harbor Laboratory press, 1989: 439.
    [150] Rantakokko-Jalava K., Jalava J. Optimal DNA isolation method for detection of bacteria in clinical specimens by broad-range PCR [J]. J Clin Microbiol, 2002, 40(11): 4211-4215.
    [151]冯洁,石磊,肖增璜,等.细菌耐药整合子intI分类的多重PCR方法的建立及应用[J].中国抗生素杂志, 2005, 30(10): 599-603.
    [152] Levesque C., Piche L., Larose C., et al. PCR mapping of integrons reveals several novel combinations of resistance genes [J]. Antimicrob. Agents Chemother, 1995, 39: 185-191.
    [153] White P.A., McIver C.J., Rawlinson W.D. Integrons and gene cassettes in the Enterobacteriaceae [J]. Antimicrob. Agents Chemother, 2001, 45: 2658-2661.
    [154]闫鹤,石磊,杨连生,等. 1993-2000年霍乱弧菌耐药整合子的分布状况[J].中华传染病杂志, 2007, 25(8): 454-457.
    [155] Stokes H.W., O’Gorman D.B., Recchia G.D. Structure and function of 59-base element recombination sites associated with mobile gene cassettes [J]. Mol Microbiol, 1997, 26: 731-745.
    [156] Hall R.M., Brookes D.E., Stokes H.W. Site-specific insertion of genes into integrons: role of the 59-base element and determination of the recombination cross-over point [J]. Mol Microbiol, 1991, 5: 1941-1959.
    [157] Belasco, J.G., Higgins C.F. Mechanisms of mRNA decay in bacteria: a perspective [J].Gene, 1998, 72: 15-23.
    [158] Partridge S.R., Recchia G.D., Scaramuzzi C., et al. Definition of the attIl site ofclass 1 integrons [J]. Microbiol, 2000, 146(11): 2855-2864.
    [159] Navia M.M., Ruiz J., Vila J. Molecular characterization of the integrons in Shigella strains isolated from patients with traveler's diarrhea [J]. Diagn Micr Infec Dis, 2004, 48: 175-179.
    [160] Beatriz G., Sara M.S., Jose M.A. Multidrug resistance is mediated by large plasmids carrying a class I integron in the emergent Salmonella enterica serotype [J]. Antimicrob Agents Chemother, 2001, 4: 1305-1308.
    [161] Liu Y.L., Lu X.H., Tang Y.J. Polymerase chain reaction for identification and typing of Clostridium difficile isolated from Chinese patients [J]. International journal of infectious disease, 1997, 2: 85-87.
    [162] Andrighetoo C., Zampese L., Lombardi A. RAPD-PCR characterization of lactobacilli isolated from artisanal meat plants and traditional fermented sausages of Veneto region [J]. Apple Microbiol, 2001, 33: 26-30.
    [163] Miguel B.L., Sandra R., Paul A. AFLP fingerprinting for analysis of yeast genetic variation [J]. Int J Syst Bcteriol, 1990, (49): 915-924.
    [164] Michael R., Mulvey, David A., et al. The genetics of Salmonella genomic island 1 [J]. Microbes Infect, 2006, 8: 1915-1922.
    [165] Sandvang D., Aarestrup F.M., Jensen L.B. Characterization of integrons and antibiotic resistance genes in Danish multiresistant Salmonella enterica typhimurium DT104 [J]. FEMS Microbiol Lett, 1998, 160: 37-41.
    [166] Recchia G.D., Hall R.M. Gene cassettes: a new class of mobile element [J]. Microbiol, 1995, 141: 3015-3027.
    [167] Chiu C.H., Chen H.L., Kao L.S., et al. Variant Salmonella genomic island 1 antibiotic resistance gene clusters in Salmonella enterica serovar Derby isolates from humans in Taiwan [J]. J Antimicrob Chemother, 2007, 59: 325-326.
    [168] Kazama H., Kizu K., Iwasaki M., et al. Isolation and structure of a new integron that includes a streptomycin resistance gene from the R plasmid of Pseudomonas aeruginosa [J]. FEMS Microbiol Lett, 1995, 134: 137-141.
    [169] Ebner P., Garner K., Mathew A. Class 1 integrons in various Salmonella entericaserovars isolated from animals and identifi cation of genomic island SGI1 in Salmonella enterica var. Meleagridis [J]. J Antimicrob Chemother, 2004, 53: 1004-1009.
    [170] Doublet B., Poirel L., Praud K. et al. European clinical isolate of Proteus mirabilis harbouring the Salmonella genomic island 1 variant SGI1-O [J]. J Antimicrob Chemother, 2010, 65: 2260-2262.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700