用户名: 密码: 验证码:
基于LTCC的多层基片集成波导滤波器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信和移动通信技术的迅猛发展,现代微波、毫米波系统正在迅速向小型化、轻量化、高可靠性、多功能性和低成本的方向发展。作为系统重要的组成部分,高品质因数、等时延、低插入损耗和高选频特性的带通滤波器倍受关注。椭圆或准椭圆型滤波器因其响应中具有传输零点能满足这些要求。一般来说,产生传输零点有两种方法:交叉耦合和一腔多模理论。而利用基片集成波导(Substrate Integrated Waveguide, SIW)技术所构成的元器件具有高品质因数、大功率容量、造价低和易于集成等优点。所以,近些年来,大量性能优异的基片集成波导椭圆、准椭圆滤波器被开发出来。特别是多层LTCC技术的引入,不仅提高了基片集成波导滤波器的性能,而且极大地减小了滤波器的版图面积。这就使得基于LTCC的多层基片集成波导椭圆、准椭圆滤波器在微波、毫米波通信系统中的应用潜力巨大,有望成为系统级封装(SiP)中重要的组成部分。本文的目标是研究多层基片集成波导滤波器,以期开发出在性能和小型化方面更具优势的滤波器。
     本文首先针对经典交叉耦合谐振腔滤波器在基片集成波导上传统的实现方式,提出了一种真正多层的交叉耦合基片集成波导滤波器结构。它的面积随着滤波器级数的增加几乎不变,约为两个谐振腔的面积。并且证明了它的耦合矩阵可以由经典的交叉耦合矩阵经过相似变换取得。进而将其用于四级多层基片集成方波导和圆波导带通滤波器的设计。除此之外还给出了一种抑制此种滤波器寄生通带的方法。实验结果验证了设计的有效性。
     本文还对一个结构简单且性能优良的多层双模基片集成波导滤波器进行理论分析和设计加工,测试结果与仿真结果的良好吻合验证了多层双模基片集成波导滤波器的高性能和设计方法的正确性与有效性。
     最后,为了进一步减小多层交叉耦合基片集成波导滤波器的版图面积,本文提出了一种小型化的凹凸结构基片集成波导谐振腔,分析其性质;并将其用于四级多层交叉耦合滤波器的设计,结果证明:当滤波器的工作频率相同时,凹凸结构基片集成波导滤波器将会具有更小的版图面积;且其寄生通带出现的位置距离中心频率较远,改善了滤波器的阻带特性。
With the rapid development of wireless and mobile communication technology, the tendency of modern microwave and millimeter-wave communication systems is miniaturization, low-weight, reliable, multifunctional and low-cost. As an important part of system, the bandpass filters with high-quality, flat group-delay, low insertion loss and good frequency selectivity have caught greater attention from the world. Elliptic and quasi-elliptic filters can meet above requirements because they have transmission zeros. Generally, two methods can be used to produce the transmission zeros, which include cross-coupling theory and one-resonator-multimode theory. It is also well known that the substrate integrated waveguide (SIW) components take a lot of merits such as high-quality, high power capability, low-cost and easy integration etc. Therefore, elliptic and quasi-elliptic SIW filters with good performance have been developed abundantly. Particularly, the introduction of multilayer low temperature co-fired ceramics (LTCC) technology not only improves the performance of SIW filters, but reduces the area of SIW filters dramatically. So the elliptic and quasi-elliptic SIW filters based on LTCC will show tremendous potentials in microwave and millimeter-wave communication systems, and may become an important component of system in package (SiP). My dissertation investigates multilayer SIW filters to develop the novel filters with smaller and better performance.
     Firstly, a really multilayer SIW configuration of canonical cross-coupled filters is proposed in this dissertation. Compared with the traditional SIW configuration of canonical cross-coupled filters, the filter with the proposed configuration occupies approximately double the area of a single resonator cavity, and the area almost keeps unchanged with the order increasing of the filter. It is also proved that the coupling matrix of the proposed configuration can be obtained by the similarity transformation of the canonical cross-coupling matrix. Then the fourthorder multilayer substrate integrated rectangular and circular waveguide bandpass filters with this configuration are developed using LTCC technology. In addition, a new method is presented to suppress the spurious passband of the SIW filters. What mentioned above has been verified by experiments.
     Secondly, a multilayer dual-mode SIW filter with a simple structure and good performance is analyzed theoretically, and then is designed and fabricated in this dissertation. The measured results show good agreement with the simulated results and validate the structure of the proposed dual-mode filter.
     Finally, to reduce the area of multilayer cross-coupled SIW filters, a compact concavo-convex SIW resonator is proposed and analyzed. Then it is used to design the four-pole multilayer cross-coupled filter. The simulated results show that when the work frequency is the same, the SIW filter with this resonator occupies smaller area, and that its spurious passband is a goodish distance from central frequency, so the filter has a good stopband performance.
引文
[1] J. C. Maxwell, A treatise on electricity and magnetism, Dover, N. Y., 1954.
    [2] R. G. L. Mattaei, L. Yong, and E. M. T. Jones, Microwave filters, Impedance-matching networks and coupling structures, New York, McGraw-Hill, 1964.
    [3] R. M. Barrett, and M. H. Barnes,“Microwaves printed circuits”, Radio Telev., 46:16, Sep. 1952.
    [4]清华大学《微带电路》编写组,微带电路.人民邮电出版社,1976.
    [5]甘本袚,吴万春,现代微波滤波器的结构与设计.北京:科学出版社,1974.
    [6] R. Levy, R. V. Snyder, and G. Matthaei,“Design of microwave filters’”, IEEE Trans. Microw. Theory Tech., vol. 50, no. 3, pp. 783-793, Mar. 2002.
    [7] Ali E. Atia, and Albert E. Williams,“Narrow-bandpass waveguide filters”, IEEE Trans. Microw. Theory Tech., vol. MTT-20, no. 4, pp. 258-265, Apr. 1972.
    [8] A. E. Atia, A. E. Williams, and R. W. Newcomb,“Narrow-band multiple-coupled cavity synthesis”, IEEE Trans. Circuits and Systems, vol. MTT-21, no. 5, pp. 649-655, Sept. 1974.
    [9] G. Pfitzenmaier,“Synthesis and realization of narrow-band canonical microwave bandpass filters exhibiting linear phase and transmission zeros”, IEEE Trans. Circuits and Systems, vol. 30, pp. 1300-1311, Sept. 1982.
    [10] G. Macchiarella,“An original approach to the design of bandpass cavity filters with multiple couplings”, IEEE Trans. Circuits and Systems, vol. 45, no. 2, pp. 179-187, Sept. 1997.
    [11] Ali E. Atia, and Albert E. Williams,“Nonminimum-phase optimum-amplitudebandpass waveguide filters”, IEEE Trans. Microw. Theory Tech., vol. MTT-22, pp. 425-431, Apr. 1974.
    [12] Ralph Lecy,“Filters with single transmission zeros at real or imaginary frequencies”, IEEE Trans. Microw. Theory Tech., vol. MTT-24, pp. 172-181, Apr. 1976.
    [13] J. Brian Thomas,“Cross-coupling in coaxial cavity filters - a tutorial overview”, IEEE Trans. Microw. Theory Tech., vol. 51, no. 4, pp. 1368-1376, Apr. 2003.
    [14] Smain Amari, Uwe Rosenberg, and Jens Bornemann,“Adaptive synthesis and design of resonator filters with source/load-multiresonator coupling”, IEEE Trans. Microw. Theory Tech., vol. 50, no. 8, pp. 1969-1978, Aug. 2002.
    [15] R. Orta, P. Savi, R. Tascone, et al,“Rectangular waveguide dual-mode filters without discontinuities inside the resonators”, IEEE Microwave and Guided Wave Lett., vol. 5, no. 9, pp. 302-304, Sept. 1995.
    [16] P. Savi, D. Trinchero, R. Tascone, et al,“A new approach to the design of dual-mode rectangular waveguide filters with distributed coupling”, IEEE Trans. Microw. Theory Tech., vol. 45, no. 2, pp. 221-228, Feb. 1997.
    [17] S. Amari, and M. Bekheit,“A new class of dual-mode dual-band waveguide filters”, IEEE Trans. Microw. Theory Tech., vol. 56, no. 8, pp. 1938-1944, Aug. 2008.
    [18] Albert E. Williams, and Ali E. Atia,“Dual-mode canonical waveguide filters”, IEEE Trans. Microw. Theory Tech., vol. MTT-25, no. 12, pp. 1021-1026, Dec. 1977.
    [19] M. Gugliclmi, R. Molina, and A. Melcon,“Dual-mode circular waveguide filters without tuning screw”, IEEE Microwave and Guided Wave Lett., vol. 2, pp. 457-458, Nov. 1992.
    [20] K. L. Wu,“An optimal circular-waveguide dual-mode filter without tuning screws”, IEEE Trans. Microw. Theory Tech., vol. 47, no. 3, pp. 271-276, Mar. 1999.
    [21] M. Guglielmi, P. Jarry, E. Kerherve, et al,“A new family of all-inductive dual-mode filters”, IEEE Trans. Microw. Theory Tech., vol. 49, no. 10, pp. 1764-1769, Oct. 2001.
    [22] A. Piloto, K. Leahy, B. Flanick, et al,“Waveguide filters having a layered dielectric structure”, US Patent 5382931, Jan. 1995.
    [23] J. Hirokawa, and M. Ando,“Single-layer feed waveguide consisting of posts for plane TEM wave excitation in parallel plates”, IEEE Trans. Antennas Propagat., vol. 46, no. 5, pp. 625-630, May. 1998.
    [24] H. Uchimura, T. Takenoshita, and M. Fujii,“Development of a‘laminated waveguide’”, IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp. 2438-2443, Dec. 1998.
    [25] Y. Cassivi, L. Perregrini, P. Arcioni, et al,“Dispersion characteristics ofsubstrate integrated rectangular waveguide,”IEEE Microw. Wireless Compon. Lett., vol. 12, no. 9, pp. 333-335, Sep. 2002.
    [26] F. Xu, Y. L. Zhang, W. Hong, et al,“Finite-difference frequency-domain algorithm for modeling guided-wave properties of substrate integrated waveguide,”IEEE Trans. Microw. Theroy Tech., vol. 51, no. 11, pp. 2221-2226, Nov. 2003.
    [27] H. Li, W. Hong, T. J. Cui, et al,“Propagation Characteristics of substrate integrated waveguide based on LTCC,”in IEEE MTT-S Int. Microwave Symp. Dig., pp. 2045-2048, Jun. 2003.
    [28] Y. L. Zhang, W. Hong, F. Xu, et al,“Analysis of guided-wave problems in substrate integrated waveguides numerical simulations and experimental results,”in IEEE MTT-S Int. Microwave Symp. Dig., pp. 2049-2052, Jun. 2003.
    [29] F. Xu, and K. Wu,“Guided-wave and leakage characteristics of substrate integrated waveguide,”IEEE Trans. Microw. Theroy Tech., vol. 53, no. 1, pp. 66-73, Jan. 2005.
    [30] D. Deslandes, and K. Wu,“Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide,”IEEE Trans. Microw. Theroy Tech., vol. 54, no. 6, pp. 2516-2526, Jun. 2006.
    [31] C. H. Tseng, and T. H. Chu,“Measurement of frequency-dependent equivalent width of substrate integrated waveguide,”IEEE Trans. Microw. Theroy Tech., vol. 54, no. 4, pp. 1431-1437, Apr. 2006.
    [32] D. Deslandes, and K. Wu,“Integrated microstrip and rectangular waveguide in planar form,”IEEE Microw. Wireless Compon. Lett., vol. 11, no. 2, pp. 68-70, Feb. 2001.
    [33] D. Deslandes, and K. Wu,“Integrated transition of coplanar to rectangular waveguides,”in IEEE MTT-S Int. Microwave Symp. Dig., pp. 619-622, Jun. 2001.
    [34] T. Swierczynski, D. A. McNamara, and M. Clenet,“Via-walled cavities as vertical transitions in multilayer millimeter-wave circuits”, Electron. Lett., vol. 39, no. 25, Dec. 2003.
    [35] T. H. Yang, C. F. Chen, T. Y. Huang, et al,“A 60GHz LTCC transition between microstrip line and substrate integrated waveguide,”in APMC’05 Proceedings, 2005.
    [36] J. H. LEE, S. Pinel, J. Papapolymerou, et al,“Comparative study of feeding techniques for three-dimensional cavity resonators at 60GHz,”IEEE Trans. On Advanced Package, vol. 30, no. 1, pp. 115-123, Feb. 2007.
    [37] A. Suntives, and R. Abhari,“Transition structures for 3-D integration of substrate integrated waveguide interconnects,”IEEE Microw. Wireless Compon. Lett., vol. 17, no. 10, pp. 697-699, Oct. 2007.
    [38] Y. Ding, and K. Wu,“Substrate integrated waveguide-to-microstrip transition inmultilayer substrate,”IEEE Trans. Microw. Theroy Tech., vol. 55, no. 12, pp. 2839-2844, Dec. 2007.
    [39]李皓,华光,陈继新等,“基片集成波导和微带转换器的理论与实验研究”,电子学报,2003,31(12A).
    [40] A. El-Tager, J. Bray, and L. Roy,“High-Q LTCC resonators for millimeter wave applications,”in IEEE MTT-S Dig., pp. 2257-2260, 2003.
    [41] A. El-Tager, and L. Roy,“Novel cylindrical high-Q LTCC resonators for millimeter wave applications,”in IEEE MTT-S Dig., pp. 637-640, 2004.
    [42] X. Gong, T. Smyth, E. Ghaneie, et al,“High-Q resonators and filters inside advanced low-temperature co-fired ceramic substrates using fine-scale periodicity,”IEEE Trans. Microw. Theroy Tech., vol. 56, no. 4, pp. 922-930, Apr. 2008.
    [43] D. Deslandes, and K. Wu,“Millimeter-wave substrate integrated waveguides filters,”in IEEE CCECE 2003, Canadian Conference, pp. 1917-1920, May. 2003.
    [44] B. S. Kim, J. W. Lee, K. S. Kim, et al,“PCB substrate integrated waveguide-filter using via fences at millimeter-wave,”in IEEE MTT-S Int. Microwave Symp. Dig., pp. 1097-1100, 2004.
    [45] Z. C. Hao, W. Hong, H. Li, et al,“A broadband substrate integrated waveguides (SIW) filter,”in IEEE MTT-S Int. Microwave Symp. Dig., pp. 598-601, 2005.
    [46] X. P. Chen, W. Hong, J. X. Chen, et al,“Substrate integrated waveguide elliptic filter with high mode,”in APMC’05 Proceedings, 2005.
    [47] Z. C. Hao, W. Hong, J. X. Chen, et al,“Compact super-wide bandpass substrate integrated waveguide (SIW) filters,”IEEE Trans. Microw. Theroy Tech., vol. 53, no. 9, pp. 2968-2977, Sep. 2005.
    [48] Y. L. Zhang, W. Hong, K. Wu, et al,“Novel substrate integrated waveguide cavity filter with defected ground structure,”IEEE Trans. Microw. Theroy Tech., vol. 53, no. 4, pp. 1280-1287, Apr. 2005.
    [49]张玉林,洪伟,吴柯等,“一种新型基片集成波导腔体滤波器的设计玉实现”,微波学报,2005,21:138-141.
    [50]汤红军,洪伟,“一种紧缩结构的新型毫米波基片集成波导滤波器”,红外与毫米波学报,2006,25(2):139-142.
    [51]吴先良,丁让箭,吴琼,“基片集成波导带通滤波器的设计”,合肥工业大学学报,2007,30(3):394-396.
    [52] Y. L. Zhang, W. Hong, K. Wu, et al,“Development of compact bandpass filters with SIW triangular cavities,”in APMC’05 Proceedings, 2005.
    [53] H. J. Tang, W. Hong, Z. C. Hao, et al,“Optimal design of compact millimeter-wave SIW circular cavity filters,”Electron. Lett., vol. 41, no. 19, pp.1068-1069, Sep. 2005.
    [54] B. Potenlon, J.-C. Bohorquez, J.-F. Favennec, et al,“Design of Ku-band filter based on substrate-integrated circular cavities (SICCs)”in IEEE MTT-S Int. Microwave Symp. Dig., pp. 1237-1240, Jun. 2006.
    [55] H. J. Tang, and W. Hong,“Substrate integrated waveguide dual mode filter with circular cavity,”in Joint 31st Int. Infrared Millimeter Waves Conf./14th Int. Terahertz Electron. Conf. Dig., Shanghai, China, vol. 18-22, pp. 399-399, Sept. 2006.
    [56] H. J. Tang, W. Hong, J. X. Chen, et al,“Development of millimeter-wave planar diplexers based on complementary characters of dual-mode substrate integrated waveguide filters with circular and elliptic cavities,”IEEE Trans. Microw. Theory Tech., vol. 55, no. 4, pp. 776-782, Apr. 2007.
    [57] Dominic Deslandes, and Ke Wu,“Substrate integrated waveguide dual-mode filters for broadband wireless system”, in 2003 Radio and Wireless Conf., Bostom, MA, pp. 385-388, Aug. 2003.
    [58] X. P. Chen, Z. C. Hao, W. Hong, et al,“Planar asymmetric dual-mode filters based on substrate integrated waveguide (SIW)”, in IEEE MTT-S Int. Micro. Symp. Dig., pp. 949-952, Jun. 2005.
    [59] X. P. Chen, W. Hong, T. J. Cui, et al,“Symmetric dual-mode filter based on substrate integrated waveguide (SIW)”, IEEE MTT-S Int. Microwave. Symp., Long Beach, pp. 949-952, 2005.
    [60]张胜,王子华,肖建康等,“基于基片集成波导(SIW)的双模带通滤波器”,微波学报,2007,23(2):55-58.
    [61] J. H. Lee, N. Kidera, S. Pinel, et al,“Design and development of advanced cavity-based dual-mode filters using low-temperature co-fired ceramic technology for V-band gigabit wireless systems”, IEEE Trans. Microw. Theory Tech., vol. 55, no. 9, pp. 1869-1878, Sept. 2007.
    [62] X. P. Chen, W. Hong, T. J. Cui, et al,“Substrate integrated waveguide (SIW) linear phase filter,”IEEE Microw. Wireless Compon. Lett., vol. 15, no. 11, pp. 787-789, Nov. 2005.
    [63] S. Z. Zhang, Z. Y. Yu, and C. Li,“Elliptic function filters designed in LTCC,”in APMC’05 Proceedings, 2005.
    [64] B. Potelon, J.-F. Favennec, C. Wuendo, et al,“Design of a substrate integrated waveguide (SIW) filter using a novel topology of coupling,”IEEE Microw. Wireless Compon. Lett., vol. 18, no. 9, pp. 596-598, Sept. 2008.
    [65] X. P. Chen, K. Wu, and Z. L. Li,“Dual-band and triple-band substrate integrated waveguide filters with Chebyshev and quasi-elliptic responses,”IEEE Trans. Microw. Theroy Tech., vol. 55, no. 12, pp. 2569-2578, Dec. 2007.
    [66] X. Chen, W. Hong, T. Cui, et al,“Substrate integrated waveguide elliptic filter with transmission line inserted inverter,”Electron. Lett., vol.41, no. 15, pp. 851-852, Jul. 2005.
    [67] X. P. Chen and Ke Wu,“Substrate integrated waveguide cross-coupled filter with negative coupling structure,”IEEE Trans. Microw. Theroy Tech., vol. 56, no. 1, pp. 142-149, Jan. 2008.
    [68] Y. Cassivi and K. Wu,“Low cost microwave oscillator using substrate integrated waveguide cavity,”IEEE Microw. Wireless Compon. Lett., vol. 13, no. 2, pp. 48-50, Feb. 2003.
    [69]李皓,陈安定,洪伟等,“基片集成波导定向耦合器的仿真与实验研究”,微波学报,2004,20(4):54-56.
    [70] J. X. Chen, W. Hong, Z. C. Hao, et al,“Development of a low cost microwave mixer using a broad-band substrate integrated waveguide (SIW) coupler,”IEEE Microw. Wireless Compon. Lett., vol. 16, no. 2, pp. 84-86, Feb. 2006.
    [71] B. Liu, W. Hong, Z. C. Hao, et al,“Substrate integrated waveguide 180-degree narrow-wall directional coupler,”in APMC’05 Proceedings, 2005.
    [72] Z. C. Hao, W. Hong, J. X. Chen, et al,“Single-layer substrate integrated waveguide directional couplers,”Proc. Inst. Electr. Eng., vol. 153, no. 5, pp. 426-431, Oct. 2006.
    [73] Y. J. Cheng, W. Hong, and K. Wu,“Novel substrate integrated waveguide fixed phase shifter for 180-degree directional coupler”, in IEEE MTT-S Int. Micro. Symp. Dig., pp. 189-192, 2007.
    [74] T. Djerafi, and K. Wu,“Super-compact substrate integrated waveguide cruciform directional coupler,”IEEE Microw. Wireless Compon. Lett., vol. 17, no. 11, pp. 757-759, Nov. 2007.
    [75] S. Germain, D. Deslandes, and K. Wu,“Development of substrate integrated waveguide dividers”, IEEE CCECE 2003, Canadian Conference,Electrical and Computer Engineering, vol. 3, pp. 1921-1924, May. 2003.
    [76] K. J. Song, Y. Fan, and Y. H. Zhang,“Eight-way substrate integrated waveguide power divider with low insertion loss,”IEEE Trans. Microw. Theroy Tech., vol. 56, no. 6, pp. 1473-1477, Jun. 2008.
    [77] Z. C. Hao, W. Hong, H. Li, et al,“Multiway broadband substrate integrated waveguide (SIW) power divider”, in IEEE AP-S Int. Antennas and Propag., Symp., pp. 639-642, 2005.
    [78] K. Song, Y. Fan, and Y. Zhang,“Radial cavity power divider based on substrate integrated waveguide technology,”Electron. Lett., vol.42, no. 19, Sep. 2006.
    [79] K. Song, Y. Fan, and X. Zhou,“X-band broadband substrate integrated waveguide power divider,”Electron. Lett., vol.44, no. 3, Jan. 2008.
    [80]邓磊,唐高弟,“基片集成波导功分器仿真设计”,信息与电子工程,2008,6(2):79-82.
    [81]刘冰,洪伟,郝张成等,“基片集成波导梳状交替相位功分器”,电子学报,2007,35(6):1061-1064.
    [82] A. J. Farrall, and P. R. Young,“Substrate integrated waveguide slot antenns,”Electron. Lett., vol.40, no. 16, Aug. 2004.
    [83] L. Yan, W. Hong, G. Hua, et al,“Simulation and experiment on SIW slot array antennas,”IEEE Microw. Wireless Compon. Lett., vol. 14, no. 9, pp. 446-448, Sept. 2004.
    [84] G. Q. Luo, Z. F. Hu, L. X. Dong, et al,“Planar slot antenna backed by substrate integrated waveguide cavity,”IEEE Microw. Wireless Propagat. Lett., vol. 7, pp. 236-239, 2008.
    [85] G. Q. Luo, L. L. Sun, and L. X. Dong,“Single probe fed cavity backed circularly polarized antenna”, Microw. Opt. Tech. Lett., vol. 50, no. 11, pp. 2996-2998, Nov. 2008.
    [86] Y. J. Cheng, W. Hong, K. Wu, et al,“Substrate integrated waveguide (SIW) Rrotman lens and its Ka-band multibeam array antenna applications”, IEEE Trans. Antennas Propagat., vol. 56, no. 8, pp. 2504-2513, Aug. 2008.
    [87]栾秀珍,谭克俊,房少军,“基片集成波导槽阵列天线的仿真研究”,系统仿真学报,2008,20(6):1642-1644.
    [88]郝张成,基片集成波导技术的研究,东南大学博士学位论文,2005.
    [89] K. K. Samanta, D. Stephens, and I. D. Robertson,“60GHz multi-chip-module receiver with substrate integrated waveguide antenna and filter,”Electron. Lett., vol.42, no. 12, Jun. 2006.
    [90] F. F. He, K. Wu, W. Hong, et al,“A planar magic-T using substrate integrated circuits concept,”IEEE Microw. Wireless Compon. Lett., vol. 18, no. 6, pp. 386-388, Jun. 2008.
    [91] W. D’Orazio, and K. Wu,“Substrate-integrated-waveguide circulators suitable for millimeter-wave integration,”IEEE Trans. Microw. Theroy Tech., vol. 54, no. 10, pp. 3675-3680, Oct. 2006.
    [92] Z. Y. Zhang, and K. Wu,“A broadband substrate integrated waveguide (SIW) planar balun,”IEEE Microw. Wireless Compon. Lett., vol. 17, no. 12, pp. 843-845, Dec. 2007.
    [93] K. Sellal, L. Talbi, T. A. Denidni, et al,“Design and implementation of a substrate integrated waveguide phase shifter,”IET Microw. Antennas Propagat., vol. 2, no. 2, pp. 194-199, Mar. 2008.
    [94] X. Xu, R. G. Bosisio, and K. Wu,“A new six-port junction based on substrate integrated waveguide technology,”IEEE Trans. Microw. Theroy Tech., vol. 53, no. 7, pp. 2267-2273, Jul. 2005.
    [95] E. Moldovan, R. G. Bosisio, and K. Wu,“W-band Multiport substrate-integrated waveguide circuits,”IEEE Trans. Microw. Theroy Tech., vol. 54, no. 2, pp. 625-631, Feb. 2006.
    [96] Z. C. Hao, W. Hong, X. P. Chen, et al,“Multilayered substrate integrated waveguide (MSIW) elliptic filter,”IEEE Microw. Wireless Compon. Lett., vol.15, no. 2, pp. 95-97, Feb. 2005.
    [97] J. H. Lee, S. Pinel, J. Papapolymerou, et al,“Low-loss LTCC cavity filters using system-on-package technology at 60GHz,”IEEE Trans. Microw. Theroy Tech., vol. 53, no. 12, pp. 3817-3824, Dec. 2005.
    [98] H. Y. Chien, T. M. Shen, T. Y. Hung, et al,“Design of a vertically stacked substrate integrated folded-waveguide resonator filter in LTCC,”in APMC’07 Proceedings, 2007.
    [99] T. M. Shen, C. F. Chen, T. Y. Huang, et al,“Design of vertically stacked waveguide filters in LTCC,”IEEE Trans. Microw. Theroy Tech., vol. 55, no. 8, pp. 1771-1779, Aug. 2007.
    [100] B. Liu, W. Hong, Y. Zhang, et al,“Half mode substrate integrated waveguide (HMSIW) doublet-slot coupler,”Electron. Lett., vol.43, no. 2, Jan. 2007.
    [101] B. Liu, W. Hong, Y. Q. Wang, et al,“Half mode substrate integrated waveguide (HMSIW) 3-dB coupler,”IEEE Microw. Wireless Compon. Lett., vol. 17, no. 1, pp. 22-24, Jan. 2007.
    [102] Y. Q. Wang, W. Hong, Y. D. Dong, et al,“Half mode substrate integrated waveguide (HMSIW) bandpass filter,”IEEE Microw. Wireless Compon. Lett., vol. 17, no. 4, pp. 265-267, Apr. 2007.
    [103] Y. J. Cheng, W. Hong, and K. Wu,“Half mode substrate integrated waveguide (HMSIW) directional filter,”IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 504-506, Jul. 2007.
    [104] G. H. Zhai, W. Hong, K. Wu, et al,“Folded half mode substrate integrated waveguide 3dB coupler,”IEEE Microw. Wireless Compon. Lett., vol. 18, no. 8, pp. 512-514, Aug. 2008.
    [105] H. Jin, and G. Wen,“A novel four-way Ka-band spatial power combiner based on HMSIW,”IEEE Microw. Wireless Compon. Lett., vol. 18, no. 8, pp. 515-517, Aug. 2008.
    [106] J. A. Ruiz-Cruz, M. A. El-Sabbagh, K. A. Zaki, et al,“Canonical ridge waveguide filters in LTCC or metallic resonators,”IEEE Trans. Microw. Theroy Tech., vol. 53, no. 1, pp. 174-182, Jan. 2005.
    [107] J. A. Ruiz-Cruz, Y. C. Zhang, K. A. Zaki, et al,“Ultra-wideband LTCC ridge waveguide filters,”IEEE Microw. Wireless Compon. Lett., vol. 17, no. 2, pp. 115-117, Feb. 2007.
    [108] T.Todumitsu, et al, IEEE MMW MCS Dig., 1996:85.
    [109] Q. F. Wei, Z. F. Li, W. J. Zhang, et al,“Three-pole cross-coupled substrate integrated waveguide (SIW) bandpass filters based on PCB process and multilayer LTCC technology,”Microw. Opt. Tech. Lett., vol. 51, no. 1, pp. 71-73, Jan. 2009.
    [110]魏启甫,李征帆,李霖“一种基于LTCC的多层交叉耦合基片集成波导滤波器”,上海交通大学学报,2009。(录用)
    [111] Q. F. Wei, Z. F. Li, L. S. Wu, et al,“Investigation on some novel multi-layered cross-coupled substrate integrated waveguide (SIW) circular cavity filters,”in APMC’08 Dig., 2008.
    [112] Q. F. Wei, Wei, Z. F. Li, L. S. Wu, et al,“A novel multi-layered cross-coupled substrate integrated waveguide (SIW) circular cavity filter in LTCC,”Microw. Opt. Tech. Lett., 2008. (accepted)
    [113] Q. F. Wei, Z. F. Li, L. S. Wu, et al,“Development of circular cavity filters using multi-layered substrate integrated waveguides (SIW),”Electron. Lett., 2008. (accepted)
    [114] Qi-Fu Wei, Zheng-Fan Li, and Hai-Gen Shen,“Dual-mode filters based on substrate integrated waveguide by multilayer LTCC technology,”Microw. Opt. Tech. Lett., vol. 50, no. 11, pp. 2788-2790, Nov. 2008.
    [115] L. Li, Z. F. Li, and Q. F. Wei,“A compact quasi-elliptic bandpass filter using coupled dual quasi-lumped LC resonators,”Microw. Opt. Tech. Lett., vol. 51, no. 1, pp. 158-160, Jan. 2009.
    [116] L. Li, Z. F. Li, and Q. F. Wei,“Compact and selective lowpass filter with very wide stopband using tapered compact microstrip resonant cells,”Electron. Lett., vol.45, no. 5, Feb. 2009.
    [117] L. Li, Z. F. Li, and Q. F. Wei,“A quasi-elliptic wideband bandpass filter using a novel multiple-mode resonator constructed by an asymmetric compact microstrip resonant cell,”Microw. Opt. Tech. Lett., vol. 51, no. 3, pp. 713-714, Mar. 2009.
    [1] H. Uchimura, T. Takenoshita, and M. Fujii,“Development of a‘laminated waveguide’”, IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp. 2438-2443, Dec. 1998.
    [2] K. Wu, D. Deslandes, and Y. Cassivi,“The substrate integrated circuits-a new concept for high-frequency electronics and optoeletronics,”in Proc. 6th Int. Conf. Telecommunication in Modern Satellite, Cable, Broadcasting Service (TELSIKS’03). vol. 1, pp. P-III-P-X, Oct. 1-3 2003.
    [3] Dominic Deslandes, and Ke Wu,“Integrated microstrip and rectangular waveguide in planar form”, IEEE Microw. Wireless Compon. Lett., vol. 11, no. 2, pp. 68-70, Feb. 2001.
    [4] Hiroshi Uchimura, et al,“Development of a laminated waveguide”, IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp. 2438-2443, Dec. 1998.
    [5] B. N. Das, et al,“Excitation of waveguide by stripline- and microstrip-line-fed slots”, IEEE Trans. Microw. Theory Tech., vol. 34, no. 3, pp. 321-327, Mar. 1986.
    [6] Dominic Deslandes, et al,“Single-substrate integration technique of planar circuits and waveguide filters”, IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 593-596, Feb. 2003.
    [7] Emilia Moldovan, et al,“W-band multiport substrate-integrated waveguide circuits”, IEEE Trans. Microw. Theory Tech., vol. 54, no. 2, pp. 625-632, Feb. 2006.
    [8] Z. C. Hao, W. Hong, X. P. Chen, et al,“Multilayered substrate integrated waveguide (MSIW) elliptic filter,”IEEE Microw. Wireless Compon. Lett., vol. 15, no. 2, pp. 95-97, Feb. 2005.
    [9] Y. Cassivi, L. Perregrini, P. Arcioni, et al,“Dispersion characteristics of substrate integrated rectangular waveguide,”IEEE Microw. Wireless Compon. Lett., vol. 12, no. 9, pp. 333-335, Sep. 2002.
    [10] F. Xu, Y. L. Zhang, W. Hong, et al,“Finite-difference frequency-domainalgorithm for modeling guided-wave properties of substrate integrated waveguide,”IEEE Trans. Microw. Theroy Tech., vol. 51, no. 11, pp. 2221-2226, Nov. 2003.
    [11] H. Li, W. Hong, T. J. Cui, et al,“Propagation Characteristics of substrate integrated waveguide based on LTCC,”in IEEE MTT-S Int. Microwave Symp. Dig., pp. 2045-2048, Jun. 2003.
    [12] Y. L. Zhang, W. Hong, F. Xu, et al,“Analysis of guided-wave problems in substrate integrated waveguides numerical simulations and experimental results,”in IEEE MTT-S Int. Microwave Symp. Dig., pp. 2049-2052, Jun. 2003.
    [13] Y. Cassivi and K. Wu,“Low cost microwave oscillator using substrate integrated waveguide cavity,”IEEE Microw. Wireless Compon. Lett., vol. 13, no. 2, pp. 48-50, Feb. 2003.
    [14]张玉林,基片集成波导传播特性及滤波器的理论与实验研究,东南大学博士学位论文,2005.
    [15]李皓,华光,陈继新,洪伟,崔铁军,吴柯,“基片集成波导和微带转换器的理论与实验研究”,电子学报,2003,31(12A).
    [16] H. J. Tang, W. Hong, J. X. Chen, et al,“Development of millimeter-wave planar diplexers based on complementary characters of dual-mode substrate integrated waveguide filters with circular and elliptic cavities,”IEEE Trans. Microw. Theory Tech., vol. 55, no. 4, pp. 776-782, Apr. 2007.
    [17] J. H. LEE, S. Pinel, J. Papapolymerou, et al,“Comparative study of feeding techniques for three-dimensional cavity resonators at 60GHz,”IEEE Trans. On Advanced Package, vol. 30, no. 1, pp. 115-123, Feb. 2007.
    [18] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications. New York: Wiley, 2001, Chapter 8, pp. 235-272.
    [19] X. P. Chen and Ke Wu,“Substrate integrated waveguide cross-coupled filter with negative coupling structure,”IEEE Trans. Microw. Theroy Tech., vol. 56, no. 1, pp. 142-149, Jan. 2008.
    [20] B. Potelon, J.-F. Favennec, C. Wuendo, et al,“Design of a substrate integrated waveguide (SIW) filter using a novel topology of coupling,”IEEE Microw. Wireless Compon. Lett., vol. 18, no. 9, pp. 596-598, Sept. 2008.
    [21] J. S. Hong,“Couplings of asynchronously tuned coupled microwave resonators,”IEE Proc. Microw., Antennas and Propag., vol. 147, no. 5, pp. 354-358, Oct. 2000.
    [22]刘浩斌,“低温共烧陶瓷的现状和发展趋势”,电子元器件应用,2005,4:27-32.
    [23]魏启甫,基于LTCC的3DMIC中内埋无源元件的设计与分析,合肥工业大学硕士学位论文,2005.
    [1] Ali E. Atia, and Albert E. Williams,“New type of waveguide bandpass filters for satellite transponders”, Comsat Tech. Rev., vol. 1, no. 1, pp. 21-43, 1971.
    [2] Ali E. Atia, and Albert E. Williams,“Narrow-bandpass waveguide filters”, IEEE Trans. Microw. Theory Tech., vol. MTT-20, no. 4, pp. 258-265, Apr. 1972.
    [3] A. E. Atia, A. E. Williams, and R. W. Newcomb,“Narrow-band multiple-coupled cavity synthesis”, IEEE Trans. Circuits and Systems, vol. MTT-21, no. 5, pp. 649-655, Sept. 1974.
    [4] G. Pfitzenmaier,“Synthesis and realization of narrow-band canonical microwave bandpass filters exhibiting linear phase and transmission zeros”, IEEE Trans. Circuits and Systems, vol. 30, pp. 1300-1311, Sept. 1982.
    [5] G. Macchiarella,“An original approach to the design of bandpass cavity filters with multiple couplings”, IEEE Trans. Circuits and Systems, vol. 45, no. 2, pp. 179-187, Sept. 1997.
    [6] Ali E. Atia, and Albert E. Williams,“Nonminimum-phase optimum-amplitude bandpass waveguide filters”, IEEE Trans. Microw. Theory Tech., vol. MTT-22, pp. 425-431, Apr. 1974.
    [7] Ralph Lecy,“Filters with single transmission zeros at real or imaginary frequencies”, IEEE Trans. Microw. Theory Tech., vol. MTT-24, pp. 172-181, Apr. 1976.
    [8] Richard J. Cameron,“General coupling matrix synthesis methods for Chebyshev filtering functions”, IEEE Trans. Microw. Theory Tech., vol. 47, no. 4, pp. 433-442, Apr. 1999.
    [9] X. Chen, W. Hong, T. Cui, et al,“Substrate integrated waveguide elliptic filter with transmission line inserted inverter,”Electron. Lett., vol.41, no. 15, pp. 851-852, Jul. 2005.
    [10] X. P. Chen and Ke Wu,“Substrate integrated waveguide cross-coupled filter with negative coupling structure,”IEEE Trans. Microw. Theroy Tech., vol. 56, no. 1, pp. 142-149, Jan. 2008.
    [11] T. M. Shen, C. F. Chen, T. Y. Huang, et al,“Design of vertically stacked waveguide filters in LTCC,”IEEE Trans. Microw. Theroy Tech., vol. 55, no. 8, pp. 1771-1779, Aug. 2007.
    [12] J. A. Ruiz-Cruz, M. A. E. Sabbagh, K. A. Zaki, et al,“Canonical ridge waveguide filters in LTCC or metallic resonators,”IEEE Trans. Microw. Theory Tech., vol. 53, no. 1, pp. 174-182, Jan. 2005.
    [13] Z. C. Hao, W. Hong, X. P. Chen, et al,“Multilayered substrate integrated waveguide (MSIW) elliptic filter,”IEEE Microw. Wireless Compon. Lett., vol. 15, no. 2, pp. 95-97, Feb. 2005.
    [14] T. Shen, H.-T. Hsu, K. A. Zaki, et al,“Full-wave design of canonical waveguidefilters by optimization,”IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 504-511, Feb. 2003.
    [15] W. A. Atia, K. A. Zaki and A. E. Atia,“Synthesis of general topology multiple coupled resonator filters by optimization”, IEEE, MTT-S Proceedings, Maryland, pp. 821-824, 1998.
    [16] Richard J. Cameron,“Advanced coupling matrix synthesis techniques for microwave filters”, IEEE Trans. Microw. Theory Tech., vol. 51, no. 1, pp. 1-10, Jan. 2003.
    [17] Smain Amari,“Synthesis of cross-coupled resonator filters using an analytical gradient-based optimization technique”, IEEE Trans. Microw. Theory Tech., vol. 48, no. 9, pp. 1559-1564, Sept. 2000.
    [18] H. Kabir, Y. Wang, M. Yu, et al,“Neural network inversse modeling and applications to microwave filter design,”IEEE Trans. Microw. Theory Tech., vol. 56, no. 4, pp. 867-879, Apr. 2008.
    [19] S. Amari,“On the maximum number of finite transmission zeros of coupled resonator filters with a given topology,”IEEE Microw. Guided Wave. Lett., vol. 9, pp. 354-356, Sep. 1999.
    [20] R. J. Cameron and J. D. Rhodes,“Asymmetric realizations for dual-mode bandpass filters,”IEEE Trans. Microw. Theory Tech., vol. MTT-29, no. 1, pp. 51-58, Jan. 1981.
    [21] J. A. R. Cruz, K. A. Zaki, J. R. M. Garai, et al,“Rectangular waveguide elliptic filters with capacitive and inductive irises and integrated coaxial excitation,”IEEE MTT-S Int. Microwave. Symp. Dig., pp. 269-272, Jun. 2005.
    [22] J. R. Montejo-Garai,“Synthesis of n-even order symmetric filters with n transmission zeros by means of source-load cross coupling,”Electron. Lett., vol. 36, no. 3, pp. 232-233, Feb. 2000.
    [23] S. Amari,“Direct synthesis of folded symmetric resonator filters with source-load coupling,”IEEE Microw. Wireless Compon. Lett., vol. 11, no. 6, pp. 264-266, Jun. 2001.
    [24]张文剑,封装内系统(SiP)中无源元件的研究及应用,上海交通大学博士学位论文,2006.
    [25] Q. F. Wei, Z. F. Li, W. J. Zhang, et al,“Three-pole cross-coupled substrate integrated waveguide (SIW) bandpass filters based on PCB process and multilayer LTCC technology,”Microw. Opt. Tech. Lett., vol. 51, no. 1, pp. 71-73, Jan. 2009.
    [26]魏启甫,李征帆,李霖“一种基于LTCC的多层交叉耦合基片集成波导滤波器”,上海交通大学学报,2009。(录用)
    [1] A. El-Tager, and L. Roy,“Novel cylindrical high-Q LTCC resonators for millimeter wave applications”, in IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, pp. 637-640, Jun. 2004.
    [2] G. Amendola, G. Angiulli, E. Arnieri, et al,“Resonant frequencies of circular substrate integrated resonators,”IEEE Microw. Wireless Compon. Lett., vol. 18, no. 4, pp. 239-241, Apr. 2008.
    [3] H. J. Tang, W. Hong, Z. C. Hao, et al,“Optimal design of compact millimeter-wave SIW circular cavity filters,”Electron. Lett., vol. 41, no. 19, pp.1068-1069, Sep. 2005.
    [4] B. Potenlon, J.-C. Bohorquez, J.-F. Favennec, et al,“Design of Ku-band filterbased on substrate-integrated circular cavities (SICCs)”in IEEE MTT-S Int. Microwave Symp. Dig., pp. 1237-1240, Jun. 2006.
    [5] B. Potelon, J.-F. Favennec, C. Quendo, et al,“Design of a substrate integrated waveguide (SIW) filter using a novel topology of coupling,”IEEE Microw. Wireless Compon. Lett., vol. 18, no. 9, pp. 596-598, Sept. 2008.
    [6] H. J. Tang, and W. Hong,“Substrate integrated waveguide dual mode filter with circular cavity,”in Joint 31st Int. Infrared Millimeter Waves Conf./14th Int. Terahertz Electron. Conf. Dig., Shanghai, China, vol. 18-22, pp. 399-399, Sept. 2006.
    [7] H. J. Tang, W. Hong, J. X. Chen, et al,“Development of millimeter-wave planar diplexers based on complementary characters of dual-mode substrate integrated waveguide filters with circular and elliptic cavities,”IEEE Trans. Microw. Theory Tech., vol. 55, no. 4, pp. 776-782, Apr. 2007.
    [8] Q. F. Wei, Z. F. Li, L. S. Wu, et al,“Investigation on some novel multi-layered cross-coupled substrate integrated waveguide (SIW) circular cavity filters,”in APMC’08 Dig., 2008.
    [9] Q. F. Wei, Z. F. Li, L. S. Wu, et al,“A novel multi-layered cross-coupled substrate integrated waveguide (SIW) circular cavity filter in LTCC,”Microw. Opt. Tech. Lett., 2009. (accepted)
    [10] Q. F. Wei, Z. F. Li, L. S. Wu, et al,“Development of circular cavity filters using multi-layered substrate integrated waveguides (SIW),”Electron. Lett., 2009. (accepted)
    [11] R. Levy, RV. Snyder, and G. Matthaei,“Design of microwave filters,”IEEE Trans. Microw. Theory Tech., vol. 50, no. 3, pp. 783-793, Mar. 2002.
    [1] Ali E. Atia, and Albert E. Williams,“A solution for narrow-band coupled cavities”, COMSAT Laboratories Tech. Memo, CL-39-70, Sept. 1970.
    [2] Ali E. Atia, and Albert E. Williams,“Narrow-bandpass waveguide filters”, IEEE Trans. Microw. Theory Tech., vol. MTT-20, no. 4, pp. 258-265, Apr. 1972.
    [3] Ali E. Atia, and Albert E. Williams,“Nonminimum-phase optimum-amplitude bandpass waveguide filters”, IEEE Trans. Microw. Theory Tech., vol. MTT-22, pp. 425-431, Apr. 1974.
    [4] H. C. Chang and K. A. Zaki,“Evanescent-mode coupling of dual-mode rectangular waveguide filters”, IEEE Trans. Microw. Theory Tech., vol. 39, no. 8, pp. 1307-1312, Aug. 1991.
    [5] S. Amari, and M. Bekheit,“A new class of dual-mode dual-band waveguide filters”, IEEE Trans. Microw. Theory Tech., vol. 56, no. 8, pp. 1938-1944, Aug. 2008.
    [6] Albert E. Williams, and Ali E. Atia,“Dual-mode canonical waveguide filters”, IEEE Trans. Microw. Theory Tech., vol. MTT-25, no. 12, pp. 1021-1026, Dec. 1977.
    [7] M. Gugliclmi, R. Molina, and A. Melcon,“Dual-mode circular waveguide filters without tuning screw”, IEEE Microwave and Guided Wave Lett., vol. 2, pp. 457-458, Nov. 1992.
    [8] K. L. Wu,“An optimal circular-waveguide dual-mode filter without tuning screws”, IEEE Trans. Microw. Theory Tech., vol. 47, no. 3, pp. 271-276, Mar. 1999.
    [9] M. Guglielmi, P. Jarry, E. Kerherve, et al,“A new family of all-inductive dual-mode filters”, IEEE Trans. Microw. Theory Tech., vol. 49, no. 10, pp. 1764-1769, Oct. 2001.
    [10] H. C. Chen, and C. C. Tzuang,“All-planar dual-mode asymmetric filters at Ka-band”, IEEE Microw. Wireless Compon. Lett., vol. 13, no. 3, pp. 111-113, Mar. 2003.
    [11] Dominic Deslandes, and Ke Wu,“Substrate integrated waveguide dual-mode filters for broadband wireless system”, in 2003 Radio and Wireless Conf., Bostom, MA, pp. 385-388, Aug. 2003.
    [12] X. P. Chen, Z. C. Hao, W. Hong, et al,“Planar asymmetric dual-mode filters based on substrate integrated waveguide (SIW)”, in IEEE MTT-S Int. Micro. Symp. Dig., pp. 949-952, Jun. 2005.
    [13] X. P. Chen, W. Hong, T. J. Cui, et al,“Symmetric dual-mode filter based on substrate integrated waveguide (SIW)”, IEEE MTT-S Int. Microwave. Symp., Long Beach, pp. 949-952, 2005.
    [14] H. J. Tang, and W. Hong,“Substrate integrated waveguide dual mode filter withcircular cavity”, in Joint 31st Int. Infrared Millimeter Waves Conf. 14th Int. Terahertz, Electron. Conf. Dig., Shanghai, China, vol. 18-22, pp. 399-399, Sept. 2006.
    [15] H. J. Tang, W. Hong, J. X. Chen, et al,“Development of millimeter-wave planar diplexers based on complementary characters of dual-mode substrate integrated waveguide filters with circular and elliptic cavities”, IEEE Trans. Microw. Theory Tech., vol. 55, no. 4, pp. 776-782, Apr. 2007.
    [16]张胜,王子华,肖建康等,“基于基片集成波导(SIW)的双模带通滤波器”,微波学报,2007,23(2):55-58.
    [17] J. H. Lee, N. Kidera, S. Pinel, et al,“A compact quasi-elliptic dual-mode cavity filter using LTCC technology for V-band WLAN gigabit wireless systems”, in Proc. 36th Eur. Microw. Conf., Manchester, U. K., pp. 1377-1379, 2006.
    [18] J. H. Lee, N. Kidera, S. Pinel, et al,“Design and development of advanced cavity-based dual-mode filters using low-temperature co-fired ceramic technology for V-band gigabit wireless systems”, IEEE Trans. Microw. Theory Tech., vol. 55, no. 9, pp. 1869-1878, Sept. 2007.
    [19] Smain Amari, Uwe Rosenberg, and Jens Bornemann,“Adaptive synthesis and design of resonator filters with source/load-multiresonator coupling”, IEEE Trans. Microw. Theory Tech., vol. 50, no. 8, pp. 1969-1978, Aug. 2002.
    [20] Smain Amari,“Synthesis of cross-coupled resonator filters using an analytical gradient-based optimization technique”, IEEE Trans. Microw. Theory Tech., vol. 48, no. 9, pp. 1559-1564, Sept. 2000.
    [21] Qi-Fu Wei, Zheng-Fan Li, and Hai-Gen Shen,“Dual-mode filters based on substrate integrated waveguide by multilayer LTCC technology,”Microw. Opt. Tech. Lett., vol. 50, no. 11, pp. 2788-2790, Nov. 2008.
    [22] Smain Amari, and Jens Bornemann,“Maximum number of finite transmission zeros of coupled resonator filters with source/load-multi-resonator coupling and a given topology”, in Proc. Asia-Pacific Microwave Conf., Sydney, pp. 1175-1177, 2000.
    [23] Uwe Rosenberg, and Smain Amari,“Novel coupling schemes for microwave resonator filters”, IEEE Trans. Microw. Theory Tech., vol. 50, no. 12, pp. 2896-2902, Dec. 2002.
    [24] C.-K. Liao, P.-L. Chi, and C.-Y. Chang,“Microstrip realization of generalized chebyshev filters with box-like coupling schemes”, IEEE Trans. Microw. Theory Tech., vol. 55, no. 1, pp. 147-153, Jan. 2007.
    [25] Smain Amari, and Uwe Rosenberg,“New building blocks for modular design of elliptic and self-equalized filters”, IEEE Trans. Microw. Theory Tech., vol. 52, no. 2, pp. 721-736, Feb. 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700