用户名: 密码: 验证码:
基片集成波导与缺陷地结构及在滤波器设计中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子信息系统向多功能、小型化、低成本方向快速发展,人们对系统级封装(System on Package,SoP)中各类高性能小型化微波无源元件尤其是滤波器的需求越来越强烈。因而,从实现工艺、结构布局和设计方法等方面寻找适应SoP中高集成度和兼容性要求,又具有低插损、高功率容量等优点的新型微波无源元件集成技术变得很有必要。为此,本文对改进型基片集成波导(Substrate Integrated Waveguide,SIW)技术和缺陷地结构(Defected Ground Structure,DGS)技术开展了系统的研究,分析了它们的理论模型,并实现了多款性能优良的紧凑型滤波器和移相器等无源元件。
     本文的主要研究工作和创新点可归纳为:
     (1)从窄带滤波器的耦合谐振器理论、微带线温升模型和热传输线理论出发,建立了一套准确、快速、有效的半波长、四分之一波长阶梯阻抗微带滤波器平均功率容量预测方法,可直接用于微带滤波器的实时设计与优化。
     (2)实现了基于四分之一折叠SIW腔体的带通滤波器,其面积仅为传统SIW腔体滤波器的1/8;并分析其平均功率容量,发现它的内部无明显热点,功率承载能力优于其它平面元件。
     (3)提出了一类由折叠SIW和消逝模耦合区段构成的多层部分H面波导滤波器,元件性能对加工容差不敏感。并且系统研究了一类全新的消逝模SIW滤波器,其面积不到传统SIW腔体滤波器的1/10,具有突出的寄生抑制特性,并可引入交叉耦合进一步改善其频率特性。为实现较大的相对宽带,还提出了一种工作在波导截止频率上的SIW滤波器。
     (4)对一种在PCB上实现的介质加载SIW腔体滤波器进行了工艺尝试,从理论和实验两方面证明了这类元件的尺寸比传统SIW元件大幅减小,而插损和寄生响应性能均明显改善。
     (5)从理论和实验两方面系统研究了各类周期加载半模SIW结构的模式色散特性,在此基础上设计了基于变容二极管加载的电可调移相器和基于电磁带隙结构加载的带通滤波器。并将半模概念移植到T隔板SIW中,首次实现了基于SIW技术的超宽带滤波器。
     (6)提出了一种针对DGS单元的耦合谐振器模型及用于DGS单元精确建模的辗转矢量匹配方法。并且提出一种具有双带隙特性的双平面紧凑型DGS电路,实现了一款边带十分陡峭的低通滤波器。利用互补型开环谐振器实现了一款双模零阶环形滤波器,元件面积大幅缩小,寄生响应也有所改善。
     (7)将互补型开环谐振器刻蚀在SIW腔体顶层金属面上,提出了一种结构紧凑、工艺简单、性能优良的扩展二项式带通滤波器。这充分利用了DGS和SIW在结构与性能上的互补性,是将SIW和DGS技术结合实现SoP中高性能小型化微波无源元件的成功案例。
     在以上研究中,均采用单层、多层PCB和低温共烧陶瓷(Low Temperature Co-fire Ceramic,LTCC)工艺制作了系列样品,测试、仿真与理论分析结果均较吻合,从而验证了研究工作的正确性和有效性。
With the rapid development of electronic information systems to multifunction, miniaturization, and low cost, etc., there are more and more urgent demands on high-performance miniaturized microwave passive components for system on package (SoP) technology. Thus, it is necessary to develop new integration techniques for microwave passives in SoP with high performance, high integration density, good compatibility, low loss, and high power handling capability. For such a purpose, this dissertation investigates two new techniques of modified substrate integrated waveguide (SIW) and defected ground structure (DGS) systematically. Their theoretical models are analyzed, and various bandpass filters, phase shifter, and other passive components are developed based on them both with good performances and compact configurations.
     The main academic contributions of this dissertation are as follows.
     (1) An accurate, fast and efficient method is established to evaluate the average power handling capabilities of half- and quarter-wavelength stepped impedance microstrip filters, which is based on the coupled resonator circuit model of bandpass filter, the temperature rise model of microstrip line, and the transmission line theory for heat conduction. The proposed method can be used for the synthesis and optimization of microstrip filters together with their power handling consideration.
     (2) A novel type of bandpass filter are developed with quarter-folded SIW cavities, whose occupied areas are only 1/8 that of conventional SIW cavity-coupled filters. It is also found that there is no obvious hot spot inside the component, and its average power handling capability is much better than that of other planar structures.
     (3) A type of multilayer partial H-plane filter using folded SIW and evanescent coupling is proposed, with its performance not sensitive to the fabrication tolerance. Further, a new type of evanescent-mode SIW bandpass filters is investigated thoroughly. Its area is only about 1/10 that of the conventional SIW filters, and its spurious suppression characteristics is very attractive. It should be pointed out that cross coupling can also be introduced to improve the frequency features of evanescent-mode filters. To achieve large fractional bandwidth, a special SIW bandpass filter operating on the cutoff frequency of the waveguide is designed.
     (4) A bandpass filter is designed using the SIW cavity loaded with a dielectric rod. Compared with conventional SIW filters, it has the advantages of compactness, low insertion loss, and good harmonic suppression characteristics by using the tentative fabrication technique of loading high-quality dielectric rods into PCB, which has been indicated theoretically and experimentally.
     (5) The modal dispersion behavior of various periodically loaded half-mode SIWs are studied in detail by mathematical treatments and experiments. To further demonstrate their applications, an electrically tunable phase shifter is developed using a varactor-loaded structure, and two bandpass filters are also realized with the electromagnetic bandgap (EBG)-loaded waveguide. Then, by migrating the half-mode concept into T-septum SIWs, the first published ultra-wideband SIW filter is implemented, to the best of our knowledge.
     (6) The coupled resonator circuit model is proposed for a transmission line loaded with a DGS unit. And a continuous vector fitting method is developed for extracting the accurate model of DGSs. To achieve dual-bandgap characteristics, a dual-planar compact DGS circuit is built up and then applied to design a lowpass filter with sharp slope side. Further, we use the complementary split ring resonator (CSRR), a special DGS unit, to form a novel dual-mode zeroth-order ring bandpass filter, where the occupied area is reduced obviously, with its spurious suppression performance also improved.
     (7) An“extended doublet”bandpass filter is made up using an SIW cavity and a CSRR etched on its top metal plane with the merits of compact structure, easy fabrication, and good performances. The presented component is an example for hybrid integration of both SIW and DGS techniques to utilize the geometrical and behavioral complementarities between them. This is a successful case to develop high-performance miniaturized microwave passives in SoP.
     For the researches listed above, a number of different samples are designed and fabricated, with PCB or low temperature co-fire ceramic (LTCC) technologies adopted. The validity and efficiency of our investigations have been demonstrated by the good agreements between the measured, simulated and modeled results.
引文
[1] J. C. Wiltse,“History of millimeter and submillimeter waves,”IEEE Trans. Microw. Theory Tech., vol. 32, no. 9, pp. 1118-1127, Sep. 1984.
    [2] N. Marcuvitz, Waveguide handbook, New York: McGraw-Hill, 1951.
    [3] R. M. Barrett,“Microwaves printed circuits– a historical survey,”IEEE Trans. Microw. Theory Tech., vol. 3, no. 2, pp. 1-9, Mar. 1955.
    [4] K. C. Gupta, R. Garg, I. J. Bahl, and P. Bhartia, Microstrip lines and slotlines, 2nd ed, Norwood, MA: Artech House, 1996.
    [5] R. R. Tummala, M. Swaminathan, and P. Warrior, Introduction to system-on-package (SoP), New York: McGraw-Hill, 2008.
    [6] R. R. Tummala, Fundamentals of microsystems packaging, New York: McGraw-Hill, 2008.
    [7]吴德馨,“集成电路系统级封装(SiP)技术和应用,”半导体技术,第29卷,第8期,1-2页,2004年8月。
    [8] Y. Imanaka, Multilayered low temperature cofired ceramics (LTCC) technology, Heidelberg, Berlin: Springer, 2004.
    [9] M. M. Tentzeris, J. Laskar, J. Papapolymerou, S. Pinel, V. Palazzari, R. Li, G. DeJean, N. Papageorgiou, D. Thompson, R. Bairavasubramanian, S. Sarkar, and J.- H. Lee,“3-D-integrated RF and millimeter-wave functions and modules using liquid crystal polymer (LCP) system-on-package technology,”IEEE Trans. Adv. Packag., vol. 27, no. 2, pp. 332-340, May 2004.
    [10] Taconic RF & Microwave Laminates: http://www.taconic-add.com/
    [11] M. Makimoto, S. Yamashita, Microwave resonators and filters for wireless communication, Heidelberg, Berlin: Springer 2001.
    [12] J.- S. Hong, and M. J. Lancaster, Microstrip filters for RF/microwave applications, New York: Wiley, 2001.
    [13] I.- H. Lin, M. DeVincentis, C. Caloz, and T. Itoh,“Arbitrary dual-band components using composite right/left-handed transmission lines,”IEEE Trans. Microw. Theory Tech., vol. 52, no. 4, pp. 1142-1149, Apr. 2004.
    [14] A. A. Tamijani, K. Sarabandi, and G. M. Rebeiz,“Antenna-filter-antenna arrays as a class of bandpass frequency-selective surfaces,”IEEE Trans. Microw. Theory Tech., vol. 52, no. 8, pp. 1781-1789, Aug. 2004.
    [15] T. Le Nadan, J. P. Coupez, S. Toutain, and C. Person,“Optimization and miniaturization of a filter/antenna multi-function module using a composite ceramic-foam substrate,”in Proc. IEEE MTT-S Int. Microw. Sypm. Dig., Anaheim, CA, USA, Jun. 1999, vol. 1, pp. 219-222.
    [16] G.- Q. Luo, W. Hong, H.- J. Tang, J.- X. Chen, X.- X. Yin, Z.- Q. Kuai, and K. Wu,“Filtenna consisting of horn antenna and substrate integrated waveguidecavity FSS,”IEEE Trans. Antennas Propag., vol. 55, no. 1, pp. 92-98, Jan. 2007.
    [17] G. L. Mattaei, L. Yong, and E. M. T. Jones, Microwave filters, impedance-matching networks, and coupling structures, New York: McGraw-Hill, 1964.
    [18]甘本袚,吴万春,现代微波滤波器的结构与设计(上册),北京:科学出版社,1973年8月第一版。
    [19]甘本袚,吴万春,现代微波滤波器的结构与设计(下册),北京:科学出版社,1974年11月第一版。
    [20] R. J. Cameron, C. M. Kudsia, and R.R. Mansour, Microwave filters for communication systems: fundamentals, design, and applications, Hoboken, NJ: Wiley, 2007.
    [21] P. Jarry, and J. Beneat, Advanced design techniques and realizations of microwave and RF filters, Hoboken, NJ: Wiley, 2008.
    [22] S. Amari, and U. Rosenberg,“New building blocks for modular design of elliptic and self-equalized filters,”IEEE Trans. Microw. Theory Tech., vol. 52, no. 2, pp. 721–736, Feb. 2004.
    [23] S. Shin, and R. V. Snyder,“At least N+1 finite transmission zeros using frequency-variant negative source-load coupling,”IEEE Microw. Wireless Compon. Lett., vol. 13, no. 3, pp. 117–119, Mar. 2003.
    [24] Q.- X. Chu, and H. Wang,“A compact open-loop filter with mixed electric and magnetic coupling,”IEEE Trans. Microw. Theory Tech., vol. 56, no. 2, pp. 431–439, Feb. 2008.
    [25] X.- P. Chen, K. Wu, and Z.- L. Li,“Dual-band and triple-band substrate integrated waveguide filters with Chebyshev and quasi-elliptic responses,”IEEE Trans. Microw. Theroy Tech., vol. 55, no. 12, pp. 2569-2578, Dec. 2007.
    [26] A. J. Piloto, K. A. Leahy, B. A. Flanick, and K. A. Zaki,“Waveguide filters having a layered dielectric structure,”US Patent 5382931, Jan. 1995.
    [27] J. Hirokawa, and M. Ando,“Single-layer feed waveguide consisting of posts for plane TEM wave excitation in parallel plates,”IEEE Trans. Antennas Propag., vol. 46, no. 5, pp. 625-630, May 1998.
    [28] H. Uchimura, T. Takenoshita, and M. Fujii,“Development of a‘laminated waveguide’,”IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp. 2438-2443, Dec. 1998.
    [29] D. Deslandes, and K.Wu,“Integrated microstrip and rectangular waveguide in planar form,”IEEE Microw. Wireless Compon. Lett., vol. 11, no. 2, pp. 68–70, Feb. 2001.
    [30] Y.- J. Cheng, K. Wu, and W. Hong,“Power handling capability of substrate integrated waveguide interconnects and related transmission line systems,”IEEE Trans. Adv. Packag., vol. 31, no. 4, pp. 900-909, Nov. 2008.
    [31] F. Shigeki,“Waveguide line,”Japan Patent 06-053 711, Feb. 1994.
    [32] M. Bozzi, L. Perregrini, K. Wu, and P. Arcioni,“Current and future research trends in substrate integrated waveguide technology,”Radio Engineering, vol. 18, no. 2, pp. 201-209, Jun. 2009.
    [33] Y. Cassivi, L. Perregrini, P. Arcioni, M. Bressan, K. Wu, and G. Conciauro,“Dispersion characteristics of substrate integrated rectangular waveguide,”IEEE Microw. Wireless Compon. Lett., vol. 12, no. 9, pp. 333-335, Sep. 2002.
    [34] F. Xu, Y.- L. Zhang, W. Hong, K. Wu, and T.- J. Cui,“Finite-difference frequency-domain algorithm for modeling guided-wave properties of substrate integrated waveguide,”IEEE Trans. Microw. Theroy Tech., vol. 51, no. 11, pp. 2221-2226, Nov. 2003.
    [35] F. Xu, and K. Wu,“Guided-wave and leakage characteristics of substrate integrated waveguide,”IEEE Trans. Microw. Theroy Tech., vol. 53, no. 1, pp. 66-73, Jan. 2005.
    [36] L. Yan, W. Hong, K. Wu and T.- J. Cui,“Investigations on the propagation characteristics of the substrate integrated waveguide based on the method of lines,”IET Microw. Antennas Propagat., vol. 152, no. 1, pp. 35-42, Feb. 2005.
    [37] F. Xu, K. Wu, and W. Hong,“Domain decomposition FDTD algorithm combined with numerical TL calibration technique and its application in parameter extraction of substrate integrated circuits,”IEEE Trans. Microw. Theroy Tech., vol. 54, no. 1, pp. 329-338, Jan. 2006.
    [38] C.- H. Tseng, and T.- H. Chu,“Measurement of frequency-dependent equivalent width of substrate integrated waveguide,”IEEE Trans. Microw. Theroy Tech., vol. 54, no. 4, pp. 1431-1437, Apr. 2006.
    [39] D. Deslandes, and K. Wu,“Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide,”IEEE Trans. Microw. Theroy Tech., vol. 54, no. 6, pp. 2516-2526, Jun. 2006.
    [40] M. Bozzi, L. Perregrini, and K. Wu,“Modeling of conductor, dielectric, and radiation losses in substrate integrated waveguide by the boundary integral-resonant mode expansion method,”IEEE Trans. Microw. Theroy Tech., vol. 56, no. 12, pp. 3153-3161, Dec. 2008.
    [41] A. Suntives, and R. Abhari,“Design and Characterization of the EBG Waveguide-Based Interconnects,”IEEE Trans. Adv. Packag., vol. 30, no. 2, pp. 163-170, May. 2007.
    [42] A. Suntives, and R. Abhari,“Ultra-high-speed multichannel data transmission using hybrid substrate integrated waveguides,”IEEE Trans. Microw. Theroy Tech., vol. 56, no. 8, pp. 1973-1984, Aug. 2008.
    [43] A. Suntives, and R. Abhari,“Design and application of multimode substrate integrated waveguides in parallel multichannel signaling systems,”IEEE Trans. Microw. Theroy Tech., vol. 57, no. 6, pp. 1563-1571, Jun. 2009.
    [44] T. Swierczynski, D. A. McNamara, and M. Clenet,“Via-walled cavities asvertical transitions in multilayer millimeter-wave circuits,”Electron. Lett., vol. 39, no. 25, Dec. 2003.
    [45] D. Deslandes, and K. Wu,“Analysis and design of current probe transition from grounded coplanar to substrate integrated rectangular waveguides,”IEEE Trans. Microw. Theroy Tech., vol. 53, no. 8, pp. 2487-2494, Aug. 2005.
    [46] J.- H. Lee, S. Pinel, J. Papapolymerou, J. Laskar, and M. M. Tentzeris,“Comparative study of feeding techniques for three-dimensional cavity resonators at 60GHz,”IEEE Trans. Adv. Packag., vol. 30, no. 1, pp. 115-123, Feb. 2007.
    [47] A. Suntives, and R. Abhari,“Transition structures for 3-D integration of substrate integrated waveguide interconnects,”IEEE Microw. Wireless Compon. Lett., vol. 17, no. 10, pp. 697-699, Oct. 2007.
    [48] Y. Ding, and K. Wu,“Substrate integrated waveguide-to-microstrip transition in multilayer substrate,”IEEE Trans. Microw. Theroy Tech., vol. 55, no. 12, pp. 2839-2844, Dec. 2007.
    [49] A. Patrovsky, M. Daigle, and K. Wu,“Coupling mechanism in hybrid SIW–CPW forward couplers for millimeter-wave substrate integrated circuits,”IEEE Trans. Microw. Theroy Tech., vol. 56, no. 11, pp. 2594-2601, Nov. 2008.
    [50] S.- H. Lee, S.- W. Jung, and H.- Y. Lee,“Ultra-wideband CPW-to-substrate integrated waveguide transition using an elevated-CPW section,”IEEE Microw. Wireless Compon. Lett., vol. 18, no. 11, pp. 746-748, Nov. 2008.
    [51] Y. Rong, K. A. Zaki, J. Gipprich, M. Hageman, and D. Stevens,“LTCC wide-band ridge-waveguide bandpass filters,”IEEE Trans. Microw. Theory Tech., vol. 47, no. 9, pp. 1836–1840, Sep. 1999.
    [52] Y. Rong, K. A. Zaki, M. Hageman, D. Stevens, and J. Gipprich,“Low-temperature cofired ceramic (LTCC) ridge waveguide bandpass chip filters,”IEEE Trans. Microw. Theory Tech., vol. 47, no. 12, pp. 2317–2324, Dec. 1999.
    [53] J. A. Ruiz-Cruz, M. A. El Sabbagh, K. A. Zaki, J. M. Rebollar, and Y.- C. Zhang,“Canonical ridge waveguide filters in LTCC or metallic resonators,”IEEE Trans. Microw. Theroy Tech., vol. 53, no. 1, pp. 174-182, Jan. 2005.
    [54] J. A. Ruiz-Cruz, Y.- C. Zhang, K. A. Zaki, A. J. Piloto, and J. Tallo,“Ultra-wideband LTCC ridge waveguide filters,”IEEE Microw. Wireless Compon. Lett., vol. 17, no. 2, pp. 115-117, Feb. 2007.
    [55] M. Ito, K. Maruhashi, K. Ikuina, T. Hashiguchi, S. Iwanaga, and K. Ohata,“A 60-GHz-band planar dielectric waveguide filter for flip-chip modules,”IEEE Trans. Microw. Theroy Tech., vol. 49, no. 12, pp. 2431-2436, Dec. 2001.
    [56] C.- Y. Chang, and W.- C. Hsu,“Novel planar, square-shaped, dielectric-waveguide, single-, and dual-mode filters,”IEEE Trans. Microw. Theroy Tech., vol. 50, no. 11, pp. 2527-2536, Nov. 2002.
    [57] D. Deslandes, and K. Wu,“Single-substrate integration technique of planar circuits and waveguide filters,”IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 593-596, Feb. 2003.
    [58] S.- T. Choi, K.- S. Yang, K. Tokuda, and Y.- H. Kim,“A V-band planar narrow bandpass filter using a new type integrated waveguide transition,”IEEE Microw. Wireless Compon. Lett., vol. 14, no. 12, pp. 545-547, Dec. 2004.
    [59] Z.- C. Hao, W. Hong, X.- P. Chen, J.- X. Chen, K. Wu, and T.- J. Cui,“Multilayered substrate integrated waveguide (MSIW) elliptic filter,”IEEE Microw. Wireless Compon. Lett., vol. 15, no. 2, pp. 95-97, Feb. 2005.
    [60] X.- P. Chen, W. Hong, T.- J. Cui, Z.- C. Hao, and K. Wu,“Substrate integrated waveguide elliptic filter with transmission line inserted inverter,”Electron. Lett., vol. 41, no. 15, pp. 851-852, Jul. 2005.
    [61] X.- P. Chen, W. Hong, T.- J. Cui, J.- X. Chen, and K. Wu,“Substrate integrated waveguide (SIW) linear phase filter,”IEEE Microw. Wireless Compon. Lett., vol. 15, no. 11, pp. 787-789, Nov. 2005.
    [62] J.- H. Lee, S. Pinel, J. Papapolymerou, J. Laskar, and M. M. Tentzeris,“Low-loss LTCC cavity filters using system-on-package technology at 60GHz,”IEEE Trans. Microw. Theroy Tech., vol. 53, no. 12, pp. 3817-3824, Dec. 2005.
    [63] T.- M. Shen, C.- F. Chen, T.- Y. Huang, R.- B. Wu,“Design of vertically stacked waveguide filters in LTCC,”IEEE Trans. Microw. Theroy Tech., vol. 55, no. 8, pp. 1771-1779, Aug. 2007.
    [64] J.- H. Lee, S. Pinel, J. Laskar, and M. M. Tentzeris,“Design and development of advanced cavity-based dual-mode filters using low-temperature co-fired ceramic technology for V-band gigabit wireless systems,”IEEE Trans. Microw. Theory Tech., vol. 55, no. 9, pp. 1869-1879, Sep. 2007.
    [65] X.- P. Chen, and K. Wu,“Substrate integrated waveguide cross-coupled filter with negative coupling structure,”IEEE Trans. Microw. Theroy Tech., vol. 56, no. 1, pp. 142-149, Jan. 2008.
    [66] B. Potelon, J.- F. Favennec, C. Quendo, E. Rius, C. Person, and J.- C. Bohorquez,“Design of a substrate integrated waveguide (SIW) filter using a novel topology of coupling,”IEEE Microw. Wireless Compon. Lett., vol. 18, no. 9, pp. 596-598, Sep. 2008.
    [67] X.- P. Chen, K. Wu, and D. Drolet,“Substrate integrated waveguide filter with improved stopband performance for satellite ground terminal,”IEEE Trans. Microw. Theroy Tech., vol. 57, no. 3, pp. 674-683, Mar. 2009.
    [68] F. Mira, J. Mateu, S. Cogollos, and V. E. Boria,“Design of ultra-wideband substrate integrated waveguide (SIW) filters in zigzag topology,”IEEE Microw. Wireless Compon. Lett., vol. 19, no. 5, pp. 281-283, May. 2009.
    [69] W. Shen, X.- W. Sun, W.- Y. Yin, J.- F. Mao, and Q.- F. Wei,“A novel single-cavity dual mode substrate integrated waveguide filter withnon-resonating node,”IEEE Microw. Wireless Compon. Lett., vol. 19, no. 6, pp. 368-370, Jun. 2009.
    [70] D. Stephens, P. R. Young, and I. D. Robertson,“Millimeter-wave substrate integrated waveguides and filters in photoimageable thick-film technology,”IEEE Trans. Microw. Theroy Tech., vol. 53, no. 12, pp. 3832-3838, Dec. 2005.
    [71] K.- S. Yang, S. Pinel, I.- K. Kim, and J. Laskar,“Low-loss integrated-waveguide passive circuits using liquid-crystal polymer system-on-Package (SoP) technology for millimeter-wave applications,”IEEE Trans. Microw. Theroy Tech., vol. 54, no. 12, pp. 4572-4579, Dec. 2006.
    [72] Y.- L. Zhang, W. Hong, K. Wu, J.- X. Chen, and H.- J. Tang,“Novel substrate integrated waveguide cavity filter with defected ground structure,”IEEE Trans. Microw. Theroy Tech., vol. 53, no. 4, pp. 1280-1287, Apr. 2005.
    [73] Z.- C. Hao, W. Hong, J.- X. Chen, X.- P. Chen, and K. Wu,“Compact super-wide bandpass substrate integrated waveguide (SIW) filters,”IEEE Trans. Microw. Theroy Tech., vol. 53, no. 9, pp. 2968-2977, Sep. 2005.
    [74] X. Gong, T. Smyth, E. Ghaneie, and W. J. Chappell,“High-Q resonators and filters inside advanced low-temperature co-fired ceramic substrates using fine-scale periodicity,”IEEE Trans. Microw. Theroy Tech., vol. 56, no. 4, pp. 922-930, Apr. 2008.
    [75] B.- J. Chen, T.- M. Shen, and R.- B. Wu,“Dual-band vertically stacked laminated waveguide filter design in LTCC technology,”IEEE Trans. Microw. Theroy Tech., vol. 57, no. 6, pp. 1554-1562, Jun. 2009.
    [76] Z.- C. Hao, W. Hong, J.- X. Chen, X.- P. Chen, and K. Wu,“Planar diplexer for microwave integrated circuits,”IEE Microw. Antennas Propagat., vol. 152, no. 6, pp. 455-459, Dec. 2005.
    [77] H.- J. Tang, W. Hong, J.- X. Chen, G.- Q. Luo, and K. Wu,“Development of millimeter-wave planar diplexers based on complementary characters of dual-mode substrate integrated waveguide filters with circular and elliptic cavities,”IEEE Trans. Microw. Theroy Tech., vol. 55, no. 4, pp. 776-782, Apr. 2007.
    [78] C. Lugo, and J. Papapolymerou,“Planar realization of a triple-mode bandpass filter using a multilayer configuration,”IEEE Trans. Microw. Theory Tech., vol. 55, no. 2, pp. 296–301, Feb. 2007.
    [79] Y.- D. Dong, T. Yang, and T. Itoh,“Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filters,”IEEE Trans. Microw. Theory Tech., vol. 57, no. 9, pp. 2211–2223, Sep. 2009.
    [80] Z.- C. Hao, W. Hong, J.- X. Chen, H.- X. Zhou, and K. Wu,“Single-layer substrate integrated waveguide directional couplers,”IEE Microw. Antennas Propagat., vol. 153, no. 5, pp. 426-431, Oct. 2006.
    [81] T. Djerafi, and K. Wu,“Super-compact substrate integrated waveguide cruciform directional coupler,”IEEE Microw. Wireless Compon. Lett., vol. 17, no. 11, pp. 757-759, Nov. 2007.
    [82] F.- F. He, K. Wu, W. Hong, H.- J. Tang, H.- B. Zhu, and J.- X. Chen,“A planar magic-T using substrate integrated circuits concept,”IEEE Microw. Wireless Compon. Lett., vol. 18, no. 6, pp. 386-388, Jun. 2008.
    [83] K.- J. Song, Y. Fan, and Y.- H. Zhang,“Radial cavity power divider based on substrate integrated waveguide technology,”Electron. Lett., vol. 42, no. 19, pp. 1100-1101, Sep. 2006.
    [84] K.- J. Song, Y. Fan, and X. Zhou,“X-band broadband substrate integrated rectangular waveguide power divider,”Electron. Lett., vol. 44, no. 3, pp. 211-213, Jan. 2008.
    [85] K.- J. Song, Y. Fan, and Y.- H. Zhang,“Eight-way substrate integrated waveguide power divider with low insertion loss,”IEEE Trans. Microw. Theroy Tech., vol. 56, no. 6, pp. 1473-1477, Jun. 2008.
    [86] Z.- Y. Zhang, and K. Wu,“A broadband substrate integrated waveguide (SIW) planar balun,”IEEE Microw. Wireless Compon. Lett., vol. 17, no. 12, pp. 843-845, Dec. 2007.
    [87] K. Sellal, L. Talbi, T. A. Denidni, and J. Lebel,“Design and implementation of a substrate integrated waveguide phase shifter,”IET Microw. Antennas Propag., vol. 2, no. 2, pp. 194-199, Mar. 2008.
    [88] W. D’Orazio, K. Wu, and J. Helszajn,“A substrate integrated waveguide degree-2 circulator,”IEEE Microw. Wireless Compon. Lett., vol. 14, no. 5, pp. 207-209, May 2004.
    [89] W. D’Orazio, and K. Wu,“Substrate-integrated-waveguide circulators suitable for millimeter-wave integration,”IEEE Trans. Microw. Theroy Tech., vol. 54, no. 10, pp. 3675-3680, Oct. 2006.
    [90] X. Xu, R. G. Bosisio, and K. Wu,“A new six-port junction based on substrate integrated waveguide technology,”IEEE Trans. Microw. Theroy Tech., vol. 53, no. 7, pp. 2267-2273, Jul. 2005.
    [91] E. Moldovan, R. G. Bosisio, and K. Wu,“W-band multiport substrate-integrated waveguide circuits,”IEEE Trans. Microw. Theroy Tech., vol. 54, no. 2, pp. 625-631, Feb. 2006.
    [92] G.- Q. Luo, W. Hong, Z.- C. Hao, B. Liu, W.- D. Li, J.- X. Chen, H.- X. Zhou, and K. Wu,“Theory and experiment of novel frequency selective surface based on substrate integrated waveguide technology,”IEEE Trans. Antennas Propag., vol. 53, no. 12, pp. 4035-4043, Dec. 2005.
    [93] G.- Q. Luo, W. Hong, H.- J. Tang, J.- X. Chen, and L.- L. Sun,“Triband frequency selective surface with periodic cell perturbation,”IEEE Microw. Wireless Compon. Lett., vol. 17, no. 6, pp. 436-438, Jun. 2007.
    [94] G.- Q. Luo, W. Hong, Q.- H. Lai, K. Wu, and L.- L. Sun,“Design and experimental verification of compact frequency-selective surface with quasi-elliptic bandpass response,”IEEE Trans. Microw. Theroy Tech., vol. 55, no. 12, pp. 2481-2487, Dec. 2007.
    [95] G.- Q. Luo, W. Hong, Q.- H. Lai, and L.- L. Sun,“Frequency-selective surfaces with two sharp sidebands realised by cascading and shunting substrate integrated waveguide cavities,”IET Microw. Antennas Propag., vol. 2, no. 1, pp. 23-27, Feb. 2008.
    [96] L. Yan, W. Hong, G. Hua, J.- X. Chen, K. Wu, and T.- J. Cui,“Simulation and experiment on SIW slot array antennas,”IEEE Microw. Wireless Compon. Lett., vol. 14, no. 9, pp. 446-448, Sep. 2004.
    [97] D. Stephens, P. R. Young, and I. D. Robertson,“W-band substrate integrated waveguide slot antenns,”Electron. Lett., vol. 41, no. 4, pp. 165-167, Feb. 2005.
    [98] Y.- J. Cheng, W. Hong, and K. Wu,“Millimetre-wave monopulse antenna incorporating substrate integrated waveguide phase shifter,”IET Microw. Antennas Propag., vol. 2, no. 1, pp. 48-52, Feb. 2008.
    [99] G.- Q. Luo, Z.- F. Hu, L.- X. Dong, and L.- L. Sun,“Planar slot antenna backed by substrate integrated waveguide cavity,”IEEE Antennas Wireless Propagat. Lett., vol. 7, pp. 236-239, 2008.
    [100] Y.- J. Cheng, W. Hong, K. Wu, Z.- Q. Kuai, C. Yu, J.- X. Chen, J.- Y. Zhou, and H.- J. Tang,“Substrate integrated waveguide (SIW) Rotman lens and its Ka-band multibeam array antenna applications,”IEEE Trans. Antennas Propag., vol. 56, no. 8, pp. 2504-2513, Aug. 2008.
    [101] Y.- J. Cheng, W. Hong, and K. Wu,“Design of a monopulse antenna using a dual V-type linearly tapered slot antenna (DVLTSA),”IEEE Trans. Antennas Propag., vol. 56, no. 9, pp. 2903-2909, Sep. 2008.
    [102] Y.- J. Cheng, W. Hong, and K. Wu,“Millimeter-wave substrate integrated waveguide multibeam antenna based on the parabolic reflector principle,”IEEE Trans. Antennas Propag., vol. 56, no. 9, pp. 3055-3058, Sep. 2008.
    [103] S. Cheng, H. Yousef, and H. Kratz,“79 GHz slot antennas based on substrate integrated waveguides (SIW) in a flexible printed circuit board,”IEEE Trans. Antennas Propag., vol. 57, no. 1, pp. 64-71, Jan. 2009.
    [104] B. Liu, W. Hong, Z.- Q. Kuai, X.- X. Yin, G.- Q. Luo, J.- X. Chen, H.- J. Tang, and K. Wu,“Substrate integrated waveguide (SIW) monopulse slot antenna array,”IEEE Trans. Antennas Propag., vol. 57, no. 1, pp. 275-279, Jan. 2009.
    [105] M. Henry, C. E. Free, B. S. Izqueirdo, J. Batchelor, and P. R. Young,“Millimeter wave substrate integrated waveguide antennas: design and fabrication analysis,”IEEE Trans. Adv. Packag., vol. 32, no. 1, pp. 93-100, Feb. 2009.
    [106] Y.- J. Cheng, W. Hong, and K. Wu,“Millimeter-wave multibeam antenna based on eight-port hybrid,”IEEE Microw. Wireless Compon. Lett., vol. 19, no. 4, pp. 212-214, Apr. 2009.
    [107] P. Chen, W. Hong, Z.- Q. Kuai, J.- F. Xu, H.- M. Wang, J.- X. Chen, H.- J. Tang, J.- Y. Zhou, and K. Wu,“A multibeam antenna based on substrate integrated waveguide technology for MIMO wireless communications,”IEEE Trans. Antennas Propag., vol. 57, no. 6, pp. 1813-1821, Jun. 2009.
    [108] P. Chen, W. Hong, Z.- Q. Kuai, and J.- F. Xu,“A double layer substrate integrated waveguide Blass matrix for beamforming applications,”IEEE Microw. Wireless Compon. Lett., vol. 19, no. 6, pp. 374-376, Jun. 2009.
    [109] G.- Q. Luo, Z.- F. Hu, Y.- P. Liang, L.- Y. Yu, and L.- L. Sun,“Periodic leaky-wave antenna for millimeter wave applications based on substrate integrated waveguide,”IEEE Trans. Antennas Propag., vol. 57, no. 10, pp. 2972-2979, Oct. 2009.
    [110] Y. Cassivi and K. Wu,“Low cost microwave oscillator using substrate integrated waveguide cavity,”IEEE Microw. Wireless Compon. Lett., vol. 13, no. 2, pp. 48-50, Feb. 2003.
    [111] C.- L. Zhong, J. Xu, Z.- Y. Yu, and Y. Zhu,“Ka-band substrate integrated waveguide Gunn oscillator,”IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp. 461-463, Jul. 2008.
    [112] J.- X. Chen, W. Hong, Z.- C. Hao, H. Li, and K. Wu,“Development of a low cost microwave mixer using a broad-band substrate integrated waveguide (SIW) coupler,”IEEE Microw. Wireless Compon. Lett., vol. 16, no. 2, pp. 84-86, Feb. 2006.
    [113] M. Abdolhamidi, and M. Shahabadi,“X-band substrate integrated waveguide amplifier,”IEEE Microw. Wireless Compon. Lett., vol. 18, no. 12, pp. 815-817, Dec. 2008.
    [114] K. K. Samanta, D. Stephens, and I. D. Robertson,“60 GHz multi-chip-module receiver with substrate integrated waveguide antenna and filter,”Electron. Lett., vol. 42, no. 12, pp. 701-702, Jun. 2006.
    [115] W. D’Orazio, and K. Wu,“Substrate-integrated-waveguide circulators suitable for millimeter-wave integration,”IEEE Trans. Microw. Theroy Tech., vol. 54, no. 10, pp. 3675-3680, Oct. 2006.
    [116] K. K. Samanta, D. Stephens, and I. D. Robertson,“Design and performance of a 60-GHz multi-chip module receiver employing substrate integrated waveguides,”IET Microw. Antennas Propagat., vol. 1, no. 5, pp. 961-967, Oct. 2007.
    [117] Z.- L. Li, and K. Wu,“24-GHz frequency-modulation continuous-wave radar front-end system-on-substrate,”IEEE Trans. Microw. Theroy Tech., vol. 56, no. 2, pp. 278-285, Feb. 2008.
    [118] N. Grigoropoulos, and P. R. Young,“Compact folded waveguides,”in Proc. 34th Eur. Microw. Conf., Amsterdam, Netherlands, Oct. 2004, pp. 973-976.
    [119] N. Grigoropoulos, B. S. Izquierdo, and P. R. Young,“Substrate integrated folded waveguides (SIFW) and filters,”IEEE Microw. Wireless Compon. Lett., vol. 15, no. 12, pp. 829–831, Dec. 2005.
    [120] S. K. Alotaibi, and J.- S. Hong,“Novel substrate integrated folded waveguide filter,”Microw. Opt. Tech. Lett., vol. 50, no. 4, pp. 1111–1114, Apr. 2008.
    [121] B. Liu, W. Hong, Y.- Q. Wang, Q.- H. Lai, and K. Wu,“Half mode substrate integrated waveguide (HMSIW) 3-dB coupler,”IEEE Microw. Wireless Compon. Lett., vol. 17, no. 1, pp. 22-24, Jan. 2007.
    [122] M. Bozzi, D. Deslandes, P. Arcioni, L. Perregrini, K. Wu, G. Conciauro,“Efficient analysis and experimental verification of substrate-integrated slab waveguides for wideband microwave applications,”Int. J. RF Microw. CAE, vol. 15, no. 3, pp. 296–306, May 2005.
    [123] X.- Q. Lin, H.- F. Ma, D. Bao, and T.- J. Cui,“Design and analysis of super-wide bandpass filters using a novel compact meta-structure,”IEEE Trans. Microw. Theroy Tech., vol. 55, no. 4, pp. 747-753, Apr. 2007.
    [124] G.- H. Zhai, W. Hong, K. Wu, J.- X. Chen, P. Chen, J. Wei, and H.- J. Tang,“Folded half mode substrate integrated waveguide 3 dB coupler,”IEEE Microw. Wireless Compon. Lett., vol. 18, no. 8, pp. 512-514, Aug. 2008.
    [125] J.- I. Park, C.- S. Kim, J. Kim, J.- S. Park, Y.- X. Qian, D. Ahn, and T. Itoh,“Modeling of a photonic bandgap and its application for the low-passfilter design,”in Proc. Asia-Pacific Microw. Conf. Dig., Singapore, Dec. 1999, pp. 331-334.
    [126] D. Ahn, J.- S. Park, C.- S. Kim, J. Kim, Y.- X. Qian, and T. Itoh,“A design of the low-pass filter using the novel microstrip defected ground structure,”IEEE Trans. Microw. Theory Tech., vol. 49, no. 1, pp. 86-93, Jan. 2001.
    [127] H.- M. Kim, and B.- S. Lee,“Bandgap and slow/fast-wave characteristics of defected ground structures (DGSs) including left-handed features,”IEEE Trans. Microw. Theroy Tech., vol. 54, no. 7, pp. 3113-3120, Jul. 2006.
    [128] C.- S. Kim, J.- S. Park, D. Ahn, and J.- B. Lim,“A novel 1-D periodic defected ground structure for planar circuits,”IEEE Microw. Guided Wave Lett., vol. 10, no. 4, pp. 131-133, Apr. 2000.
    [129] H.- W. Liu, Z.- F. Li, X.- W. Sun, and J.- F. Mao,“An improved 1-D periodic defected ground structure for microstrip line,”IEEE Microw. Wireless Compon. Lett., vol. 14, no. 4, pp. 180-182, Apr. 2004.
    [130] J.- S. Lim, S.- W. Lee, C.- S. Kim, J.- S. Park, D. Ahn, and S.- W. Nam,“A 4:1 unequal Wilkinson power divider,”IEEE Microw. Wireless Compon. Lett., vol. 11, no. 3, pp. 124-126, Mar. 2001.
    [131] D.- J. Woo, and T.- K. Lee,“Suppression of harmonics in Wilkinson power divider using dual-band rejection by asymmetric DGS,”IEEE Trans. Microw. Theroy Tech., vol. 53, no. 6, pp. 2139-2144, Jun. 2005.
    [132] J.- S. Lim, H.- S. Kim, J.- S. Park, D. Ahn, and S.- W. Nam,“A power amplifier with efficiency improved using defected ground structure,”IEEE Microw. Wireless Compon. Lett., vol. 11, no. 4, pp. 170-172, Apr. 2001.
    [133] Y.- C. Jeong, S.- G. Jeong, J.- S. Lim, and S.- W. Nam,“A new method to suppress harmonics usingλ/4 bias line combined by defected ground structure in power amplifiers,”IEEE Microw. Wireless Compon. Lett., vol. 13, no. 12, pp. 538-540, Dec. 2003.
    [134] Y.- K. Chung, S.- S. Jeon, S.- H. Kim, D. Ahn, J.- I. Choi, and T. Itoh,“Multifunctional microstrip transmission lines integrated with defected ground structure for RF front-end application,”IEEE Trans. Microw. Theory Tech., vol. 52, no. 5, pp. 1425-1432, May 2004.
    [135] Y.- K. Chung, S.- S. Jeon, D. Ahn, J. I. Choi, and T. Itoh,“High isolation dual-polarized patch antenna using integrated defected ground structure,”IEEE Microw. Wireless Compon. Lett., vol. 14, no. 1, pp. 4-6, Jan. 2004.
    [136] Y.- J. Sung, C.- S. Ahn, and Y.- S. Kim,“Size reduction and harmonic suppression of rat-race hybrid coupler using defected ground structure,”IEEE Microw. Wireless Compon. Lett., vol. 14, no. 1, pp. 7-9, Jan. 2004.
    [137] G.- M. Yang, R.- H. Jin, C. Vittoria, V. G. Harris, and N.- X. Sun,“Small ultra-wideband (UWB) bandpass filter with notched band,”IEEE Microw. Wireless Compon. Lett., vol. 18, no. 3, pp. 176-178, Mar. 2008.
    [138] S.- J. Wu, C.- H. Tsai, T.- L. Wu, and T. Itoh,“A novel wideband common-mode suppression filter for gigahertz differential signals using coupled patterned ground structure,”IEEE Trans. Microw. Theroy Tech., vol. 57, no. 4, pp. 848-855, Apr. 2009.
    [139] J.- S. Lim, C.- S. Kim, J.- S. Park, D. Ahn, and S.- W. Nam,“Design of 10dB 90°branch line coupler using microstrip line with defected ground structure,”Electron. Lett., vol. 36, no. 21, pp. 1784-1785, Oct. 2000.
    [140] J.- S. Park, J.- S. Yun, and D. Ahn,“A design of the novel coupled-line bandpass filter using defected ground structure with wide stopband performance,”IEEE Trans. Microw. Theory Tech., vol. 50, no. 9, pp. 2037-2043, Sep. 2002.
    [141] A. A. Rahman, A. K. Verma, A. Boutejdar, and A. S. Omar,“Compact stub type microstrip bandpass filter using defected ground plane,”IEEE Microw. Wireless Compon. Lett., vol. 14, no. 4, pp. 136-138, Apr. 2004.
    [142] J. Shi, J.- X. Chen, and Q. Xue,“A quasi-elliptic function dual-band bandpass filter stacking spiral-shaped CPW defected ground structure and back-side coupled strip lines,”IEEE Microw. Wireless Compon. Lett., vol. 17, no.6, pp. 430-432, Jun. 2007.
    [143] B.- T. Tan, J.- J. Yu, S.- T. Chew, M.- S. Leong, and B.- L. Ooi,“A miniaturized dual-mode ring bandpass filter with a new perturbation,”IEEE Trans. Microw. Theory Tech., vol. 53, no. 1, pp. 343-348, Jan. 2005.
    [144] Y.- H. Ryu, J.- H. Park, J.- H. Lee, J.- Y. Kim, and H.- S. Tae,“DGS dual composite right/left handed transmission line,”IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp. 434-436, Jul. 2008.
    [145] J.- S. Lim, C.- S. Kim, Y.- T. Lee, D. Ahn, and S.- W. Nam,“A spiral-shaped defected ground structure for coplanar waveguide,”IEEE Microw. Wireless Compon. Lett., vol. 12, no. 9, pp. 330-332, Sep. 2002.
    [146] J.- S. Hong, and B. M Karyamapudi,“A general circuit model for defected ground structures in planar transmission lines,”IEEE Microw. Wireless Compon. Lett., vol. 15, no. 10, pp. 706-708, Oct. 2005.
    [147] A. M. E. Safwat, F. Podevin, P. Ferrari, and A. Vilcot,“Tunable bandstop defected ground structure resonator using reconfigurable dumbbell-shaped coplanar waveguide,”IEEE Trans. Microw. Theroy Tech., vol. 54, no. 9, pp. 3559-3564, Sep. 2006.
    [148] S.- Y. Huang, and Y.- H. Lee,“A compact E-shaped patterned ground structure and its applications to tunable bandstop resonator,”IEEE Trans. Microw. Theroy Tech., vol. 57, no. 3, pp. 657-666, Mar. 2009.
    [149] X.- H. Wang, B.- Z. Wang, H.- L. Zhang, and K.- J. Chen,“A tunable bandstop resonator based on a compact slotted ground structure,”IEEE Trans. Microw. Theroy Tech., vol. 55, no. 9, pp. 1912-1918, Sep. 2007.
    [150] N. C. Karmakar, S. M. Roy, and I. Balbin,“Quasi-static modeling of defected ground structure,”IEEE Trans. Microw. Theroy Tech., vol. 54, no. 5, pp. 2160-2168, May 2006.
    [151] L.- S. Wu, X.- L. Zhou, W.- Y. Yin, M. Tang, and L. Zhou,“Characterization of average power handling capability of bandpass filters using planar half-wavelength microstrip resonators,”IEEE Microw. Wireless Compon. Lett., vol. 19, no. 11, pp. 686-688, Nov. 2009.
    [152] L.- S. Wu, X.- L. Zhou, and W.- Y. Yin,“A novel multilayer partial H-plane filter implemented with folded substrate integrated waveguide (FSIW),”IEEE Microw. Wireless Compon. Lett., vol. 19, no. 8, pp. 494–496, Aug. 2009.
    [153] L.- S. Wu, X.- L. Zhou, and W.- Y. Yin,“Evanescent-mode bandpass filters using folded and ridge substrate integrated waveguides (SIWs),”IEEE Microw. Wireless Compon. Lett., vol. 19, no. 3, pp. 161–163, Mar. 2009.
    [154] L.- S. Wu, X.- L. Zhou, L. Zhou, and W.- Y. Yin,“Study on cross-coupled substrate integrated evanescent-mode waveguide filter,”in Proc. Asia-Pacific Microw. Conf. Dig., Singapore, Dec. 2009.
    [155] L.- S. Wu, L. Zhou, X.- L. Zhou, and W.- Y. Yin,“Bandpass filter usingsubstrate integrated waveguide cavity loaded with dielectric rod,”IEEE Microw. Wireless Compon. Lett., vol. 19, no. 8, pp. 491-493, Aug. 2009.
    [156] L.- S. Wu, X.- L. Zhou, and W.- Y. Yin,“The design of T-septum substrate integrated waveguide with an ultra-wideband monomode,”in Proc. Global Symp. Millimeter Waves Dig., Nanjing, China, Apr. 2008, pp. 358-361.
    [157] L.- S. Wu, X.- L. Zhou, and W.- Y. Yin,“Ultra-wideband bandpass filter using half-mode T-septum substrate integrated waveguide with electromagnetic bandgap structures,”Microw. Optical Tech. Lett., vol. 51, no. 7, pp. 1751-1755, Jul. 2009.
    [158] L.- S. Wu, F.- Y. Hao, W.- Y. Yin, X.- L. Zhou, and M. Tang,“A continuous vector fitting method for parameters extraction of defected ground structure in microwave circuits,”in Proc. Global Symp. Millimeter Waves Dig., Sendai, Japan, Apr. 2009.
    [159] L.- S. Wu, X.- L. Zhou, W.- Y. Yin, and J.- X. Niu,“A novel miniaturized dual-mode zeroth-order ring bandpass filter with only one left-handed unit,”in Proc. Asia-Pacific Microw. Conf. Dig., Hong Kong, China, Dec. 2008.
    [160] L.- S. Wu, X.- L. Zhou, W.- Y. Yin, and J.- X. Niu,“A miniaturized dual-mode zeroth-order ring bandpass filter with one left-handed unit and a capacitive stub,”Microw. Opt. Tech. Lett., vol. 51, no. 3, pp. 603-607, Mar. 2009.
    [161] L.- S. Wu, X.- L. Zhou, Q.- F. Wei, and W.- Y. Yin,“An extended doublet substrate integrated waveguide (SIW) bandpass filter with a complementary split ring resonator (CSRR),”IEEE Microw. Wireless Compon. Lett., vol. 19, no. 12, pp. 777-779, Dec. 2009.
    [1] R. Levy, R. V. Snyder, and G. Matthaei,“Design of microwave filters’,”IEEE Trans. Microw. Theory Tech., vol. 50, no. 3, pp. 783-793, Mar. 2002.
    [2]甘本袚,吴万春,现代微波滤波器的结构与设计(上册),北京:科学出版社,1973年8月第一版。
    [3]甘本袚,吴万春,现代微波滤波器的结构与设计(下册),北京:科学出版社,1974年11月第一版。
    [4] J.- S. Hong, and M. J. Lancaster, Microstrip filters for RF/microwave applications, New York, NY: Wiley, 2001.
    [5] R. J. Cameron, C. M. Kudsia, and R. R. Mansour, Microwave filters for communication systems: fundamentals, design, and applications, Hoboken, NJ: Wiley, 2007.
    [6] P. Jarry, and J. Beneat, Advanced design techniques and realizations of microwave and RF filters, Hoboken, NJ: Wiley, 2008.
    [7] A. E. Atia, and A. E. Williams,“Narrow-bandpass waveguide filters,”IEEE Trans. Microw. Theory Tech., vol. 20, no. 4, pp. 258-265, Apr. 1972.
    [8] A. E. Atia, and A. E. Williams,“Nonminimum-phase optimum-amplitude bandpass waveguide filters,”IEEE Trans. Microw. Theory Tech., vol. 22, no. 4, pp. 425-431, Apr. 1974.
    [9] A. E. Atia, A. E. Williams, and R. W. Newcomb,“Narrow-band multiple-coupled cavity synthesis,”IEEE Trans. Circuits Syst., vol. 21, no. 5, pp. 649-655, Sep. 1974.
    [10] S. Amari,“Synthesis of cross-coupled resonator filters using an analytical gradient-based optimization technique,”IEEE Trans. Microw. Theory Tech., vol. 48, no. 9, pp. 1559-1564, Sep. 2000.
    [11] S. Amari, U. Rosenberg, and J. Bornemann,“Adaptive synthesis and design of resonator filters with source/load-multiresonator coupling,”IEEE Trans. Microw. Theory Tech., vol. 50, no. 8, pp. 1969-1978, Aug. 2002.
    [12] W. Meng, and K.- L. Wu,“Analytical diagnosis and tuning of narrow-band multi-coupled resonator filters,”IEEE Trans. Microw. Theory Tech., vol. 54, no. 10, pp. 3765-3771, Oct. 2006.
    [13] N. Marcuvitz, Waveguide handbook, New York: McGraw-Hill, 1951.
    [14] K. C. Gupta, R. Garg, I. J. Bahl, and P. Bhartia, Microstrip lines and slotlines, 2nd ed, Norwood, MA: Artech House, 1996.
    [15] H. E. King,“Rectangular waveguide theoretical CW average power rating,”IRE Trans. Microw. Theory Tech., vol. 9, no. 4, pp. 349-357, Jul. 1961.
    [16] J. P. Holman, Heat transfer, 5th ed, New York: McGraw-Hill, 1981.
    [17] Y.- J. Cheng, K. Wu, and W. Hong,“Power handling capability of substrateintegrated waveguide interconnects and related transmission line systems,”IEEE Trans. Adv. Packag., vol. 31, no. 4, pp. 900-909, Nov. 2008.
    [18] J. E. Murguia, and J. B. Bernstein,“Short-time failure of metal interconnect caused by current pulses,”IEEE Electron Device Lett., vol. 14, no. 10, pp. 481-483, Oct. 1993.
    [19] S. B. Cohn,“Design considerations for high-power microwave filters,”IRE Trans. Microw. Theory Tech., vol. 7, no. 1, pp. 149-153, Jan. 1959.
    [20] L. Young,“Peak internal fields in direct-coupled-cavity filters,”IRE Trans. Microw. Theory Tech., vol. 8, no. 6, pp. 612-616, Nov. 1960.
    [21] A. Sivadas, M. Yu, and R. Cameron,“A simplified analysis for high power microwave bandpass filter structures,”in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Boston, MA, USA, Jun. 2000, pp. 1771-1774.
    [22] C. Ernst, V. Postoyalko, and N. G. Khan,“Relationship between group delay and stored energy in microwave filters,”IEEE Trans. Microw. Theory Tech., vol. 49, no. 1, pp. 192-196, Jan. 2001.
    [23] C. Wang, and K. A. Zaki,“Analysis of power handling capacity of bandpass filters,”in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Phoenix, AZ, USA, Jun. 2001, pp. 1611-1614.
    [24] B. S. Senior, I. C. Hunter, V. Postoyalko, and R. Parry,“Optimum network topologies for high power microwave filters,”in Proc. IEEE 6th High Frequency Postgraduate Student Colloquium, Cardiff, U.K., Sep. 2001, pp. 53-58.
    [25] C. Ernst, and V. Postoyalko,“Prediction of peak internal fields in direct-coupled-cavity filters,”IEEE Trans. Microw. Theory Tech., vol. 51, no. 1, pp. 64-73, Jan. 2003.
    [26] I. J. Bahl,“Average power handling capability of multilayer microstrip lines,”Int. J. RF Microw. CAE, vol. 11, no. 6, pp. 385–395, Nov. 2001.
    [27] W.- Y. Yin, and X.- T. Dong,“Wideband average power handling capability of coupled microstrips on polyimide and polyimide/GaAs substrates,”IEE Proc. Microw. Antennas Propag., vol. 151, no. 5, pp. 385-392, Oct. 2004.
    [28] W.- Y. Yin, and X.- T. Dong,“Wide-band characterization of average power handling capabilities of some microstrip interconnects on polyimide and polyimide/GaAs substrates,”IEEE Trans. Adv. Packag., vol. 28, no. 2, pp. 328–336, May 2005.
    [29] W.- Y. Yin, X.- T. Dong, J.- F. Mao, and L.- W. Li,“Average power handling capability of finite-ground thin-film microstrip lines over ultra-wide frequency ranges,”IEEE Microw. Wireless Compon. Lett., vol. 15, no. 10, pp. 715-717, Oct. 2005.
    [30] W.- Y. Yin, X.- T. Dong, and Y.- B. Gan,“Frequency-dependent maximum average power-handling capabilities of single and edge-coupled microstrip lineson low-temperature co-fired ceramic (LTCC) substrates,”Int. J. RF Microw. CAE, vol. 16, no. 2, pp. 103–117, Mar. 2006.
    [31] W.- Y. Yin, K. Kang, and J.- F. Mao,“Electromagnetic-thermal characterization of on-chip coupled (a)symmetrical interconnects,”IEEE Trans. Adv. Packag., vol. 30, no. 4, pp. 851–863, Nov. 2007.
    [32] G.- C. Liang, D.- W. Zhang, C.- F. Shih, M. E. Johansson, R. S. Withers, D. E. Oates, A. C. Anderson, P. Polakos, P. Mankiewich, E. de Obaldia, and R. E. Miller,“High-power HTS microstrip filters for wirelesss communication,”IEEE Trans. Microw. Theory Tech., vol. 43, no. 12, pp. 3020–3029, Dec. 1995.
    [33] H. Sato, J. Kurian, and M. Naito,“Third-order intermodulation measurements of microstrip bandpass filters based on high-temperature superconductors,”IEEE Trans. Microw. Theory Tech., vol. 52, no. 12, pp. 2658-2663, Dec. 2004.
    [34] L.- S. Wu, X.- L. Zhou, W.- Y. Yin, M. Tang, and L. Zhou,“Characterization of average power handling capability of bandpass filters using planar half-wavelength microstrip resonators,”IEEE Microw. Wireless Compon. Lett., vol. 19, no. 11, pp. 686-688, Nov. 2009.
    [35] L. H. Holway and M. G. Adlerstein,“Approximate formulas for the thermal resistance of IMPATT diodes compared with computer calculations,”IEEE Trans. Electron Devices, vol. 24, no. 2, pp. 156–159, Feb. 1977.
    [36] F. N. Masana,“A closed form solution of junction to substrate thermal resistance in semiconductor chips,”IEEE Trans Compon. Packag. Manufact. Tech., Part A, vol. 19, no. 4, pp. 539-545, Dec. 1996.
    [37] W.- Y. Yin, Y.- J. Zhang, X.- T. Dong, and Y.- B. Gan,“Average power-handling capability of the signal line in coplanar waveguides on polyimide and GaAs substrates including the irregular line edge shape effects,”Int. J. RF Microw. CAE, vol. 15, no. 2, pp. 156–163, Mar. 2006.
    [38] C.- K. Liao, C.- Y. Chang, and J.- S. Lin,“A vector-fitting formulation for parameter extraction of lossy microwave filters,”IEEE Microw. Wireless Compon. Lett., vol. 17, no. 4, pp. 277-279, Apr. 2007.
    [39] M. Makimoto, S. Yamashita, Microwave Resonators and filters for wireless communication, Heidelberg, Berlin: Springer 2001.
    [40] S.- C. Lin, P.- H. Deng, Y.- S. Lin, C.- H. Wang, and C.- H. Chen,“Wide-stopband microstrip bandpass filters using dissimilar quarterwavelength stepped-impedance resonators,”IEEE Trans. Microw. Theory Tech., vol. 54, no. 3, pp. 1011-1018, Mar. 2006.
    [41] N. Thomson, J.- S. Hong, R. Greed, and D. Voyce,“Practical approach for designing miniature interdigital filters,”in Proc. 35th Eur. Microw. Conf., Paris, France, Oct. 2005, vol. 2.
    [42] P. Hui, and S.- H. Tan,“A transmission-line for heat conduction in multilayer thin films,”IEEE Trans. Compon. Packag. Manufact. Tech., Part B, vol. 17, no.3, pp. 426-434, Aug. 1994.
    [43] G. B. Stracca, and A. Panzeri,“Unloaded Q-factor of stepped impedance resonators,”IEEE Trans. Microw. Theory Tech., vol. 34, no. 11, pp. 1214-1219, Nov. 1986.
    [1] A. J. Piloto, K. A. Leahy, B. A. Flanick, and K. A. Zaki,“Waveguide filters having a layered dielectric structure,”US Patent 5382931, Jan. 1995.
    [2] J. Hirokawa, and M. Ando,“Single-layer feed waveguide consisting of posts for plane TEM wave excitation in parallel plates,”IEEE Trans. Antennas Propag., vol. 46, no. 5, pp. 625-630, May 1998.
    [3] H. Uchimura, T. Takenoshita, and M. Fujii,“Development of a‘laminated waveguide,”IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp. 2438-2443, Dec. 1998.
    [4] D. Deslandes, and K.Wu,“Integrated microstrip and rectangular waveguide in planar form,”IEEE Microw. Wireless Compon. Lett., vol. 11, no. 2, pp. 68–70, Feb. 2001.
    [5] Y. Cassivi, L. Perregrini, P. Arcioni, M. Brussan, K. Wu, and G. Conciauro,“Dispersion characteristics of substrate integrated rectangular waveguide,”IEEE Microw. Wireless Compon. Lett., vol. 12, no. 9, pp. 333-335, Sep. 2002.
    [6] F. Xu, and K. Wu,“Guided-wave and leakage characteristics of substrate integrated waveguide,”IEEE Trans. Microw. Theroy Tech., vol. 53, no. 1, pp. 66-73, Jan. 2005.
    [7] D. Deslandes, and K. Wu,“Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide,”IEEE Trans. Microw. Theroy Tech., vol. 54, no. 6, pp. 2516-2526, Jun. 2006.
    [8] Y.- J. Cheng, K. Wu, and W. Hong,“Power handling capability of substrate integrated waveguide interconnects and related transmission line systems,”IEEE Trans. Adv. Packag., vol. 31, no. 4, pp. 900-909, Nov. 2008.
    [9] D. Deslandes, and K. Wu,“Single-substrate integration technique of planar circuits and waveguide filters,”IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 593-596, Feb. 2003.
    [10] Z.- C. Hao, W. Hong, J.- X. Chen, X.- P. Chen, and K. Wu,“Compact super-wide bandpass substrate integrated waveguide (SIW) filters,”IEEE Trans. Microw. Theroy Tech., vol. 53, no. 9, pp. 2968-2977, Sep. 2005.
    [11] D. Stephens, P. R. Young, and I. D. Robertson,“Millimeter-wave substrate integrated waveguides and filters in photoimageable thick-film technology,”IEEE Trans. Microw. Theroy Tech., vol. 53, no. 12, pp. 3832-3838, Dec. 2005.
    [12] K.- S. Yang, S. Pinel, I.- K. Kim, and J. Laskar,“Low-loss integrated-waveguide passive circuits using liquid-crystal polymer system-on-Package (SoP) technology for millimeter-wave applications,”IEEE Trans. Microw. Theroy Tech., vol. 54, no. 12, pp. 4572-4579, Dec. 2006.
    [13] G.- Q. Luo, W. Hong, H.- J. Tang, J.- X. Chen, X.- X. Yin, Z.- Q. Kuai, and K. Wu,“Filtenna consisting of horn antenna and substrate integrated waveguide cavity FSS,”IEEE Trans. Antennas Propag., vol. 55, no. 1, pp. 92-98, Jan. 2007.
    [14] H.- J. Tang, W. Hong, J.- X. Chen, G.- Q. Luo, and K. Wu,“Development of millimeter-wave planar diplexers based on complementary characters of dual-mode substrate integrated waveguide filters with circular and elliptic cavities,”IEEE Trans. Microw. Theroy Tech., vol. 55, no. 4, pp. 776-782, Apr. 2007.
    [15] T.- M. Shen, C.- F. Chen, T.- Y. Huang, R.- B. Wu,“Design of vertically stacked waveguide filters in LTCC,”IEEE Trans. Microw. Theroy Tech., vol. 55, no. 8, pp. 1771-1779, Aug. 2007.
    [16] Y. Li, B. Pan, C. Lugo, M. Tentzeris, and J. Papapolymerou,“Design and characterization of a W-band micromachined cavity filter including a novel integrated transition from CPW feeding lines,”IEEE Trans. Microw. Theroy Tech., vol. 55, no. 12, pp. 2902-2910, Dec. 2007.
    [17] Z.- L. Li, and K. Wu,“24-GHz frequency-modulation continuous-wave radar front-end system-on-substrate,”IEEE Trans. Microw. Theroy Tech., vol. 56, no. 2, pp. 278-285, Feb. 2008.
    [18] Y.- J. Cheng, W. Hong, K. Wu, Z.- Q. Kuai, C. Yu, J.- X. Chen, J.- Y. Zhou, and H.- J. Tang,“Substrate integrated waveguide (SIW) Rotman lens and its Ka-band multibeam array antenna applications,”IEEE Trans. Antennas Propag., vol. 56, no. 8, pp. 2504-2513, Aug. 2008.
    [19] P. Chen, W. Hong, Z.- Q. Kuai, J.- F. Xu, H.- M. Wang, J.- X. Chen, H.- J. Tang, J.- Y. Zhou, and K. Wu,“A multibeam antenna based on substrate integrated waveguide technology for MIMO wireless communications,”IEEE Trans. Antennas Propag., vol. 57, no. 6, pp. 1813-1821, Jun. 2009.
    [20] Y. Rong, K. A. Zaki, M. Hageman, D. Stevens, and J. Gipprich,“Low-temperature cofired ceramic (LTCC) ridge waveguide bandpass chip filters,”IEEE Trans. Microw. Theory Tech., vol. 47, no. 12, pp. 2317–2324, Dec. 1999.
    [21] N. Grigoropoulos, and P. R. Young,“Compact folded waveguides,”in Proc. 34th Eur. Microw. Conf., Amsterdam, Netherlands, Oct. 2004, pp. 973-976.
    [22] L.- S. Wu, X.- L. Zhou, and W.- Y. Yin,“The design of T-septum substrate integrated waveguide with an ultra-wideband monomode,”in Proc. Global Symp. Millimeter Waves Dig., Nanjing, China, Apr. 2008, pp. 358-361.
    [23] N. Grigoropoulos, B. S. Izquierdo, and P. R. Young,“Substrate integrated folded waveguides (SIFW) and filters,”IEEE Microw. Wireless Compon. Lett., vol. 15, no. 12, pp. 829–831, Dec. 2005.
    [24] S. K. Alotaibi, and J.- S. Hong,“Novel substrate integrated folded waveguide filter,”Microw. Opt. Tech. Lett., vol. 50, no. 4, pp. 1111–1114, Apr. 2008.
    [25] B. Liu, W. Hong, Y.- Q. Wang, Q.- H. Lai, and K. Wu,“Half mode substrate integrated waveguide (HMSIW) 3-dB coupler,”IEEE Microw. Wireless Compon. Lett., vol. 17, no. 1, pp. 22-24, Jan. 2007.
    [26] G.- H. Zhai, W. Hong, K. Wu, J.- X. Chen, P. Chen, J. Wei, and H.- J. Tang,“Folded half mode substrate integrated waveguide 3 dB coupler,”IEEE Microw. Wireless Compon. Lett., vol. 18, no. 8, pp. 512-514, Aug. 2008.
    [27] N. Grigoropoulos, and P. R. Young,“Slot antenna on C type compact substrate integrated waveguide,”in Proc. 35th Eur. Microw. Conf., Paris, France, Oct. 2005, vol. 1.
    [28] L. Yan, W. Hong, G. Hua, J.- X. Chen, K. Wu, and T.- J. Cui,“Simulation and experiment on SIW slot array antennas,”IEEE Microw. Wireless Compon. Lett., vol. 14, no. 9, pp. 446-448, Sep. 2004.
    [29] W.- Q. Che, L. Geng, K. Deng, and Y. L. Chow,“Analyses and Experiments of Compact Folded Substrate Integrated Waveguide,”IEEE Trans. Microw. Theory Tech., vol. 56, no. 1, pp. 88-93, Jan. 2008.
    [30] R. Wang, L.- S. Wu, and X.- L. Zhou,“Compact folded substrate integrated waveguide cavities and bandpass filter,”Progress in Electromagnetics Research, vol. 84, pp. 135-147, 2008.
    [31] Ansoft Corporation,“Design of LTCC RF modules for communication systems,”Empowering Profitability HF/SI Workshop, 2002, Presentation#7.
    [32] J.- S. Hong,“Compact folded-waveguide resonators and filters,”IET Proc. Microw. Antennas Propag., vol. 153, no. 4, pp. 325–329, Aug. 2006.
    [33] S. Alotaibi, and J.- S. Hong,“Novel coupled folded waveguide resonator filter,”Microw. Opt. Tech. Lett., vol. 48, no. 9, pp. 1846–1850, Sep. 2006.
    [34] S. Alotaibi, and J.- S. Hong,“Electromagnetic design of folded-waveguide resonator filter with single finite-frequency transmission zero,”Int. J. RFMicrow. CAE, vol. 18, no. 1, pp. 1–7, Jan. 2008.
    [35] R. Wang, X.- L. Zhou, and L.- S. Wu,“A folded substrate integrated waveguide cavity filter using novel negative coupling,”Microw. Opt. Tech. Lett., vol. 51, no. 3, pp. 866-871, Mar. 2009.
    [36] X.- P. Chen, W. Hong, T.- J. Cui, J.- X. Chen, and K. Wu,“Substrate integrated waveguide (SIW) linear phase filter,”IEEE Microw. Wireless Compon. Lett., vol. 15, no. 11, pp. 787-789, Nov. 2005.
    [37] H.- Y. Chien, T.- M. Shen, T.- Y. Huang, W.- H. Wang, and R.- B. Wu,“Miniaturized Bandpass Filters With Double-Folded Substrate Integrated Waveguide Resonators in LTCC,”IEEE Trans. Microw. Theory Tech., vol. 57, no. 7, pp. 1774-1782, Jul. 2009.
    [38] Z.- C. Hao, W. Hong, X.- P. Chen, J.- X. Chen, K. Wu, and T.- J. Cui,“Multilayered Substrate Integrated Waveguide (MSIW) elliptic filter,”IEEE Microw. Wireless Compon. Lett., vol. 15, no. 2, pp. 95-97, Feb. 2005.
    [1] G. F. Craven, and C. K. Mok,“The design of evanescent mode waveguide bandpass filters for a prescribed insertion loss characteristic,”IEEE Trans. Microw. Theory Tech., vol. 19, no. 3, pp. 295-308, Mar. 1971.
    [2] D.- W. Kim, and J.- H. Lee,“A partial H-plane waveguide as a new type of compact waveguide,”Microw. Opt. Tech. Lett., vol. 43, no. 5, pp. 426-428, Dec. 2004.
    [3] D.- W. Kim, and J.- H. Lee,“Partial H-plane filters with partially inserted H-plane metal vane,”IEEE Microw. Wireless Compon. Lett., vol. 15, no. 5, pp. 351–353, May. 2005.
    [4] D.- W. Kim, D.- J. Kim, and J.- H. Lee,“Compact partial H-plane filters,”IEEE Trans. Microw. Theory Tech., vol. 54, no. 11, pp. 3923-3930, Nov. 2006.
    [5] D.- W. Kim, and J.- H. Lee,“Partial H-plane filters with multiple transmission zeros,”IEEE Trans. Microw. Theory Tech., vol. 56, no. 7, pp. 1693-1698, Jul. 2008.
    [6] L.- S. Wu, X.- L. Zhou, and W.- Y. Yin,“A novel multilayer partial H-plane filter implemented with folded substrate integrated waveguide (FSIW),”IEEE Microw. Wireless Compon. Lett., vol. 19, no. 8, pp. 494–496, Aug. 2009.
    [7] D. Deslandes, and K. Wu,“Single-substrate integration technique of planar circuits and waveguide filters,”IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 593–596, Feb. 2003.
    [8] X.- P. Chen, W. Hong, T.- J. Cui, J.- X. Chen, and K. Wu,“Substrate integratedwaveguide (SIW) linear phase filter,”IEEE Microw.Wireless Compon. Lett., vol. 15, no. 11, pp. 787–789, Nov. 2005.
    [9] T.- M. Shen, C.- F. Chen, T.- Y. Huang, and R.- B.Wu,“Design of verticallystacked waveguide filters in LTCC,”IEEE Trans. Microw. Theory Tech., vol. 55, no. 8, pp. 1771–1779, Aug. 2007.
    [10] N. Grigoropoulos, B. S. Izquierdo, and P. R. Young,“Substrate integrated folded waveguides (SIFW) and filters,”IEEE Microw. Wireless Compon. Lett., vol. 15, no. 12, pp. 829–831, Dec. 2005.
    [11] Y. Rong, K. A. Zaki, M. Hageman, D. Stevens, and J. Gipprich,“Low-temperature cofired ceramic (LTCC) ridge waveguide bandpass chip filters,”IEEE Trans. Microw. Theory Tech., vol. 47, no. 12, pp. 2317–2324, Dec. 1999.
    [12] L.- S. Wu, X.- L. Zhou, and W.- Y. Yin,“Evanescent-mode bandpass filters using folded and ridge substrate integrated waveguides (SIWs),”IEEE Microw. Wireless Compon. Lett., vol. 19, no. 3, pp. 161–163, Mar. 2009.
    [13] S. Amari, and U. Rosenberg,“Characteristics of cross (bypass) coupling through higher/lower order modes and their applications in elliptic filter design,”IEEE Trans. Microw. Theory Tech., vol. 53, no. 10, pp. 3135–3141, Oct. 2005.
    [14] L.- S. Wu, X.- L. Zhou, L. Zhou, and W.- Y. Yin,“Study on cross-coupled substrate integrated evanescent-mode waveguide filter,”in Proc. Asia-Pacific Microw. Conf. Dig., Singapore, Dec. 2009.
    [15] S. Amari, and U. Rosenberg,“New building blocks for modular design of elliptic and self-equalized filters,”IEEE Trans. Microw. Theory Tech., vol. 52, no. 2, pp. 721–736, Feb. 2004.
    [16] G. Macchiarella,“Generalized coupling coefficient for filters with nonresonant nodes,”IEEE Microw. Wireless Compon. Lett., vol. 18, no. 12, pp. 773–775, Dec. 2008.
    [1] N. Grigoropoulos, B. S. Izquierdo, and P. R. Young,“Substrate integrated folded waveguides (SIFW) and filters,”IEEE Microw. Wireless Compon. Lett., vol. 15, no. 12, pp. 829–831, Dec. 2005.
    [2] G.- H. Zhai, W. Hong, K. Wu, J.- X. Chen, P. Chen, and H.- J. Tang,“Substrate integrated folded waveguide (SIFW) narrow-wall directional coupler,”in Proc. Int. Conf. Microw. Millimeter Wave Tech. Dig., Nanjing, China, Apr. 2008, pp. 174-177.
    [3] B. Liu, W. Hong, Y.- Q. Wang, Q.- H. Lai, and K. Wu,“Half mode substrate integrated waveguide (HMSIW) 3-dB coupler,”IEEE Microw. Wireless Compon. Lett., vol. 17, no. 1, pp. 22-24, Jan. 2007.
    [4] Y.- Q. Wang, W. Hong, Y.- D. Dong, B. Liu, H.- J. Tang, J.- X. Chen, X.- X. Yin, and K. Wu,“Half mode substrate integrated waveguide (HMSIW) bandpass filter,”IEEE Microw. Wireless Compon. Lett., vol. 17, no. 4, pp. 265-267, Apr. 2007.
    [5] G.- H. Zhai, W. Hong, K. Wu, J.- X. Chen, P. Chen, J. Wei, and H.- J. Tang,“Folded half mode substrate integrated waveguide 3 dB coupler,”IEEE Microw. Wireless Compon. Lett., vol. 18, no. 8, pp. 512-514, Aug. 2008.
    [6] L.- S. Wu, X.- L. Zhou, and W.- Y. Yin,“Ultra-wideband bandpass filter using half-mode T-septum substrate integrated waveguide with electromagnetic bandgap structures,”Microw. Optical Tech. Lett., vol. 51, no. 7, pp. 1751-1755, Jul. 2009.
    [7]李英,电磁介质谐振器理论与应用,北京:电子工业出版社,1988年11月第一版。
    [8] Y. Kobayashi, and S. Yoshida,“Bandpass filters using TM010 dielectric rod resonators,”in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Ottawa, Canada, Jun. 1978, vol. 78, no. 1, pp. 233–235.
    [9] Y. Kobayashi, and H. Furukawa,“Elliptic bandpass filters using four TM010 dielectric rod resonators,”in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Baltimore, MD, USA, Jun. 1986, vol. 86, no. 1, pp. 353–356.
    [10] V. Walker, and I. C. Hunter,“Design of cross-coupled dielectric-loaded waveguide filters,”IET Proc. Microw. Antennas Propag., vol. 148, no. 2, pp. 91–96, Apr. 2001.
    [11] L.- S. Wu, L. Zhou, X.- L. Zhou, and W.- Y. Yin,“Bandpass filter using substrate integrated waveguide cavity loaded with dielectric rod,”IEEE Microw. Wireless Compon. Lett., vol. 19, no. 8, pp. 491-493, Aug. 2009.
    [12] D. Deslandes, and K. Wu,“Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide,”IEEE Trans. Microw.Theory Tech., vol. 54, no. 6, pp. 2516–2526, Jun. 2006.
    [1] W. Hong, B. Liu, Y.- Q. Wang, Q.- H. Lai, and K. Wu,“Half mode substrate integrated waveguide: a new guided wave structure for microwave and millimeter wave application,”in Proc. Joint 31st Int. Infrared Millimeter Wave Conf./14th Int. Terahertz Electron. Conf., Shanghai, China, Sep. 2006, pp. 18–22.
    [2] B. Liu, W. Hong, L. Tian, H.- B. Zhu, W. Jiang, and K. Wu,“Half mode substrate integrated waveguide (HMSIW) multi-way power divider,”in Proc. Asia-Pacific Microwave Conf. Dig., Yokohama, Japan, Dec. 2006, pp. 917-920.
    [3] Z.- Y. Zhang, and K. Wu,“Broadband half-mode substrate integrated waveguide (HMSIW) Wilkinson power divider,”in Proc. IEEE MTT-S Int. Microw. Sypm. Dig., Atlanta, GA, USA, Jun. 2008, pp. 879-882.
    [4] B. Liu, W. Hong, Y.- Q. Wang, Q.- H. Lai, and K. Wu,“Half mode substrate integrated waveguide (HMSIW) 3-dB coupler,”IEEE Microw. Wireless Compon. Lett., vol. 17, no. 1, pp. 22-24, Jan. 2007.
    [5] B. Liu, W. Hong, Y. Zhang, J.- X. Chen, and K. Wu,“Half-mode substrate integrated waveguide (HMSIW) double-slot coupler,”IET Electron. Lett., vol. 43, no. 2, pp. 113-114, Jan. 2007.
    [6] B. Liu, W. Hong, Y. Zhang, H.- J. Tang, X.- X. Yin, and K. Wu,“Half modesubstrate integrated waveguide 180°3-dB directional couplers,”IEEE Trans. Microw. Theory Tech., vol. 55, no. 12, pp. 2586-2592, Dec. 2007.
    [7] Y.- Q. Wang, W. Hong, Y.- D. Dong, B. Liu, H.- J. Tang, J.- X. Chen, X.- X. Yin, and K. Wu,“Half mode substrate integrated waveguide (HMSIW) bandpass filter,”IEEE Microw. Wireless Compon. Lett., vol. 17, no. 4, pp. 265-267, Apr. 2007.
    [8] X.- C. Zhang, J. Xu, Z.- Y. Yu, and Y.- L. Dong,“C-band half mode substrate integrated waveguide (HMSIW) filter,”Microw. Optical Tech. Lett., vol. 50, no. 2, pp. 275-277, Feb. 2008.
    [9] F.- F. He, K. Wu, and W. Hong,“A wideband bandpass filter by integrating a section of high pass HMSIW with a microstrip lowpass filter,”in Proc. Global Symp. Millimeter Waves Dig., Nanjing, China, Apr. 2008, pp. 282-284.
    [10] C.- L. Zhong, J. Xu, Z.- Y. Yu, M.- Y. Wang, and J.- H. Li,“Half mode substrate integrated waveguide broadband bandpass filter using photonic bandgap structures,”in Proc. Int. Conf. Microw. Millimeter Wave Tech. Dig., Nanjing, China, Apr. 2008, pp. 22-24.
    [11] Y.- J. Cheng, W. Hong, and K. Wu,“Half mode substrate integrated waveguide (HMSIW) directional filter,”IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 504-506, Jul. 2007.
    [12] J.- X. Chen, W. Hong, P.- P. Yan, B. Liu, Y.- Q. Wang, and K. Wu,“Design of a six-port junction using half-mode substrate integrated waveguide,”in Proc. Asia-Pacific Microwave Conf., Bangkok, Thailand, Dec. 2007, pp. 1-4.
    [13] W. Hong, B. Liu, G.- Q. Luo, Q.- H. Lai, J.- F. Xu, Z.- C. Hao, F.- F. He, and X.- X. Yin,“Integrated microwave and millimeter wave antennas based on SIW and HMSIW technology,”in Proc. Int. Workshop Antenna Tech., Cambridge, U.K., Mar. 2007, pp. 21-23.
    [14] C.- L. Zhong, J. Xu, Z.- Y. Yu, and J.- H. Li,“Miniaturized antenna using half-mode substrate integrated waveguide structure,”Microw. Optical Tech. Lett., vol. 50, no. 12, pp. 3214-3218, Dec. 2008.
    [15] W. Hong, J.- F. Xu, Q.- H. Lai, and P. Chen,“Design and implementation of low sidelobe slot array antennas with full and half mode substrate integrated waveguide technology,”in Proc. 37th Eur. Microw. Conf., Munich, Germany, Oct. 2007, pp. 428-429.
    [16] Y.- D. Dong, W. Hong, Z.- Q. Kuai, C. Yu, Y. Zhang, J.- Y. Zhou, and J.- X. Chen,“Development of ultrawideband antenna with multiple band-notched characteristics using half mode substrate integrated waveguide cavity technology,”IEEE Trans. Antennas Propog., vol. 56, no. 9, pp. 2894-2902, Sep. 2008.
    [17] Y.- D. Dong, W. Hong, J.- Y. Zhou, and Z.- Q. Kuai,“Design and implementation of planar ultra-wideband antennas characterized by multiplenotched bands,”Microw. Optical Tech. Lett., vol. 51, no. 2, pp. 520-526, Feb. 2009.
    [18] C.- L. Zhong, J. Xu, Z.- Y. Yu, M.- Y. Wang, and Y. Zhu,“Half mode substrate integrated waveguide Gunn oscillator,”in Proc. Global Symp. Millimeter Waves Dig., Nanjing, China, Apr. 2008, pp. 14-16.
    [19] Y.- W. Wang, J.- Y. Zhou, and W. Hong,“Study of dual-balanced mixer with half mode substrate integrated waveguide,”in Proc. Int. Conf. Microw. Millimeter Wave Tech. Dig., Nanjing, China, Apr. 2008, pp. 1509-1511.
    [20] Q.- H. Lai, C. Fumeaux, W. Hong, and R. Vahldieck,“Characterization of the propagation properties of the half-mode substrate integrated waveguide,”IEEE Trans. Microw. Theory Tech., vol. 57, no. 8, pp. 1996-2004, Aug. 2009.
    [21] G. Kumar, and K.P. Ray, Broadband microstrip antennas, Norwood, MA: Artech House, 2003.
    [22] W.- Q. Che, E. K.- N. Yung, and K. Wu,“Millimeter-wave ferrite phase shifter in substrate integrated waveguide (SIW),”in Proc. IEEE AP-S Int. Symp. Dig., Columbus, OH, Jun. 2003, pp. 887-890.
    [23] K. Sellal, L. Talbi, T. A. Denidni, and J. Lebel,“Design and implementation of a substrate integrated waveguide phase shifter,”IET Microw. Antennas Propag., vol. 2, no. 2, pp. 194-199, Mar. 2008.
    [24] D.- G. Chen, and K. W. Eccleston,“Substrate integrated waveguide with corrugated wall,”in Proc. Asia-Pacific Microw. Conf. Dig., Hong Kong, China, Dec. 2008.
    [25] K. C. Gupta, R. Garg, I. J. Bahl, and P. Bhartia, Microstrip lines and slotlines, 2nd ed. Norwood, MA: Artech House, 1996.
    [26] L.- S. Wu, X.- L. Zhou, and W.- Y. Yin,“The design of T-septum substrate integrated waveguide with an ultra-wideband monomode,”in Proc. Global Symp. Millimeter Waves Dig., Nanjing, China, Apr. 2008, pp. 358-361.
    [27] L.- S. Wu, X.- L. Zhou, and W.- Y. Yin,“Ultra-wideband bandpass filter using half-mode T-septum substrate integrated waveguide with electromagnetic bandgap structures,”Microw. Optical Tech. Lett., vol. 51, no. 7, pp. 1751-1755, Jul. 2009.
    [28] R. S. Elliott,“Two-mode waveguide for equal mode velocities,”IEEE Trans. Microw. Theory Tech., vol. 16, no. 5, pp. 282-286, May 1968.
    [29] G. G. Mazumder and P. K. Saha,“A novel rectangular waveguide with double T-septums,”IEEE Trans. Microw. Theory Tech., vol. 33, no. 11, pp. 1235-1238, Nov. 1985.
    [30] N. Grigoropoulos, and P. R. Young,“Compact folded waveguides,”in Proc. 34th Eur. Microw. Conf., Amsterdam, Netherlands, Oct. 2004, pp. 973-976.
    [31] G.- H. Zhai, W. Hong, K. Wu, J.- X. Chen, P. Chen, and H.- J. Tang,“Substrate integrated folded waveguide (SIFW) narrow-wall directional coupler,”in Proc.Int. Conf. Microw. Millimeter Wave Tech. Dig., Nanjing, China, Apr. 2008, pp. 174-177.
    [32] B. S. Izqueirdo, N. Grigoropoulos, and P. R. Young,“Ultra-wideband multilayer substrate integrated folded waveguides,”in Proc. IEEE MTT-S Int. Microw. Symp. Dig., San Francisco, CA, USA, Jun. 2006, pp. 610-612.
    [33] Y. Zhang and W. T. Joines,“Some properties of T-septum waveguide,”IEEE Trans. Microw. Theory Tech., vol. 35, no. 8, pp. 769-775, Aug. 1987.
    [34] F. J. German and L. S. Riggs,“Bandwidth properties of rectangular T-septum waveguides,”IEEE Trans. Microw. Theory Tech., vol. 37, no. 5, pp. 917-919, May 1989.
    [35] Z.- X. Shen, X.- M. Lou and S.- F. Li,“Transverse resonance method for analyzing T-septum waveguides,”IET Electron. Lett., vol. 26., no. 1, pp. 78-79, Jan. 1990.
    [36] N. Marcuvitz, Waveguide handbook, New York: McGraw-Hill, 1951.
    [37] G.- H. Zhai, W. Hong, K. Wu, J.- X. Chen, P. Chen, J. Wei, and H.- J. Tang,“Folded half mode substrate integrated waveguide 3 dB coupler,”IEEE Microw. Wireless Compon. Lett., vol. 18, no. 8, pp. 512-514, Aug. 2008.
    [1] J.- I. Park, C.- S. Kim, J. Kim, J.- S. Park, Y.- X. Qian, D. Ahn, and T. Itoh,“Modeling of a photonic bandgap and its application for the low-passfilter design,”in Proc. Asia-Pacific Microw. Conf. Dig., Singapore, Dec. 1999, pp. 331-334.
    [2] D. Ahn, J.- S. Park, C.- S. Kim, J. Kim, Y.- X. Qian, and T. Itoh,“A design of the low-pass filter using the novel microstrip defected ground structure,”IEEE Trans. Microw. Theory Tech., vol. 49, no. 1, pp. 86-93, Jan. 2001.
    [3] C.- S. Kim, J.- S. Park, D. Ahn, and J.- B. Lim,“A novel 1-D periodic defected ground structure for planar circuits,”IEEE Microw. Guided Wave Lett., vol. 10, no. 4, pp. 131-133, Apr. 2000.
    [4] J.- S. Lim, S.- W. Lee, C.- S. Kim, J.- S. Park, D. Ahn, and S.- W. Nam,“A 4:1 unequal Wilkinson power divider,”IEEE Microw. Wireless Compon. Lett., vol. 11, no. 3, pp. 124-126, Mar. 2001.
    [5] J.- S. Lim, H.- S. Kim, J.- S. Park, D. Ahn, and S.- W. Nam,“A power amplifier with efficiency improved using defected ground structure,”IEEE Microw. Wireless Compon. Lett., vol. 11, no. 4, pp. 170-172, Apr. 2001.
    [6] J.- S. Park, J.- S. Yun, and D. Ahn,“A design of the novel coupled-line bandpass filter using defected ground structure with wide stopband performance,”IEEE Trans. Microw. Theory Tech., vol. 50, no. 9, pp. 2037-2043, Sep. 2002.
    [7] J.- S. Lim, C.- S. Kim, Y.- T. Lee, D. Ahn, and S.- W. Nam,“A spiral-shaped defected ground structure for coplanar waveguide,”IEEE Microw. Wireless Compon. Lett., vol. 12, no. 9, pp. 330-332, Sep. 2002.
    [8] Y.- C. Jeong, S.- G. Jeong, J.- S. Lim, and S.- W. Nam,“A new method to suppress harmonics usingλ/4 bias line combined by defected ground structure in power amplifiers,”IEEE Microw. Wireless Compon. Lett., vol. 13, no. 12, pp. 538-540, Dec. 2003.
    [9] Y.- K. Chung, S.- S. Jeon, D. Ahn, J. I. Choi, and T. Itoh,“High isolation dual-polarized patch antenna using integrated defected ground structure,”IEEEMicrow. Wireless Compon. Lett., vol. 14, no. 1, pp. 4-6, Jan. 2004.
    [10] Y.- J. Sung, C.- S. Ahn, and Y.- S. Kim,“Size reduction and harmonic suppression of rat-race hybrid coupler using defected ground structure,”IEEE Microw. Wireless Compon. Lett., vol. 14, no. 1, pp. 7-9, Jan. 2004.
    [11] H.- W. Liu, Z.- F. Li, X.- W. Sun, and J.- F. Mao,“An improved 1-D periodic defected ground structure for microstrip line,”IEEE Microw. Wireless Compon. Lett., vol. 14, no. 4, pp. 180-182, Apr. 2004.
    [12] A. A. Rahman, A. K. Verma, A. Boutejdar, and A. S. Omar,“Compact stub type microstrip bandpass filter using defected ground plane,”IEEE Microw. Wireless Compon. Lett., vol. 14, no. 4, pp. 136-138, Apr. 2004.
    [13] Y.- K. Chung, S.- S. Jeon, S.- H. Kim, D. Ahn, J.- I. Choi, and T. Itoh,“Multifunctional microstrip transmission lines integrated with defected ground structure for RF front-end application,”IEEE Trans. Microw. Theory Tech., vol. 52, no. 5, pp. 1425-1432, May 2004.
    [14] B.- T. Tan, J.- J. Yu, S.- T. Chew, M.- S. Leong, and B.- L. Ooi,“A miniaturized dual-mode ring bandpass filter with a new perturbation,”IEEE Trans. Microw. Theory Tech., vol. 53, no. 1, pp. 343-348, Jan. 2005.
    [15] Y.- L. Zhang, W. Hong, K. Wu, J.- X. Chen, and H.- J. Tang,“Novel substrate integrated waveguide cavity filter with defected ground structure,”IEEE Trans. Microw. Theroy Tech., vol. 53, no. 4, pp. 1280-1287, Apr. 2005.
    [16] D.- J. Woo, and T.- K. Lee,“Suppression of harmonics in wilkinson power divider using dual-band rejection by asymmetric DGS,”IEEE Trans. Microw. Theroy Tech., vol. 53, no. 6, pp. 2139-2144, Jun. 2005.
    [17] Z.- C. Hao, W. Hong, J.- X. Chen, X.- P. Chen, and K. Wu,“Compact super-wide bandpass substrate integrated waveguide (SIW) filters,”IEEE Trans. Microw. Theroy Tech., vol. 53, no. 9, pp. 2968-2977, Sep. 2005.
    [18] J.- S. Hong, and B. M Karyamapudi,“A general circuit model for defected ground structures in planar transmission lines,”IEEE Microw. Wireless Compon. Lett., vol. 15, no. 10, pp. 706-708, Oct. 2005.
    [19] N. C. Karmakar, S. M. Roy, and I. Balbin,“Quasi-static modeling of defected ground structure,”IEEE Trans. Microw. Theroy Tech., vol. 54, no. 5, pp. 2160-2168, May 2006.
    [20] H.- M. Kim, and B.- S. Lee,“Bandgap and slow/fast-wave characteristics of defected ground structures (DGSs) including left-handed features,”IEEE Trans. Microw. Theroy Tech., vol. 54, no. 7, pp. 3113-3120, Jul. 2006.
    [21] A. M. E. Safwat, F. Podevin, P. Ferrari, and A. Vilcot,“Tunable bandstop defected ground structure resonator using reconfigurable dumbbell-shaped coplanar waveguide,”IEEE Trans. Microw. Theroy Tech., vol. 54, no. 9, pp. 3559-3564, Sep. 2006.
    [22] J. Shi, J.- X. Chen, and Q. Xue,“A quasi-elliptic function dual-band bandpassfilter stacking spiral-shaped CPW defected ground structure and back-side coupled strip lines,”IEEE Microw. Wireless Compon. Lett., vol. 17, no. 6, pp. 430-432, Jun. 2007.
    [23] X.- H. Wang, B.- Z. Wang, H.- L. Zhang, and K. J. Chen,“A tunable bandstop resonator based on a compact slotted ground structure,”IEEE Trans. Microw. Theroy Tech., vol. 55, no. 9, pp. 1912-1918, Sep. 2007.
    [24] G.- M. Yang, R.- H. Jin, C. Vittoria, V. G. Harris, and N.- X. Sun,“Small ultra-wideband (UWB) bandpass filter with notched band,”IEEE Microw. Wireless Compon. Lett., vol. 18, no. 3, pp. 176-178, Mar. 2008.
    [25] Y.- H. Ryu, J.- H. Park, J.- H. Lee, J.- Y. Kim, and H.- S. Tae,“DGS dual composite right/left handed transmission line,”IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp. 434-436, Jul. 2008.
    [26] S.- Y. Huang, and Y.- H. Lee,“A compact E-shaped patterned ground structure and its applications to tunable bandstop resonator,”IEEE Trans. Microw. Theroy Tech., vol. 57, no. 3, pp. 657-666, Mar. 2009.
    [27] S.- J. Wu, C.- H. Tsai, T.- L. Wu, and T. Itoh,“A novel wideband common-mode suppression filter for gigahertz differential signals using coupled patterned ground structure,”IEEE Trans. Microw. Theroy Tech., vol. 57, no. 4, pp. 848-855, Apr. 2009.
    [28] B. Gustavsen, and A. Semlyen,“Rational approximation of frequency domain responses by vector fitting,”IEEE Trans. Power Delivery, vol. 14, no. 3, pp. 1052–1061, Jul. 1999.
    [29] C. K. Sanathanan, and J. Koerner,“Transfer function synthesis as a ratio of two complex polynomials,”IEEE Trans. Autom. Control, vol. 8, no. 1, pp. 56–58, Jan. 1963.
    [30] W. Hendrickx, and T. Dhaene,“A discussion of rational approximation of frequency domain responses by vector fitting,”IEEE Trans. Power Syst., vol. 21, no. 1, pp. 441–443, Feb. 2006.
    [31] Vector Fitting [Online]. Available: http://www.energy.sintef.no/Produkt/ VECTFIT/in-dex.asp
    [32] S. Grivet Talocia, and A. Ubollu,“On the generation of large passive macromodels for complex interconnect structures,”IEEE Trans. Adv. Packag., vol. 29, no. 1, pp. 39–54, Feb. 2006.
    [33] C.- K. Liao, and C.- Y. Chang,“A vector fitting formulation for parameter extraction of lossy microwave filters,”IEEE Microw. Wireless Compon. Lett., vol. 17, no. 4, pp. 277-230, Apr. 2007.
    [34] R. Araneo, and F. Maradei,“Passive equivalent circuits of complex discontinuities: an improved extraction technique,”in Proc. IEEE Inter. Symp. EMC, Chicago, USA, Aug. 2005, vol. 3, pp. 700-704.
    [35] B. Gustavsen,“Improving the pole relocating properties of vector fitting,”IEEETrans. Power Delivery, vol. 21, no. 3, pp. 1587–1592, Jul. 2006.
    [36] D. Deschrijver, B. Haegeman, and T. Dhaene,“Orthonormal vector fitting: A robust macromodelling tool for rational approximation of frequency domain responses,”IEEE Trans. Adv. Packag., vol. 30, no. 2, pp. 216–225, May 2007.
    [37] D. Deschrijver, B. Gustavsen, and T. Dhaene,“Advancements in iterative methods for rational approximation in the frequency domain,”IEEE Trans. Power Delivery, vol. 22, no. 3, pp. 1633-1642, Jul. 2007.
    [38] L.- S. Wu, F.- Y. Hao, W.- Y. Yin, X.- L. Zhou, and M. Tang,“A continuous vector fitting method for parameters extraction of defected ground structure in microwave circuits,”in Proc. Global Symp. Millimeter Waves Dig., Sendai, Japan, Apr. 2009.
    [39] R. N. Simons, Coplanar waveguide circuits, components, and systems, New York: Wiley-Interscience, 2001.
    [40] W.- C. Tang, Y. L. Chow,“CAD formulas, their inverses andin terrelations for microstrip, CPW lines without and with a backing groundplane, by successive synthetic asymptotes,”Journal of Electromagnetic Waves and Applications, vol. 16, no. 1, pp. 1–20, Jan. 2002.
    [41] F.- R. Yang, K.- P. Ma, Y.- X. Qian, and T. Itoh,“A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuits,”IEEE Trans. Microw. Theory Tech., vol. 47, no. 8, pp. 1509–1514, Aug. 1999.
    [42] S.- G. Mao, and M.- Y. Chen,“A novel periodic electromagnetic bandgap structure for finite-width conductor-backed coplanar waveguides,”IEEE Microw. Wireless Compon. Lett., vol. 11, no. 6, pp. 261–263, Jun. 2001.
    [43] S.- G. Mao, C.- M. Chen, and D.- C. Chang,“Modeling of slow-wave EBG structure for printed-bowtie antenna array,”IEEE Antennas Wireless Propag. Lett., vol. 1, pp. 124–127, 2002.
    [44] S.- G. Mao, and M.- Y. Chen,“Propagation characteristics of finite-width conductor-backed coplanar waveguides with periodic electromagnetic bandgap cells,”IEEE Trans. Microw. Theory Tech., vol. 50, no. 11, pp. 2624–2628, Nov. 2002.
    [45] Z.- H. Shao, and M. Fujise,“Bandpass filter design based on LTCC and DGS,”in Proc. Asia-Pacific Microwave Conf. Dig., Suzhou, China, Dec. 2005, vol. 1.
    [46] A. M. E. Safwat, K. A. Zaki, W. Johnson, and C.- H. Lee,“Mode-matching analysis of conductor backed coplanar waveguide with surface etching,”Journal of Electromagnetic Waves and Applications, vol. 15, no. 5, pp. 627–641, May 2001.
    [47] H.- W. Liu, X.- W. Sun, and Z.- F. Li,“A low-pass filter of wide stopband with a novel multilayer fractal photonic bandgap structure,”Microw. Opt. Tech. Lett., vol. 40, no. 5, pp. 431–432, May 2004.
    [48] G. Lojewski, N. Militaru, and M. G. Banciu,“Planar microwave bandpass filters with two and three-layer defected ground structures,”WSEAS Trans. Commun., vol. 5, no. 12, pp. 2129–2136, Dec. 2006.
    [49] C. Gao, Z.- N. Chen, Y.- Y. Wang, N. Yang, and X.- M. Qing,“Study and suppression of ripples in passbands of series/parallel loaded EBG filters,”IEEE Trans. Microw. Theory Tech., vol. 54, no. 4, pp. 1519–1526, Apr. 2006.
    [50] I. Wolff,“Microstrip bandpass filter using degenerate modes of a microstrip ring resonator,”Electron. Lett., vol. 8, no. 12, pp. 302–303, Jun. 1972.
    [51] K. Chang, Microwave ring circuits and antennas, New York, USA: Wiley, 1996.
    [52] J.- S. Hong, and M. J. Lancaster,“Microstrip bandpass filter using degenerate modes of a novel meander loop resonator,”IEEE Microw. Guided Wave Lett., vol. 5, no. 11, pp. 371–372, Nov. 1995.
    [53] A. Gorur, C. Karpuz, and M. Akpinar,“A reduced-size dual-mode bandpass filter with capacitively loaded open-loop arms,”IEEE Microw. Wireless Compon. Lett., vol. 13, no. 9, pp. 385–387, Sep. 2003.
    [54] M.- F. Lei, and H. Wang,“An analysis of miniaturized dual-mode bandpass filter structure using shunt-capacitance perturbation,”IEEE Trans. Microw. Theory Tech., vol. 53, no. 3, pp. 861–867, Mar. 2005.
    [55] J.- T. Kuo, and C.- Y. Tsai,“Periodic stepped-impedance ring resonator (PSIRR) bandpass filter with a miniaturized area and desirable upper stopband characteristics,”IEEE Trans. Microw. Theory Tech., vol. 54, no. 3, pp. 1107–1112, Mar. 2006.
    [56] R.- B. Wu, and S. Amari,“New triangular microstrip loop resonators for bandpass dual-mode filter application,”in Proc. MTT-S Int. Microw. Symp. Dig., Long Beach, CA, USA, Jun. 2005, pp. 941–944.
    [57] R.- J. Mao, and X.- H. Tang,“Novel dual-mode bandpass filters using hexagonal loop resonators,”IEEE Trans. Microw. Theory Tech., vol. 54, no. 9, pp. 3526–3533, Sep. 2006.
    [58] R.- J. Mao, X.- H. Tang, and F. Xiao,“Miniaturized dual-mode ring bandpass filters with patterned ground plane,”IEEE Trans. Microw. Theory Tech., vol. 55, no. 7, pp. 1539–1547, Jul. 2007.
    [59] Y.- C. Chiou, J.- T. Kuo, and J.- S. Wu,“Miniaturized dual-mode ring resonator bandpass filter with microstrip-to-CPW broadside-coupled structure,”IEEE Microw. Wireless Compon. Lett., vol. 18, no. 2, pp. 97–99, Feb. 2008.
    [60] S. Otto, A. Rennings, C. Caloz, and P. Waldow,“Dual mode zeroth order ring resonator with tuning capability and selective mode excitation,”in Proc. 35th Eur. Microw. Conf., Paris, France, Oct. 2005, vol. 1.
    [61] C. A. Allen, K. M. K. H. Leong, and T. Itoh,“Dual-mode composite-right/left-handed transmission line ring resonator,”Electron. Lett., vol. 42, no. 2, pp. 96–97, Jan. 2006.
    [62] W. Tong, and Z. Hu,“Left-handed L-band notch bandstop filter with significantly reduced size,”IET Microw. Antennas Propag., vol. 1, no. 1, pp. 45–49, Feb. 2007.
    [63] L.- S. Wu, X.- L. Zhou, W.- Y. Yin, and J.- X. Niu,“A novel miniaturized dual-mode zeroth-order ring bandpass filter with only one left-handed unit,”in Proc. Asia-Pacific Microw. Conf. Dig., Hong Kong, China, Dec. 2008.
    [64] J. D. Baena, J. Bonache, F. Martin, R. Marques, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia, I. Gil, M. F. Portillo, and M. Sorolla,“Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,”IEEE Trans. Microw. Theory Tech., vol. 53, no. 4, pp. 1451–1461, Apr. 2005.
    [65] L.- S. Wu, X.- L. Zhou, W.- Y. Yin, and J.- X. Niu,“A miniaturized dual-mode zeroth-order ring bandpass filter with one left-handed unit and a capacitive stub,”Microw. Opt. Tech. Lett., vol. 51, no. 3, pp. 603-607, Mar. 2009.
    [66] J.- X. Niu, and X.- L. Zhou,“A novel miniaturized hybrid ring using complementary split ring resonators,”Microw. Opt. Tech. Lett., vol. 50, no. 3, pp. 632–635, Mar. 2008.
    [67] G.- B. Xiao, and K. Yashiro,“On the design of a dual-mode ring resonator formed by nonuniform transmission lines,”Int. Journal Electron., vol 89, no. 4, pp. 337–345, Apr. 2002.
    [68] A. C. Kundu, and I. Awai,“Control of attenuation pole frequency of a dual-mode microstrip ring resonator bandpass filter,”IEEE Trans. Microw. Theory Tech., vol. 49, no. 6, pp. 1113–1117, Jun. 2000.
    [69] S. J. Fiedziuszko,“Dual-mode dielectric resonator loaded cavity filters,”IEEE Trans. Microw. Theory Tech., vol. 30, no. 9, pp. 1311–1316, Sep. 1982.
    [70] C.- Y. Chang, and W.- C. Hsu,“Novel planar, square-shaped, dielectric-waveguide, single-, and dual-mode filters,”IEEE Trans. Microw. Theory Tech., vol. 50, no. 11, pp. 2527–2536, Nov. 2002.
    [71] S. Amari, and U. Rosenberg,“New building blocks for modular design of elliptic and self-equalized filters,”IEEE Trans. Microw. Theory Tech., vol. 52, no. 2, pp. 721–736, Feb. 2004.
    [72] C.- K. Liao, P.- L. Chi, and C.- Y. Chang,“Microstrip realization of generalized Chebyshev filters with box-like coupling schemes,”IEEE Trans. Microw. Theory Tech., vol. 55, no. 1, pp. 147–153, Jan. 2007.
    [73] Q.- F. Wei, Z.- F. Li, and H.- G. Shen,“Dual-mode filters based on substrate integrated waveguide by multilayer LTCC technology,”Microw. Opt. Tech. Lett., vol. 50, no. 11, pp. 2788–2790, Nov. 2008.
    [74] L.- S. Wu, X.- L. Zhou, Q.- F. Wei, and W.- Y. Yin,“An extended doublet substrate integrated waveguide (SIW) bandpass filter with a complementary split ring resonator (CSRR),”IEEE Microw. Wireless Compon. Lett., vol. 19, no.12, pp. 777-779, Dec. 2009.
    [75] C. Lugo, and J. Papapolymerou,“Planar realization of a triple-mode bandpass filter using a multilayer configuration,”IEEE Trans. Microw. Theory Tech., vol. 55, no. 2, pp. 296–301, Feb. 2007.
    [76] Y.- D. Dong, T. Yang, and T. Itoh,“Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filters,”IEEE Trans. Microw. Theory Tech., vol. 57, no. 9, pp. 2211–2223, Sep. 2009.
    [77] W.- Q. Che, C. Li, K. Deng, and L.- S. Yang,“A novel bandpass filter based on complementary split rings resonators and substrate integrated waveguide,”Microw. Opt. Tech. Lett., vol. 50, no. 3, pp. 699–701, Mar. 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700