用户名: 密码: 验证码:
超支化功能缀合物的构建及纳米医学应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因与药物载体是近些年来纳米医学研究的重要方向之一。在此领域中,人们利用超支化聚合物具有较多的功能末端、较大的空腔、较低的粘度等优良特性,构建了各种纳米体系,克服了传统载体的许多不足,引起越来越多学者的关注。然而,该领域仍然有很多问题没有解决,例如,阳离子聚合物基因载体存在细胞毒性与转染效率的矛盾;单独基因治疗效果较差;癌症基因治疗中病人因免疫力低下容易遭受细菌感染,进而影响整体治疗效果;癌症病人在化疗过程中,因化疗药物对白细胞的损伤导致免疫力低下,阻碍病人康复等。本研究希望将功能分子缀合进超支化聚合物,构建具有生物功能的超支化缀合物,解决纳米医学领域的上述科学问题。具体研究内容及主要结论为以下四个方面:
     1.利用天然小分子构建含糖缀合物作为低毒高效基因载体
     糖类分子既可与细胞相互作用,同时也具有较低的细胞毒性。因此,从天然糖基小分子开发低毒高效的基因载体,是克服该类载体毒性与转染效率矛盾的一个很有希望的方向。通过迈克尔加成聚合,制备了阳离子超支化糖缀合聚合物(HPKM)。采用红外、核磁、分子排阻色谱-多角度激光光散射联用和ζ-电位技术等常规表征手段对合成产物进行了化学结构表征。表征结果发现,HPKM的含氮量为7.3%,远低于超支化聚乙烯亚胺的32.6%,且HPKM可以在酸性环境中降解,因此HPKM具有很低的细胞毒性,甚至低于壳聚糖。由于分子结构中存在伯胺、仲胺和叔胺,HPKM呈现良好的质子缓冲能力和DNA压缩能力。体外转染实验表明HPKM介导的转染效率较高,大约是壳聚糖的33倍。这些结果说明,以天然小分子为基础,可以制备低毒高效的超支化糖缀合物基因载体。
     2.利用疏水药物分子缀合的阳离子超支化缀合物同时促进基因转染与药效
     作为促进基因转染的一种有效方式,阳离子聚合物的疏水修饰受到越来越多的关注。然而,利用疏水药物修饰阳离子聚合物促进基因转染的工作尚未见报道。考虑到疏水药物苯丁酸氮芥的靶标是DNA链,经苯丁酸氮芥修饰的阳离子聚合物既有利于基因转染,又可以增强药效。苯丁酸氮芥缀合的超支化聚合物的各种物理化学表征表明,该缀合物可以有效地将DNA压缩成纳米颗粒。激光共聚焦显微镜技术及流式细胞仪研究发现,该缀合物能快速进入细胞核,因此药效明显强于相同浓度的单药。相对于未经修饰的阳离子聚合物,疏水药物缀合的聚合物的转染性能有较大提高。该工作构建的可控释放载体能够同时促进药效与基因转染,给药物与基因共传递纳米体系提供了新视野,为癌症综合治疗带来希望。
     3.以天然糖胺为基元构建应用于基因治疗的多功能超支化含糖缀合物
     较好的癌症治疗是多种因素共同作用的结果。因此,具有高转染、低毒、抗菌和抗肿瘤特性的基因载体是临床所急需的。利用简单的迈克尔加成,可以制备符合上述要求的超支化含糖缀合物作为多功能基因载体。采用红外、核磁、分子排阻色谱、ζ-电位和酸碱滴定技术表征了聚合物的物理化学特性。实验结果表明,该材料具有较低的细胞毒性。由于存在大量的伯胺、仲胺和叔胺,该聚合物显示较好的质子缓冲能力、DNA压缩能力和转染效率。同时,由于分子结构中存在糖胺基团,聚合物可以有效地抑制肿瘤及细菌的生长。这些结果表明,以天然糖胺为基元构建的多功能载体,不仅可以有效地抑制肿瘤生长,同时可以降低病人遭受细菌感染的风险,促进病人康复。
     4.利用超支化缀合物构建药物顺序释放体系实现癌症治疗与免疫增强
     在化学治疗过程中,癌症患者常因化学药物的副作用导致白细胞低下,进而导致免疫力受损,影响病人的康复。因此,临床上迫切需要构建能协同治疗癌症,又能促进免疫的药物释放系统。采用阳离子开环聚合制备了超支化聚缩水甘油(HPG),然后将中药去甲斑蝥素(NCTD)成功地接枝到HPG表面,获得了中药缀合的超支化聚合物HPG-NCTD。借助电子显微镜及动态光散射研究了HPG-NCTD与顺铂(CDDP)组装成纳米颗粒的形貌、尺寸及分布。在不同pH值条件下考察了两种药物的释放行为。以传统的MTT法测定了HPG-NCTD/CDDP复合物的抗肿瘤效果,考察了体内白细胞提升行为。实验结果表明,HPG-NCTD/CDDP为分布较均匀的纳米颗粒,CDDP和NCTD能够按照顺序从HPG-NCTD/CDDP纳米颗粒上依次释放出来,可以有效地抑制癌细胞。体内实验发现,在CDDP存在的条件下,HPG-NCTD/CDDP纳米颗粒能够有效地提升白细胞。这些结果表明,基于可降解共价键及配位键构建起来的药物顺序释放体系,可以克服癌症治疗过程中白细胞低下的难题,达到协同治疗的效果。
Gene and drug carriers are one of important research fields in nanomedicine. Hyperbranched polymer is widely used to overcome many deficiencies of the conventional carriers in this field due to its unique physical and chemical properties, such as low viscosity, many functional terminals, large internal cavity and high solubility. However, there are still a lot of issues, such as the contradiction between cytotoxicity and transfection efficiency, unsatisfied efficacy of individual gene therapy, and bacterial infection from low immunity. In this thesis, various functional hyperbranched conjugates have been constructed for improvement of treatment efficacy. The details and main conclusions are given as follows:
     1. Hyperbranched Glycoconjugated Polymer from Natural Small Molecule Kanamycin as a Safe and Efficient Gene Vector
     The exploration of safe and efficient polycationic gene vectors from natural small molecules such as kanamycin is proposed. Cationic hyperbranched glycoconjugated polymer is synthesized by the Michael-addition polymerization of kanamycin and N',N'-methylenebisacrylamide, and the resultant product is well characterized by Fourier transform infrared (FTIR),1H nuclear magnetic resonance (1H NMR),13C NMR, size exclusion chromatography-multiangle laser light scattering (SEC-MALLS) and ξ-potential analyses. The nitrogen content (7.3%) of this kanamycin-based hyperbranched glycoconjugated polymer is much lower than that (32.6%) of polyethylenimine (PEI) control. Moreover, this resultant polymer could be degraded in acidic conditions. Therefore, the hyperbranched glycoconjugated polymer shows low cytotoxicity, even lower than that of natural biomacromolecule chitosan. Due to the existence of various primary, secondary and tertiary amines in the polymer backbone, hyperbranched glycoconjugated polymer exhibits high buffering capacity and strong pDNA condensation ability. In vitro transfection shows that the luciferase expression of hyperbranched glycoconjugated polymer is about4.4×108RLU per mg protein, approximately33-fold greater than that of chitosan transfection. These results demonstrate that the construction of highly branched polycations from natural small molecules provides a new opportunity for developing safe and efficient gene vectors.
     2. A Controlled Drug Delivery System with Promotion of Gene Transfection and Anticancer Efficacy
     As an efficient method to improve the polycationic gene delivery, hydrophobic modification has received more and more attention. However, it is rarely reported that hydrophobic drugs are used to promote gene transfection. Considering that the target of hydrophobic chlorambucil is DNA strands, the hyperbranched polycations are modified with chlorambucil for both gene transfection and drug delivery. The hyperbranched glycoconjugated polymers are modified with chlorambucil, and its chemical structure is well analyzed by FTIR,1H NMR, Size Exclusion Chromatography (SEC) and biophysical properties. Since the polycations can transport drugs into the nucleus efficiently, the anticancer efficacy of drug conjugates is much better than that of free chlorambucil. The results from confocal laser scanning microscope and flow cytometry have verified the efficient cell internalization of polymeric carriers. Owning to the hydrophobic modification and the controlled release of chlorambucil from polycations, the hyperbranched glycoconjugated polymers with chlorambucil show high transfection efficiency than pure polymers.
     3. Multi-functional Hyperbranched Glycoconjugated Polymers Based on Natural Aminoglycosides
     The multi-functional gene vectors with high transfection, low cytotoxicity, and good anti-tumor and anti-bacterial activities are prepared from natural aminoglycosides. Through the Michael-addition polymerization of gentamycin and N',N'-methylenebisacrylamide, cationic hyperbranched glycoconjugated polymers are synthesized and their physical and chemical properties are well analyzed by FTIR,1H NMR,13C NMR, SEC, ξ-potential, and acid-base titration techniques. The cytotoxicity of these hyperbranched glycoconjugated polycations is low because of the hydrolysis of degradable glycosidic and amide linkages in acid conditions. Owing to the presence of various primary, secondary and tertiary amines in the polymers, hyperbranched glycoconjugated polymers show high buffering capacity and strong DNA condensation ability, resulting in the high transfection efficiency. In the meantime, due to the introduction of natural aminoglycosides into the polymeric backbone, the resultant hyperbranched glycoconjugated polymers inhibit the growth of cancer cells and bacteria efficiently. Combining the gene transfection, anti-tumor and anti-bacterial abilities together, the multi-functional hyperbranched glycoconjugated polymers based on natural aminoglycosides may play an important role in protecting cancer patients from bacterial infections.
     4. Sequential Drug Release for Synergistic Cancer Treatment and Immunity Promotion
     Effective drug sequential release can enhance the efficacy, so sequential delivery system is one of most important goals in cancer therapy. In this work, a sequential drug release for synergistic cancer treatment and immunity promotion has been constructed. Firstly, the hyperbranched glycidol (HPG) is synthesized by cationic ring-opening polymerization. Benefiting from the existence of many hydroxyl end-groups in HPG, the traditional Chinese medicine norcantharidin (NCTD) with anhydride can be readily conjugated onto polyols via ester linkages, forming the HPG-NCTD conjugates. Owing to the coordination between cisplatin (CDDP) and carboxyls in HPG-NCTD conjugates, the HPG-NCTD/CDDP complexes with nano scale are obtained. Both in vitro and in vivo evaluations show that the sequential release of CDDP and NCTD is achieved by combination of coordination connections and hydrolysable ester bonds. Correspondingly, a synergistic efficiency of cancer treatment and immunity promotion is realized. These experimental results confirm that the sequential release carriers based on coordination connections and degradable covalent bonds can be used to overcome the problems of leukopenia in cancer therapy, giving us a perspective in cancer treatment.
引文
1. Voit, B. I. and Lederer, A. Hyperbranched and highly branched polymer architectures-synthetic strategies and major characterization aspects. Chem. Rev.2009,109,5924-5973.
    2. Jikei, M. and Kakimoto, M. Hyperbranched polymers:a promising new class of materials. Prog.Polym. Sci.2001,26,1233-1285.
    3. Gao, C. and Yan, D. Y. Hyperbranched polymers:from synthesis to applications. Prog. Polym. Sci.2004,29,183-275.
    4. Bosman, A. W., Janssen, H. M. and Meijer, E. W. About dendrimers:structure, physical properties and applications. Chem. Rev.1999,99,1665-1688.
    5. Tomalia, D. A., Naylor, A. M. and Goddard Ⅲ, W. A. Starburst dendrimers:molecular-level control of size, shape, surface chemistry, topology and flexibility from atoms to macroscopic matter. Angew. Chem. Int. Ed.1990,29,138-175.
    6. Fischer, M. and Vogtle, F. Dendrimers:from design to application-a progress report. Angew. Chem. Int. Ed.1999,38,885-905.
    7. Frechet, J. M. J. Dendrimers and supramolecular chemistry. Proc. Natl Acad. Sci. U.S.A.2002,99,4782-4787.
    8. Astruc, D., Boisselier, E. and Ornelas C. Dendrimers designed for functions:from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem. Rev.2010,110,1857-1959.
    9. Nystrom, A. M. and Wooley, K. L. The importance of chemistry in creating well-defined nanoscopic embedded therapeutics:devices capable of the dual functions of imaging and therapy. Accounts Chem. Res.2011,44,969-978.
    10. Duncan, R. and Gaspar, R. Nanomedicine(s) under the microscope. Mol. Pharmaceutics2011,8,2101-2141.
    11. Ahmed, M., Lai, B. F. L., Kizhakkedathu, J. N. and Narain, R. Hyperbranched glycopolymers for blood biocompatibility. Bioconjugate Chem.2012,23,1050-1058.
    12. Hu, X. and Ji, J. Covalent layer-by-layer assembly of hyperbranched polyether and polyethyleneimine:multilayer films providing possibilities for surface functionalization and local drug delivery. Biomacromolecules2011,12,4264-4271.
    13. Lee, S., Saito, K., Lee, H., Lee, M. J. Shibasaki, Y., Oishi, Y. and Kim, B. Hyperbranched double hydrophilic block copolymer micelles of poly(ethylene oxide) and polyglycerol for pH-responsive drug delivery. Biomacromolecules2012,13,1190-1196.
    14. Chen, S., Zhang, X., Cheng, S., Zhuo, R. and Gu, Z. Functionalized amphiphilic hyperbranched polymers for targeted drug delivery. Biomacromolecules2008,9,2578-2585.
    15. Liu, J., Huang, W., Pang, Y., Zhu, X. Zhou, Y. and Yan, D. Self-assembled micelles from an amphiphilic hyperbranched copolymer with polyphosphate arms for drug delivery.Langmuir2010,26,10585-10592.
    16. Chu, D. S. H., Schellinger,J. G., Shi, J., Convertine, A., Stayton, P. S. and Pun, S. Application of living free radical polymerization for nucleic acid delivery. Accounts Chem. Res.2012,45,1089-1099.
    17. Banerjee, P., Reichardt, W., Weissleder, R. and Bogdanov, Jr. A. Novel hyperbranched dendron for gene transfer in vitro and in vivo. Bioconjugate Chem.2004,15,960-968.
    18. Wang, X., He, Y., Wu, J., Gao, C. and Xu, Y. Synthesis and evaluation of phenylalanine-modified hyperbranched poly(amido amine)s as promising gene carriers. Biomacromolecules2010,11,245-251.
    19. Newland, B., Zheng, Y., Jin,Y., Abu-Rub, M., Cao, H., Wang, W. and Pandit, A. Single cyclized molecule versus single branched molecule:a simple and efficient3D "knot" polymer structure for nonviral gene delivery. J. Am. Chem. Soc.2012,134,4782-4789.
    20. Yang, W., Pan, C., Liu, X. and Wang, J. Multiple functional hyperbranched poly(amido amine) nanoparticles:synthesis and application in cell imaging. Biomacromolecules2011.12,1523-1531.
    21. Li, K., Pu, K. Cai, L. and Liu, B. Phalloidin-functionalized hyperbranched conjugated polyelectrolyte for filamentous actin imaging in living Hela cells. Chem. Mater.2011,23,2113-2119.
    22. Zhang, Y., Peng, H., Huang, W., Zhou, Y., Zhang, X. and Yan, D. Hyperbranched poly(amidoamine) as the stabilizer and reductant to prepare colloid silver nanoparticles in situ and their antibacterial activity. J. Phys. Chem. C2008,112,2330-2336.
    23. Ignatova, M., Voccia, S., Gabriel, S. Gilbert, B., Cossement, D. Jerome, R. and Jerome, C. Stainless steel grafting of hyperbranched polymer brushes with an antibacterial activity:synthesis, characterization, and properties. Langmuir2009),25,891-902
    24.刘翠华,颜德岳。超支化聚合物的合成及其超分子封装和超分子自组装研究。上海交通大学博士学位论文,2007。
    25.高超,颜德岳。超支化聚合物的分子设计、合成、表征及功能化研究。上海交通大学博士学位论文,2001。
    26. Yan, D., Gao, C. and Frey, H. Hyperbranched polymers:synthesis, properties and applications. John Wiley&Sons,2011.
    27. Kendall, J. L., Canelas, D. A., Young, J. L. and DeSimone, J. M. Polymerizations in supercritical carbon dioxide. Chem. Rev.1999,99,543-563.
    28. Darensbourg. D. J., Mackiewicz, R., Phelps, A. L. and Billodeaux, D. R. Copolymerization of CO2and epoxides catalyzed by metal salen complexes. Acc. Chem. Res.2004,37,836-844.
    29. Atodiresei, I., Schiffers, I. and Bolm, C. Stereoselective anhydride openings. Chem. Rev.2007,107,5683-5712.
    30. Aoshima, S. and Kanaoka, S. A renaissance in living cationic polymerization. Chem. Rev.,2009,109,5245-5287.
    31. Kennedy, J. P. and Jacob, S. Cationic polymerization astronomy, synthesis of polymer stars by cationic means. Acc. Chem. Res.1998,31,835-841.
    32. Hadjichristidis, N., Pitsikalis, M., Pispas,S. and Iatrou, H. Polymers with complex architecture by living anionic polymerization. Chem. Rev.2001,101,3747-3792.
    33. Tsarevsky, N. V. and Matyjaszewski, K."Green" atom transfer radical polymerization:from process design to preparation of well-defined environmentally friendly polymeric materials. Chem. Rev.2007,107,2270-2299.
    34. Matyjaszewski, K. Atom transfer radical polymerization (ATRP):current status and future perspectives. Macromolecules2012,45,4015-4039.
    35. Matyjaszewski, K. and Xia, J. Atom transfer radical polymerization. Chem. Rev.2001,101,2921-2990.
    36. Zetterlund, P. B., Kagawa, Y. and Okubo, M. Controlled/living radical polymerization in dispersed systems. Chem. Rev.2008,108,3747-3794.
    37. Mather, B. D., Viswanathan, K., Miller, K. M. and Long, T. E. Michael addition reactions in macromolecular design for emerging technologies. Prog. Polym. Sci.2006,31,487-531.
    38. Wang, J., Li, H., Zu, L. and Wang, W. Enantioselective organocatalytic michael addition reactions between N-heterocycles and nitroolefins. Org. Lett.2006,8,1391-1394.
    39. Ma, A. and Ma, D. Enantioselective synthesis of polysubstituted cyclopentanones by organocatalytic double michael addition reactions. Org. Lett.2010,12,3634-3637.
    40. Emori, E., Arai, T., Sasai, H. and Shibasaki, M. A Catalytic michael addition of thiols to α,β-unsaturated carbonyl compounds:asymmetric michael additions and asymmetric protonations. J.Am. Chem. Soc.1998,120,4043-4044.
    41. Zu, L., Zhang, S., Xie, H. and Wang, W. Catalytic asymmetric oxa-michael-michael cascade for facile construction of chiral chromans via an aminal intermediate.Org. Lett.2009,11,1627-1630.
    42. Herrmann, J. L., Richman, J. E. and Schlessinger, R. H. A highly reactive carbonyl anion equivalent derived from ethyl glyoxalate and its conjugate addition to michael receptors. Tetrahedron Lett.1973,14,2599-2602.
    43. Cregge, R. J., Herrmann, J. L. and Schlessinger, R. H. A versatile and reactive Michael receptor for the synthesis of1,4-dicarbonyl compounds. Tetrahedron Lett.1973,14,2603-2606.
    44. Wang, R., Zhou, L., Zhou, Y., Li, G., Zhu, X., Gu, H., Jiang, X., Li, H., Wu, J., He, L., Guo, X., Zhu, B. and Yan, D. Synthesis and gene delivery of poly(amido amine)s with different branched architecture. Biomacromolecules2010,77,489-495.
    45. Bajomo, M., Steinke, J. H. G. and Bismarck, A. Inducing pH responsiveness via ultralow thiol content in polyacrylamide (micro)gels with labile crosslinks. J. Phys. Chem. B2007,111,8655-8662.
    46. Huynh, V. T., Souza P. and Stenzel, M. H. Polymeric micelles with pendant dicarboxylato chelating ligands prepared via a michael addition for cis-platinum drug delivery. Macromolecules2011,44,7888-7900.
    47. Smeets, N. M. B., Freeman, M. W. and McKenna, T. F. L. Polymer architecture control in emulsion polymerization via catalytic chain transfer polymerization. Macromolecules2011,44,6701-6710.
    48. Wang, H., Yang, R., Yang, L. and Tan, W. Nucleic acid conjugated nanomaterials for enhanced molecular recognition. ACS Nano2009,3,2451-2460.
    49. Troiber, C. and Wagner, E. Nucleic acid carriers based on precise polymer conjugates. Bioconjugate Chem.2011,22,1737-1752.
    50. Liu, B. and Bazan, G. C. Homogeneous fluorescence-based DNA detection with water-Soluble conjugated polymers. Chem. Mater.2004,16,4467-4476.
    51. Ma, X., Tang, J., Shen, Y., Fan, M., Tang, H. and Radosz, M. Facile synthesis of polyester dendrimers from sequential click coupling of asymmetrical monomers. J. Am. Chem. Soc.2009,131,14795-14803.
    52. LoPachin, R. M., Gavin, T., DeCaprio, A. and Barber, D. S. Application of the hard and soft, acids and bases (HSAB) theory to toxicant-target interactions. Chem. Res. Toxicol2012,25,239-251.
    53. Dhall, A. and Chatterjee, C. Chemical approaches to understand the language of histone modifications. ACS Chem. Biol2011,6,987-999.
    54. Marnett, L. J. Inflammation and cancer:chemical approaches to mechanisms, imaging, and treatment. J. Org. Chem.2012,77,5224-5238.
    55. Sumerlin, B. S. and Vogt, A. P. Macromolecular engineering through click chemistry and other efficient transformations. Macromolecules2010,43,1-13.
    56. Kim, Y. B., Kim, H. K., Nishida, H. and Endo, T. Synthesis and characterization of hyperbranched poly(b-ketoester) by the Michael addition. Macromol Mater. Eng.2004,289,923-926.
    57. Chen, Y., Zhou, L., Pang, Y., Huang, W., Qiu, F., Jiang, X., Zhu, X., Yan, D. and Chen, Q. Photoluminescent hyperbranched poly(amido amine) containing β-cyclodextrin as a nonviral gene delivery vector. Bioconjugate Chem.2011,22,1162-1170.
    58. Kamber, N. E., Jeong, W., Waymouth, R. M., Pratt, R. C., Lohmeijer, B. G. G. and Hedrick, J. L. Organocatalytic ring-opening polymerization. Chem. Rev.2007,107,5813-5840.
    59. Nomura, R., Ueno, A. and Endo, T. Anionic ring-opening polymerization of macrocyclic esters. Macromolecules1994,27,620-621.
    60. Kusan, J., Keul, H. and Hocker, H. Cationic ring-opening polymerization of tetramethylene urethane. Macromolecules2001,34,389-395.
    61. Tilley, T. D. The coordination polymerization of silanes to polysilanes by a "sigma-bond metathesis" mechanism, implications for linear chain growth. Acc. Chem. Res.1993,26,22-29.
    62. Chen, E. Y. X. Coordination polymerization of polar vinyl monomers by single-site metal catalysts. Chem. Rev.2009,109,5157-5214.
    63. Miyake, G. M., Mariott, W. R. and Chen E. Y. X. Asymmetric coordination polymerization of acrylamides by enantiomeric metallocenium ester enolate catalysts. J. Am. Chem. Soc.2007,129.6724-6725.
    64.潘祖仁。高分子化学。化学工业出版社,2011。
    65. Tokar, R., Kubisa, P., Penczek, S. and Dworak, A. Cationic polymerization of glycidol: coexistence of the activated monomer and active chain end mechanism. Macromolecules1994,27,320-322.
    66. Wilms, D., Stiriba, S. and Frey H. Hyperbranched polyglycerols:from the controlled synthesis of biocompatible polyether polyols to multipurpose applications. Acc. Chem. Res.2010,43,129-141.
    67. Sunder, A., Hanselmann, R., Frey, H. and Mulhaupt, R. Controlled synthesis of hyperbranched polyglycerols by ring-opening multibranching polymerization. Macromolecules1999,32,4240-4246.
    68.何曼君。高分子物理,复旦大学出版社,2008。69. Mintzer, M. A. and Simanek, E. E. Nonviral vectors for gene delivery. Chem. Rev.2009,109,259-302.
    70. Jiang, W., Kim, B. S., Rutka, J. T. and Chan, W. C. W. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol2008,3,145-150.
    71. Hawker, C. J., Lee, R. and Frechet, J. M. J. One-step synthesis of hyperbranched dendritic polyesters. J. Am. Chem. Soc.1991,113,4583-4588.
    72. Holter, D., Burgath, A. and Frey, H. Degree of branching in hyperbranched polymers. Acta Polym.1997,48,30-35.
    73. Greene, T. W. and Wuts, P. G. M. Protective groups in organic synthesis (third edition). John Wiley&Sons,1998.
    74. Isidro-Llobet, A., Alvarez, M. and Albericio, F. Amino acid-protecting groups. Chem. Rev.2009,109,2455-2504.
    75. Carpino, L. A., Rice, N. W., Mansour, E. M. E. and Triolo, S. A. Acid-stable, solvolytically deblocked amino-protecting-groups applications of the1,3-dibromo-2-methyl-2-propyloxycarbonyl (DB-t-BOC) group. J. Org. Chem.1984,49,836-842.
    76. Gibson, F. S., Bergmeier, S. C. and Rapoport, H. Selective removal of an N-BOC protecting group in the presence of a tert-butyl ester and other acid-sensitive groups. J. Org. Chem.1994,59,3216-3218.
    77. Johnson Ⅱ, D. C. and Widlanski, T. S. Facile deprotection of O-Cbz-protected nucleosides by hydrogenolysis:an alternative to O-benzyl ether-protected nucleosides. Org. Lett.2004,6,4643-4646.
    78. Guo, Y., Fujiwara, K., Amii, H. and Uneyama, K. Selective defluorination approach to N-Cbz-3,3-difluoro-2-difluoromethylenepyrrolidine and its application to3,3-difluoroproline dipeptide synthesis. J. Org. Chem.2007,72,8523-8526.
    79. Hernandez, J. N. and Martin, V. S. First practical protection of a-amino acids as N,N-benzyloxycarbamoyl derivatives. J. Org. Chem.2004,69,3590-3592.
    80. Boeijen, A., Ameijde, J. and Liskamp, R. M. J. Solid-phase synthesis of oligourea peptidomimetics employing the Fmoc protection strategy. J. Org. Chem.2001,66,8454-8462.
    81. Wurtz, N. R., Turner, J. M., Baird, E. E. and Dervan, P. B. Fmoc solid phase synthesis of polyamides containing pyrrole and imidazole amino acids. Org. Lett.2001,3,1201-1203.
    82. Ingenito, R., Dreznjak, D., Guffler, S. and Wenschuh, H. Efficient loading of sulfonamide safety-catch linkers by Fmoc amino acid fluorides. Org. Lett.2002,4,1187-1188.
    83. Glover, D. J., Lipps, H. J., and Jans, D. A.Towards safe, non-viral therapeutic gene expression in humans. Nat Rev Genet.2005,6,299-310.
    84. Jeong, J. H., Kim, S. W., Park, T. G. Molecular design of functional polymers for gene therapy. Prog. Polym. Sci.2007,32,1239-1274.
    85. Breunig, M., Lungwitz, U., Liebl, R. and Goepferich, A. Breaking up the correlation between efficacy and toxicity for nonviral gene delivery. Proc. Natl Acad. Sci. U.S.A.2007,104,14454-14459.
    86. Zhao, D., Liu, C., Zhuo, R. and Cheng, S. Alginate/CaCO3hybrid nanoparticles for efficient code livery of antitumor gene and drug. Mol Pharmaceutics2012.9,2887-2893.
    87. Ringsdorf, H. Structure and properties of pharmacologically active polymers. J Polym Sci Symp.1975,51,135-153.
    88. Li, C. and Wallace, S. Polymer-drug conjugates:recent development in clinical oncology. Adv. DrugDeliv. Rev.2008,60,886-898.
    89. Larson, N. and Ghandehari, H. Polymeric conjugates for drug delivery. Chem. Mater.2012,24, 840-853.
    90. Richardson, T. P., Peters, M. C., Ennett, A. B. and Mooney, D. J. Polymeric system for dual growth factor delivery. Nat.Biotechnol.2001,19,1029-1034.
    91. Rubinfeld, B., Upadhyay, A., Clark, S. L., Fong, S. E., Smith, V., Koeppen, H., Ross, S. and Polakis, P. Identification and immunotherapeutic targeting of antigens induced by chemotherapy. Nat.Biotechnol2006,24,205-209.
    92. Kim, S., Shum, H. C., Kim, J. W., Cho, J. and Weitz, D. A. Multiple polymersomes for programmed release of multiple components. J. Am. Chem. Soc.2011,133,15165-15171.
    93. Wagner, E. Programmed drug delivery:nanosystems for tumor targeting. Expert Opin. Biol Ther.2007,7,587-593.
    94. Meng, F., Zhong, Z. and Feijen, J. Stimuli-responsive polymersomes for programmed drug delivery. BiomacromoleculeslWiQ,10,197-209.
    95. Mali, P., Bhattacharjee, N. and Searson, P. C. Electrochemically programmed release of biomolecules and nanoparticles. Nano Lett.2006,6,1250-1253.
    96. Ma, N., Li, Y., Xu, H., Wang, Z. and Zhang, X. Dual redox responsive assemblies formed from diselenide block copolymers. J. Am. Chem. Soc.2010,132,442-443.
    97. Low, P. S., Henne, W. A. and Doorneweerd, D. D. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc. Chem. Res.2008,41,120-129.
    98. Stella, B., Arpicco, S., Peracchia, M. T., Desmaele, D., Hoebeke, J., Renoir, M., D'Angelo, J., Cattel, L. and Couvreur, P. Design of folic acid-conjugated nanoparticles for drug targeting. J. Pharm. Sci.2000,89,1452-1464.
    99. Fan, N., Cheng, F., Ho, J. A. and Yeh, C. Photocontrolled targeted drug delivery:photocaged biologically active folic acid as a light-responsive tumor-targeting molecule. Angew. Chem. Int. Ed.2012,51,8806-8810.
    100. Kim, Y., Binauld, S. and Stenzel, M. H. Zwitterionic guanidine-based oligomers mimicking cell-penetrating peptides as a nontoxic alternative to cationic polymers to enhance the cellular uptake of micelles. Biomacromolecules,2012,13,3418-3426.
    101. Geihe, E. I., Cooley, C. B., Simon, J. R., Kiesewetter, M. K., Edward, J. A., Hickerson, R. P. Kaspar, R. L. Hedrick, J. L. Waymouth, R. M. and Wender, P. A. Designed guanidinium-rich amphipathic oligocarbonate molecular transporters complex, deliver and release siRNA in cells. Proc NatlAcadSci U S A.2012,14,13171-13176.
    102. Valero, J., Van Gool M., Perez-Fernandez, R., Castreno, P., Sanchez-Quesada, J., Prados, P. and de Mendoza, J. Non-peptidic cell-penetrating agents:synthesis of oligomeric chiral bicyclic guanidinium vectors. Org. Biomol Chem.2012,10,5417-5430.
    103. Zhang, J. G., Krajden, O. B., Kainthan, R. K., Kizhakkedathu, J. N., Constantinescu, I., Brooks, D. E. and Gyongyossy-Issa, M. I. C. Conjugation to hyperbranched polyglycerols improves RGD-mediated inhibition of platelet function in vitro. Bioconjugate Chem.2008,19,1241-1247.
    104. Patel, P. R., Kiser, R. C., Lu, Y. Y., Fong, E., Ho, W. C., Tirrell, D. A. and Grubbs, R. H. Synthesis and cell adhesive properties of linear and cyclic RGD functionalized polynorbornene thin films. Biomacromolecules,2012,13,2546-2553.
    105. Waite, C. L. and Roth, C. M. PAMAM-RGD conjugates enhance siRNA delivery through a multicellular spheroid model of malignant glioma. Bioconjugate Chem.2009,20,1908-1916.
    106. Fonseca, S. B., Pereira, M. P., Mourtada, R., Gronda, M., Horton, K. L., Hurren, R., Minden, M. D., Schimmer, A. D. and Kelley, S. O. Rerouting chlorambucil to mitochondria combats drug deactivation and resistance in cancer cells. Chem. Biol2011,18,445-453.
    107. Parker, L. J., Ciccone, S., Italiano, L. C., Primavera, A., Oakley, A. J., Morton, C. J., Hancock, N. C, Bello, M. L. and Parker, M. W. The anti-cancer drug chlorambucil as a substrate for the human polymorphic enzyme glutathione transferase P1-1:kinetic properties and crystallographic characterisation of allelic variants. J. Mol. Biol2008,380,131-144.
    108. Minoshima, M., Bando, T., Shinohara, K., Kashiwazaki, G., Nishijima, S. and Sugiyama, H. Comparative analysis of DNA alkylation by conjugates between pyrrole-imidazole hairpin polyamides and chlorambucil or seco-CBI. Bioorg. Med Chem.2010,18,1236-1243.
    109. Pedersen, P. J., Christensen, M. S., Ruysschaert, T., Linderoth, L., Andresen, T. L., Melander, F., Mouritsen, O. G., Madsen, R. and Clausen, M. H. Synthesis and biophysical characterization of chlorambucil anticancer ether lipid prodrugs. J. Med Chem.2009,52,3408-3415.
    110. Liu, Z., Zhang, Z., Zhou, C. and Jiao, Y. Hydrophobic modifications of cationic polymers for gene delivery. Prog. Polym. Sci.2010,35,1144-1162.
    111. Hart, M. E., Chamberlin, A. R., Walkom, C., Sakoffc, J. A. and McCluskey, A. Modified norcantharidins:synthesis, protein phosphatases1and2A inhibition, and anticancer activity. Bioorg. Med. Chem. Lett.2004,14,1969-1973.
    112. Ho, Y P., To, K. K. W., Au-Yeung, S. C. F., Wang, X., Lin, G., and Han, X. Potential new antitumor agents from an innovative combination of demethylcantharidin, a modified traditional Chinese medicine, with a platinum moiety. J. Med. Chem.2001,44,2065-2068.
    113. International human genome sequencing consortium. Initial sequencing and analysis of the human genome international human genome sequencing consortium. Nature2001,409,860-921.
    114. MacInnes, A. W., Amsterdam, A., Whittaker, C. A., Hopkins, N. and Lees, J. A. Loss of p53synthesis in zebrafish tumors with ribosomal protein gene mutations. Proc. Natl. Acad. Sci. U.S.A.2008,105,10408-10413.
    115. Ueba, T., Nosaka, T., Takahashi, J. A., Shibata, F., Florkiewicz, R. Z., Vogelstein, B., Oda, Y.. Kikuchi, H. and M. Hatanaka. Transcriptional regulation of basic fibroblast growth factor gene by p53in human glioblastoma and hepatocellular carcinoma cells. Proc. Natl. Acad. Sci. U.S.A.1994,97,9009-9013.
    116. Strati, K. and Lambert, P. F. Role of rb-dependent and rb-independent functions of papillomavirus E7oncogene in head and neck cancer. Cancer Res.2007,67,11585-11593.
    117. Gonzalez-Paz, N., Cheng, W. J. McClure, R. F., Blood, E. Oken, M. M., Ness, B. V., James, C. D., Kurtin, P. J., Henderson, K., Ahmann, G. J., Gertz, M., Lacy, M., Dispenzieri, A., Greipp, P. R. and Fonseca, R. Tumor suppressor p16methylation in multiple myeloma:biological and clinical implications. Blood2007,109,1228-1232.
    118. Grisham, J. Inquiry into gene therapy widens. Nat. Biotechnol.2000,18,254-255.7. Fox, J. Gene therapy safety issues come to fore. Nat. Biotechnol1999,17,1153-1153.
    119. Niidome, T. and Huang, L. Gene therapy progress and prospects:nonviral vectors. Gene Ther.2000,9,1647-1652.
    120. Mintzer, M. A. and Simanek, E. E. Nonviral vectors for gene delivery. Chem. Rev.2009,109,259-302.
    121. Kramer, M., Stumbe, J. F., Grimm, G., Kaufmann, B., Kruger, U., Weber, M. and Haag, R. Dendritic polyamines:simple access to new materials with defined treelike structures for application in nonviral gene delivery. ChemBioChem2004,5,1081-1087.
    122. Zhou, Y. F., Huang, W., Liu, J. Y., Zhu X. Y, and Yan, D. Y. Self-assembly of hyperbranched polymers and its biomedical applications. Adv. Mater.2010,22,4567-4590.
    123. Chen, J., Wu, C. and Oupicky, D. Bioreducible hyperbranched poly(amido amine)s for gene delivery. Biomacromolecules2009,10,2921-2927.
    124. Lim, Y., Kim, S., Lee, Y., Lee, W., Yang, T., Lee, M., Suh, H. and Park, J. Cationic Hyperbranched Poly(amino ester):A novel class of DNA condensing molecule with cationic surface, biodegradable three-dimensional structure, and tertiary amine groups in the interior. J. Am. Chem. Soc.2001,123,2460-2461.
    125. Arote, R. B., Lee, E., Jiang, H., Kim, Y., Choi, Y., Cho, M. and Cho, C. Efficient gene delivery with osmotically active and hyperbranched poly(ester amine)s. Bioconjugate Chem.2009,20,2231-2241.
    126. Pack, D. W., Hoffman, A. S., Pun, S. and Stayton, P. S. Design and development of polymers for gene delivery. Adv. Drug Delivery Rev.2005,4,581-593.
    127. Kim, J. B., Choi, J. S., Nam, K., Lee, M., Park, J. S. and Lee, J. K. Enhanced transfection of primary cortical cultures using arginine-grafted PAMAM dendrimer, PAMAM-Arg. J. Controlled Release2006,114,110-117.
    128. Nam, H. Y., Nam, K., Hahn, H. J., Kim, B. H., Lim, H. J., Kim, H. J., Choi, J. S. and Park, J. S. Biodegradable PAMAM ester for enhanced transfection efficiency with low Cytotoxicity. Biomaterials2009,30,665-673.
    129. Beyerle, A., Irmler, M., Beckers, J., Kissel, T. and Stoeger, T. Toxicity pathway focused gene expression profiling of PEI-based polymers for pulmonary applications. Mol Pharm,2010,7,727-737.
    130. Liu, Y., Wu, D. C., Zhang, W. D., Jiang, X., He, C. B., Chung, T. S., Goh, S. H. and Leong, K. W. Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA. Angew. Chem. Int. Ed.2005,44,4782-4785.
    131. Chen, Y, Zhou, L., Pang, Y.,Huang, W., Qiu, F., Jiang, X., Zhu, X., Yan, D., and Chen, Q. Photoluminescent hyperbranched poly(amido amine) containing β-cyclodextrin as a nonviral gene delivery vector. Bioconjugate Chem.2011,22,1162-1170.
    132. Liu, J, Jiang, X, Xu, L., Wang, X., Hennink, W. E. and Zhuo, R. Novel reduction-responsive cross-linked polyethylenimine derivatives by click chemistry for nonviral gene delivery. Bioconjugate Chem.2010,21,1827-1835.
    133. Shim, M. S. and Kwon, Y. J. Acid-transforming polypeptide micelles for targeted nonviral gene delivery. Biomaterials2010,31,3404-3413.
    134. Zhang, X., Oulad-Abdelghani, M., Zelkin, A. N., Wang, Y., Hakel, Y., Mainard, D., Voegel, J. C., Caruso, F. and Benkirane-Jessel, N. Poly(L-lysine)nanostructured particles for gene delivery and hormone stimulation. Biomaterials2010,31,1699-1706.
    135. Park, T. G., Jeong, J. H. and Kim, S. W. Current status of polymeric gene delivery systems. Adv. Drug Delivery Rev.2006,58,467-486.
    136. Huang, Y., Yu, H., Guo, L. and Huang, Q. Structure and self-assembly properties of a new chitosan-based amphiphile. J. Phys. Chem. B.2010,114,7719-7726.
    137. Chang, K. L., Higuchi, Y., Kawakami, S., Yamashita, F. and Hashida, M. Efficient gene transfection by histidine-modified chitosan through enhancement of endosomal escape. Bioconjugate Chem.2010,21,1087-1095.
    138. Kumar, M. N. V. R., Muzzarelli, R. A. A., Muzzarelli, C., Sashiwa, H. and Domb, A. J. Chitosan chemistry and pharmaceutical perspectives. Chem. Rev.2004,104,6017-6084.
    139. Watthanaphanit, A., Supaphol, P., Furuike, T., Tokura, S., Tamura, H. and Rujiravanit, R. Novel chitosan-spotted alginate fibers from wet-spinning of alginate solutions containing emulsified chitosan-citrate complex and their characterization. Biomacromolecules2009,10,320-327.
    140. Chen, L., Zhu, X. Y., Yan, D.Y., Chen, Y., Chen, Q. and Yao, Y. F. Controlling polymer architecture through host-guest interactions. Angew. Chem. Int. Ed.2006,45,87-90.
    141. Wan, H. S., Chen, Y., Chen, L., Zhu, X. Y., Yan, D. Y., Li, B., Liu, T., Zhao, L., Jiang, X. L. and Zhang, G. Z. Supramolecular control of the branched topology of poly(sulfone-amine) from divinylsul-fone and hexamethylenediamine. Macromolecules2008,41,465-470.
    142. Benns, J. M., Mahato, R. I. and Kim, S. W. Optimization of factors influencing the transfection efficiency of folate-PEG-folate-graft-polyethylenimine. J. Controlled Release2002,79,255-269.
    143. Gao, C., and Yan, D. Polyaddition of B2and BB'2Type Monomers to A2Type Monomers.1. Synthesis of Highly Branched Copoly(sulfone-amme)s.Macromolecules2001,34,156-161.
    144. Hawker, C. J., Lee, R. and Frechet, J. M. J. One-step synthesis of hyperbranched dendritic polyesters. J. Am. Chem. Soc.1991,113,4583-4588.
    145. Holtan, S., Zhang, Q., Strand, W. I. and Skjak-Brask, G. Characterization of the hydrolysis mechanism of polyalternating alginate in weak acid and assignment of the resulting MG-oligosaccharides by NMR spectroscopy and ESI-mass spectrometry. Biomacromolecules2006,7,2108-2121.
    146. Boussif, O., Lezoualch, F., Zanta, M. A., Mergny, M. D., Scherman, D., Demeneix, B. and Behr, J. P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc. Natl. Acad Sci. U.S.A.1995,92,7297-7301.
    147. Germershaus, O., Mao, S., Sitterberg, J., Bakowsky, U. and Kissel, T. Gene delivery using chitosan, trimethyl chitosan or polyethylenglycol-graft-trimethyl chitosan block copolymers: establishment of structure-activity relationships in vitro. J. Controlled Release2008,125,145-154.
    148. Yue, X., Qiao, Y., Qiao, N., Guo, S., Xing, J., Deng, L., Xu, J. and Dong, A. Amphiphilic methoxy poly(ethylene glycol)-b-poly(ε-caprolactone)-b-poly(2-dimethylaminoethyl methacrylate) cationic copolymer nanoparticles as a vector for gene and drug delivery. Biomacromolecules2010,11,2306-2312.
    149. Ganta, S., Devalapally, H., Shahiwala, A., and Amiji, M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release2008,126,187-204.
    150. Lianga, X., Meng, H., Wang, Y., He, H., Meng, J., Lu, J., Wang, P. C., Zhao, Y., Gao, X.; Sun, B., Chen, C., Xing, G., Shen, D., Gottesman, M. M., Wu, Y., Yin, J. and Jia, L. Metallofullerene nanoparticles circumvent tumor resistance to cisplatin by reactivating endocytosis. Proc. Natl. Acad Sci. USA2010,107,7449-7454.
    151. Gilbert, L. A. and Hemann, M. T. DNA damage-mediated induction of a chemoresistant niche. Cell2010,143,355-366.
    152. Wang, X., Li, Y., Yao, H., Ju, R., Zhang, Y., Li, R., Yu, Y., Zhang, L., and Lu, W. The use of mitochondrial targeting resveratrol liposomes modified with a dequalinium polyethylene glycol-distearoylphosphatidyl ethanolamine conjugate to induce apoptosis in resistant lung cancer cells. Biomaterials2011,32,5673-5687.
    153. Yao, H., Ju, R., Wang, X., Zhang, Y., Li, R., Yu, Y., Zhang, L. and Lu, W. The antitumor efficacy of functional paclitaxel nanomicelles in treating resistant breast cancers by oral delivery. Biomaterials2011,32,3285-3302.
    154. Lu, X., Wang, Q., Xu, F., Tang, G. and Yang, W. A cationic prodrug/therapeutic gene nanocomplex for the synergistic treatment of tumors. Biomaterials2011.32,4849-4856.
    155. Benoit, D. S. W., Henry, S. M., Shubin, A. D., Hoffman, A. S., and Stayton, P. S. pH-Responsive polymeric siRNA carriers sensitize multidrug resistant ovarian cancer cells to doxorubicin via knockdown of polo-like kinase1. Mol. Pharm.2010,7,442-455.
    156. Zhu, Y., Meng, W., Gao, H. and Hanagata, N. Hollow mesoporous silica/poly(1-lysine) particles for codelivery of drug and gene with enzyme-triggered release property. J. Phys. Chem. C2011,115,13630-13636.
    157. Kim, C., Shah, B. P., Subramaniam, P. and Lee, K. Synergistic induction of apoptosis in brain cancer cells by targeted codelivery of siRNA and anti-cancer drugs. Mol, Pharm,2011,8,1955-1961
    158. Meng, H., Liong, M., Xia, T., Li, Z., Ji, Z., Zink, J. I. and Nel, A. E. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano2010,4,4539-4550.
    159. Sun, T., Du, J., Yao, Y., Mao, C., Dou, S., Huang, S., Zhang, P., Leong, K. W., Song, E. and Wang, J. Simultaneous delivery of siRNA and paclitaxe via a "two-in-one" micelleplex promotes synergistic tumor suppression. ACSNano2011,5,1483-1494.
    160. Guo X. and Huang L. Recent advances in nonviral vectors for gene delivery. Accounts Chem. Res.2012,45,971-979.
    161. Nunes, A., Amsharov, N., Guo, C., Bossche, J. V. D., Santhosh, P., Karachalios, T. K., Nitodas, S. F., Burghard, M., Kostarelos, K., Al-Jamal, K. T. Hybrid polymer-grafted multiwalled carbon nanotubes for in vitro gene delivery. Small2010,6,2281-2291.
    162. Thomas, M. and Klibanov, A.M. Enhancing polyethylenimine's delivery of plasmid DNA into mammalian cells. Proc. Natl. Acad Sci. USA.2002,99,14640-14645.
    163. Bielawski, K., Bielawska, A., Muszynska, A., Poplawska, B., and Czarnomysy, R. Cytotoxic activity of G3PAMAM-NH2dendrimer-chlorambucil conjugate in human breast cancer cells Environ. Toxicol Phar.2011,32,364-372.
    164. Parker, L. J., Ciccone, S., Italiano, L. C., Primavera, A., Oakley, A. J., Morton, C. J., Hancock, N. C., Bello, M. L., Parker, M. W. The Anti-cancer drug chlorambucil as a substrate for the human polymorphic enzyme glutathione transferase P1-1:kinetic properties and crystallographic characterisation of allelic variants. J. Mol Biol.2008,380,131-144.
    165. Fonseca, S. B., Pereira, M. P., Mourtada, R., Gronda, M., Horton, K. L., Hurren, R., Minden, M. D., Schimmer, A. D. and Kelley, S. O. Rerouting chlorambucil to mitochondria combats drug deactivation and resistance in cancer cells. Chem. Biol.2011,18,445-453.
    166. Charaka, S., Shandilyab, M., Tyagia, G., and Mehrotra, R. Spectroscopic and molecular docking studies on chlorambucil interaction with DNA. Int. J. Biol. Macromol2012,51,406-411.
    167. Goff, R. D., and Thorson, J. S. Assessment of chemoselective neoglycosylation methods using chlorambucil as a model. J. Med. Chem.2010,53,8129-8139.
    168. Chen, M., Wu, J., Zhou, L., Jin, C., Tu, C., Zhu, B., Wu, F., Zhu, Q., Zhu, X. and Yan, D. Hyperbranched glycoconjugated polymer from natural small molecule kanamycin as a safe and efficient gene vector. Polym. Chem.2011,2,2674-2682.
    169. Lin, Y., and Haynes, C. L. Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. J. Am. Chem. Soc.2010,132,4834-4842.
    170. Nowacek, A. S., Balkundi, S., McMillan, J., Roy, U., Martinez-Skinner, A., Mosley, R. L. Kanmogne, G., Kabanov, A. V., Bronich, T. and Gendelman, H. E. Analyses of nanoformulated antiretroviral drug charge, size, shape and content for uptake, drug release and antiviral activities in human monocyte-derived macrophages. J. Control. Release2011,150,204-211.
    171. Albanese, A., Sykes, E. A. and Chan, W. C. W. Rough around the edges:the inflammatory response of microglial cells to spiky nanoparticles. ACS Nano2010,4,2490-2493.
    172. Minelli, C, Lowe, S. B. and Stevens, M. M. Engineering nanocomposite materials for cancer therapy. Small2010,6,2336-2357.
    173. Zhang, X., Xu, X., Lam, R., Giljohann, D., Ho, D. and Mirkin, C. A. Strategy for increasing drug solubility and efficacy through covalent attachment to polyvalent DNA-nanoparticle conjugates. ACS Nano2011,5,6962-6970.
    174. Ha, C. and Gardella Jr, J. A. Surface chemistry of biodegradable polymers for drug delivery systems. Chem. Rev.2005,105,4205-4232.
    175. Ohulchanskyy, T. Y., Roy, I., Goswami, L. N., Chen, Y., Bergey, E. J., Pandey, R. K.: Oseroff, A. R. and Prasad, P. N. Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer. Nano Lett.2007,7,2835-2842.
    176. Pang, Y., Liu, J., Wu, J., Li, G., Wang, R., Su, Y., He, P., Zhu, X., Yan, D. and Zhu, B. Synthesis, characterization, and in vitro evaluation of long-chain hyperbranched poly(ethylene glycol) as drug carrier. Bioconjugate Chem.2010,21,2093-2102.
    177. Pang, Y., Zhu, Q., Liu, J., Wu, J., Wang, R., Chen, S., Zhu, X., Yan, D., Huang, W. and Zhu, B. Design and synthesis of cationic drug carriers based on hyperbranched poly(amine-ester)s. Biomacromolecules2010,11,575-582.
    178. Liu, J., Huang, W., Pang, Y., Zhu, X., Zhou, Y. and Yan, D. Hyperbranched polyphosphates for drug delivery application:design, synthesis, and in vitro evaluation. Biomacromolecules,2010,11,1564-1570.
    179. Mamasheva, E., Donnell, C., Bandekar, A. and Sofou, S. Heterogeneous liposome membranes with pH-triggered permeability enhance the in vitro antitumor activity of folate-receptor targeted liposomal doxorubicin. Mol. Pharm.2011,8,2224-2232.
    180. Meng, H., Xue, M., Xia, T., Ji, Z., Tarn, D. Y., Zink, J. I. and Nel, A. E. Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. ACSNano2011,5,4131-4144.
    181. Lin, X., Xie, J., Niu, G., Zhang, F., Gao, H., Yang, M., Quan, Q., Aronova, M. A., Zhang, G., Lee, S., Leapman, R. and Chen, X. Chimeric ferritin nanocages for multiple function loading and multimodal imaging. Nano Lett.2011,11,814-819.
    182. Green, J. J., Langer, R. and Anderson, D. G. A combinatorial polymer library approach yields insight into nonviral gene delivery. Accounts Chem. Res.2008,41,749-759.
    183. Schwarz, S., Bratskaya, S., Jaeger, W. and Paulke, B.-R. Effect of charge density, molecular weight, and hydrophobicity on polycations adsorption and flocculation of polystyrene latices and silica. J.Appl Polym. Sci.2006,101,3422-3429.
    184. Torchilin, V. P. Multifunctional nanocarriers. Adv. Drug Deliver. Rev.2006,58,1532-1555.
    185. Singh, A., Boldin-Adamsky, S., Thimmulappa, R. K., Rath, S. K., Ashush, H., Coulter, J., Blackford, A., Goodman, S. N., Bunz, F., Watson, W. H., Gabrielson, E., Feinstein, E. and Biswal, S. RNAi-mediated silencing of nuclear factor erythroid-2-related factor2gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy. Cancer Res.2008,68,7975-7984.
    186. Ravi Kumar, M. N. V., Muzzarelli, R. A. A., Muzzarelli, C., Sashiwa, H. and Domb, A. J. Chitosan chemistry and pharmaceutical perspectives. Chem. Rev.2004,104,6017-6084.
    187. Qin, C., Du, Y., Xiao, L., Li, Z. and Gao, X. Enzymic preparation of water-soluble chitosan and their antitumor activity. Int. J. Biol Macromol2002,31,111-117.
    188. Liang, T., Chen, Y., Yen, Y. and Wang, S. The antitumor activity of the hydrolysates of chitinous materials hydrolyzed by crude enzyme from Bacillus amyloliquefaciens V656. Process Biochemistry2007,42,527-534.
    189. Felt, O., Carrel, A., Baehni, P., Buri, P. and Gurny, R. Chitosan as tear substitute:a wetting agent endowed with antimicrobial efficacy. J. Ocular Pharm. Ther.2000,16,270.
    190. Vo, T. and Kim S. Potential anti-HIV agents from marine resources:an overview. Mar. Drugs2010,8,2871-2892.
    191. Bhattarai, N., Ramay, H. R., Gunn, J., Matsen, F. A. and Zhang, M. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J. Controlled Release2005,103,609-624.
    192. Ruel-Gariepy, E., Chenite, A., Chaput, C., Guirguis, S. and Leroux, J. C. Characterization of thermosensitive chitosan gels for the sustained delivery of drugs. Int. J. Pharm.2000,203,89-98.
    193. Kushwaha, S. K. S., Rai, A. K. and Singh, S. Chitosan:a platform for targeted drug delivery. Int. J. Pharm. Tech. Res.2010,2,2271-2282.
    194. MacLaughlin, F. C., Mumper, R. J., Wang, J., Tagliaferri, J. M., Gill, I., Hinchcliffe, M. and Rolland, A. P. Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery. J. Controlled Release1998,56,259-272.
    195. Erbacher, P., Zou, S., Bettinger, T., Steffan, A. M. and Remy, J. S. Chitosan based vector/DNA complexes for gene delivery:biophysical characteristics and transfection ability. Pharm. Res.1998,15,1332-1339.
    196. Venkatesh, S. and Smith, T. J. Chitosan-mediated transfection of HeLa cells. Pharm. Dev. Technol1997,2,417-418.
    197. Lin, C. and Lin, J. Characterization and blood coagulation evaluation of the water-soluble chitooligosaccharides prepared by a facile fractionation method. Biomacromolecules2003,4,1691-1697.
    198. Cole, C. L. and Jayson, G. C. Oligosaccharides as anti-angiogenic agents. Expert Opin. Biol Ther.2008,8,351-362.
    199. Zhang, Y., Peng, H., Huang, W., Zhou, Y., Zhang, X. and Yan, D. Hyperbranched poly(amidoamine) as the stabilizer and reductant to prepare colloid silver nanoparticles in situ and their antibacterial activity. J. Phys. Chem. C2008,112,2330-2336.
    200. Moore, N. M., Sheppard, C. L. and Sakiyama-Elbert, S. E. Characterization of a multifunctional PEG-based gene delivery system containing nuclear localization signals and endosomal escape peptides. ActaBiomater2009,5,854-864.
    201. Moore, N. M., Sheppard, C. L., Barbour, T. R. and Sakiyama-Elbert, S. E. The effect of endosomal escape peptides on in vitro gene delivery of polyethylene glycol-based vehicles. J. Gene Med2008,10,1134-1149.
    202. Wang, Y., Robertson, J. L., Spillman, W. B.Jr. and Claus, R. O. Effects of the chemical structure and the surface properties of polymeric biomaterials on their biocompatibility. Pharm. Res.2004,21,1362-1373.
    203. Putnam, D., Gentry, C. A., Pack, D. W. and Langer, R. Polymer-based gene delivery with low cytotoxicity by a unique balance of side-chain termini. Proc. Natl. Acad. Sci. U. S. A.2001,98,1200-1205.
    204. Kima, T. H., Cook, S. E., Arote, R. B., Cho, M. H., Nah, J. W., Choi, Y. J. and Cho, C. S. A degradable hyperbranched poly(ester amine) based on poloxamer diacrylate and polyethylenimine as a gene carrier. Macromol Biosci.2007,7,611-619.
    205. Arote, R. B., Lee, E. S., Jiang, H. L., Kim, Y. K., Choi, Y. J., Cho, M. H. and Cho, C. S. Efficient gene delivery with osmotically active and hyperbranched poly(ester amine)s. Bioconjugate Chem.2009,20,2231-2241.
    206. Poole, R. A., Kasper, P. T. and Jiskoot, W. Formation of amide-and imide-linked degradation products between the peptide drug oxytocin and citrate in citrate-buffered formulations. J. Pharm. Sci.2011,100,3018-3022.
    207. Guay, D. F., Cole, B. J. W., Fort, Jr. R. C., Hausman, M. C., Genco, J. M. and Elder, T. J. Mechanisms of oxidative degradation of carbohydrates during oxygen delignification. Part III: reaction of photochemically generated hydroxyl radicals with1,5-anhydrocellobitol and cellulose. J. Pulp Paper Sci.2002,28,217-221.
    208. Holtan, S., Zhang, Q., Strand, W. I. and Skjak-Br(?)k, G. Characterization of the hydrolysis mechanism of polyalternating alginate in weak acid and assignment of the resulting Mgoligosaccharides by NMR spectroscopy and ESI-mass spectrometry. Biomacromolecules2006.7,2108-2121.
    209. Kunath, K., Harpe, A., Fischer, D. and Kissel, T. Galactose-PEI-DNA complexes for targeted gene delivery:degree of substitution affects complex size and transfection efficiency. J. Controlled Release2003,88,159-172.
    210. Godbey, W. T., Wu, K. K. and Mikos, A. G. Poly(ethylenimine) and its role in gene delivery. J. Controlled Release1999,60,149-160.
    211. Chong, K. W. Y., Lee, A. Y., Koay, E. S. C. Seet, S. J. and Cheung, N. S. pH dependent high transfection efficiency of mouse neuroblastomas using TransFectin. J. Neuroscience Methods2006,15,856-863.
    212. Mintzer, M. A. and Simanek, E. E. Nonviral vectors for gene delivery. Chem. Rev.2009,109,259-302.
    213. Tu, Y. and Kim, J. A fusogenic segment of glycoprotein H from herpes simplex virus enhances transfection efficiency of cationic liposomes. J. Gene Med.2008,10,646-654.
    214. Mukthavaram, R., Marepally, S., Venkata, M. Y., Vegi, G. N., Sistla, R. and Chaudhuri, A. Cationic glycolipids with cyclic and open galactose head groups for the selective targeting of genes to mouse liver. Biomaterials2009,30,2369-2384.
    215. Banerjee, R., Mahidhar, Y. V. and Chaudhuri, A. Design, synthesis, and transfection biology of novel cationic glycolipids for use in liposomal gene delivery. J. Med. Chem.2001,44,4176-4185.
    216. Funhoff, A. M., Van Nostrum, C. F., Lok, M. C., Fretz, M. M., Crommelin, D. J. A., and Hennink, W. E. Poly(3-guanidinopropyl methacrylate):a novel cationic polymer for gene delivery. Bioconjugate Chem.2004,15,1212-1220.
    217. Son, S., and Kim, W. J. Biodegradable nanoparticles modified by branched polyethylenimine for plasmid DNA delivery. Biomaterials2009,31,133-143.
    218. Abe, A., Miyanohara, A., and Friedmann, T. Polybrene increases the efficiency of gene transfer by lipofection. Gene Ther.1998,5,708-711.
    219. Yang, J., and Huang, L. Overcoming the inhibitory effect of serum on lipofection by increasing the charge ratio of cationic liposome to DNA. Gene Ther.1997,4,950-960.
    220. Luo, X., Huang, F., Qin, S., Wang, H., Feng, J., Zhang, X., and Zhuo, R. A strategy to improve serum-tolerant transfection activity of polycation vectors by surface hydroxylation. Biomaterials2011,32,9925-9939.
    221. Ai, H., Wang, F., Yang, Q., Zhu, F., and Lei, C. Preparation and biological activities of chitosan from the larvae of housefly, Musca Domestica. Carbohyd. Polym.2008,72,419-423.
    222. Humber, C. E., Tierney, J. F., Symonds, R. P., Collingwood, M., Kirwan, J. Williams, C., and Green, J. A. Chemotherapy for advanced, recurrent or metastatic endometrial cancer:a systematic review of Cochrane collaboration. Ann. Oncol.2007,18,409-420.
    223. Busha, K., and Pucci, M. J. New antimicrobial agents on the horizon. Biochem. Pharmacol2011,82,1528-1539.
    224. Vermeulen, H., Westerbos, S. J., and Ubbink, D. T. Benefit and harm of iodine in wound care: a systematic review. J. Hosp. Infect.2010,76,191-199.225. Jayakumar, G. C., Kanth, S. V., Chandrasekaran, B., Rao, J. R., and Nair, B. U. Preparation and antimicrobial activity of scleraldehyde from Schizophyllum commune. Carbohyd. Res.2010,345,2213-2219.
    226. Qin, C., Du, Y., Xiao, L., Liu, Y., and Yu, H. Moisture retention and antibacterial activity of modified chitosan by hydrogen peroxide. J. Appl. Polym. Sci.2002,86,1724-1730.
    227. Shimabukuro, F., Neto, C. F., Sanches Jr., J. A., Gattas, G. J. F. DNA Damage and repair in leukocytes of melanoma patients exposed in vitro to cisplatin. Melanoma Res.2011,21,99-105.
    228. Parker, R. J., Gill, I., Tarone, R., Vionnet, J. A., Grunberg, S., Muggia, F. M., Reed, E. Platinum-DNA damage in leukocyte DNA of patients receiving carboplatin and cisplatin chemotherapy, measured by atomic absorption apectrometry. Carcinogenesis1991,12,1253-1258.
    229. Papadopoulou, L. C., Tsiftsoglou, A. S. Effects of hemin on apoptosis, suppression of cytochrome C oxidase gene expression, and bone-marrow toxicity induced by doxorubicin (adriamycin). Biochem. Pharmacol1996,52,713-722.
    230. Tang, X., Tian, L., Esteso, G., Choi, S. C., Barrow, A. D., Colonna, M., Borrego, F., Coligan, J. E. Leukocyte-associated Ig-like receptor-1-deficient mice have an altered immune cell phenotype. J. Immunol.2012,188,548-558.
    231. Bonnefoy, F., Perruche, S., Couturier, M., Sedrati, A., Sun, Y., Tiberghien, P., Gaugler, B., Saas, P. Plasmacytoid dendritic cells play a major role in apoptotic leukocyte-induced immune modulation. J. Immunol.2011,186,5696-5705.
    232. Breslow, R. G., Rao, J. J., Xing, W., Hong, D. I., Barrett, N. A., Katz, H. R. Inhibition of Th2adaptive immune responses and pulmonary inflammation by leukocyte Ig-like receptor B4on dendritic cells. J. Immunol.2010,184,1003-1013.
    233. An, W., Gong, X., Wang, M., Tashiro, S., Onodera, S., Ikejima, T. Norcantharidin induces apoptosis in HeLa cells through caspase, MAPK, and mitochondrial pathways. Acta Pharmacol. Sin.2004,25,1502-1508.
    234. Liu, X., Blazsek, I., Comisso, M., Legras, S., Marion, S., Quittet, P.; Anjo, A., Wang, G. and Misset, J. L. Effects of norcantharidin, a protein phosphatase type-2A inhibitor, on the growth of normal and malignant haemopoietic cells. Euro. J. Cancer1995,31A,953-963.
    235. Chen, Y., Tsai, Y., Kuo, C., Ku, K., Shie, H., Liao, H. Norcantharidin is a small-molecule synthetic compound with anti-angiogenesis effect. life Sci.2009,85,642-651.
    236. To, K. K. W., Au-Yeung, S. C. F., Ho, Y. P. Differential nephrotoxicity of cisplatin and a novel series of traditional Chinese medicine-platinum anticancer agents correlates with their chemical reactivity towards sulfur-containing nucleophiles. Anti-Cancer Drugs2006.17,673-683.
    237. To, K. K. W., Ho, Y. P., Au-Yeung, S. C. F. Synergistic interaction between platinum-based antitumor agents and demethylcantharidin. Cancer Lett.2005,223,227-237.
    238. To, K. K. W., Wang, X., Yu, C. W., Ho, Y.-P., Au-Yeung, S. C. F. Protein phosphatase2A inhibition and circumvention of cisplatin cross-resistance by novel TCM-platinum anticancer agents containing demethylcantharidin. Bioorgan. Med. Chem.2004,12,4565-4573.
    239. Ho, Y. P., To, K.K.W., Au-Yeung, S. C. F., Wang, X., Lin, G., Han, X. Potential new antitumor agents from an innovative combination of demethylcantharidin, a modified traditional Chinese medicine, with a platinum moiety. J. Med Chem.2001,44,2065-2068.
    240. Liu, X., Paul, W.S.H., Li, Q., Chan, L.W. Novel polymeric microspheres containing norcantharidin for chemoembolization. J. Control. Release2006,116,35-41.
    241. Hill, T. A., Stewart, S. G., Gordon, C. P., Ackland, S. P., Gilbert, J., Sauer, B., Sakoff, J. A., McCluskey, A. Norcantharidin analogues:synthesis, anticancer activity and protein phosphatase1 and2A inhibition. ChemMedChem2008,3,1878-1892.
    242. Shi, J., Votruba, A. R., Farokhzad, O. C., Langer, R. Nanotechnology in drug delivery and tissue engineering:from discovery to applications. Nano Lett.2010,10,3223-3230.
    243. Bell, S. J., Fam, C. M., Chlipala, E. A., Carlson, S. J., Lee, J. I., Rosendahl, M. S., Doherty, D. H., Cox, G. N. Enhanced circulating half-life and antitumor activity of a site-specific pegylated interferon-a protein therapeutic. Bioconjugate Chem.2008,19,299-305.
    244. Wilms, D., Stiriba, S., and Frey, H. Hyperbranched polyglycerols:from the controlled synthesis of biocompatible polyether polyols to multipurpose applications. Accounts Chem, Res,2010,43,129-141.
    245. Tokar, R., Kubisa, P., and Penczek, S. Cationic polymerization of glycidol:coexistence of the activated monomer and active chain end mechanism. Macromolecules1994,27,320-322.
    246. Sunder, A., Hanselmann, R., Frey,H., and Mulhaupt, R. Controlled synthesis of hyperbranched polyglycerols by ring-opening multibranching polymerization. Macromolecules1999,32,4240-4246.
    247. Kojima, C., Yoshimura, K., Harada, A., Sakanishi, Y., Kono, K. Synthesis and characterization of hyperbranched poly(glycidol) modified with pH-and temperature-sensitive groups. Bioconjugate Chem.2009,20,1054-1057.
    248. Ye, L., Letchford, K., Heller, M., Liggins, R., Guan, D., Kizhakkedathu, J. N., Brooks, D. E., Jackson, J. K., Burt, H. M. Synthesis and characterization of carboxylic acid conjugated, hydrophobically derivatized, hyperbranched polyglycerols as nanoparticulate drug carriers for cisplatin. Biomacromolecules2011,12,145-155.
    249. Nishiyama, N., Okazaki, S., Cabral, H., Miyamoto, M., Kato, Y., Sugiyama, Y., Nishio, K., Matsumura, Y. and Kataoka, K. Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice. Cancer Res.2003,63,8977-8983.
    250. Nishiyama, N., Yokoyama, M., Aoyagi, T., Okano, T., Sakurai, Y., and Kataoka, K. Preparation and characterization of self-Assembled polymer-metal complex micelle from cis-dichlorodiammineplatinum(Ⅱ) and poly(ethyleneglycol)-poly(r,a-aspartic acid) block copolymer in an aqueous medium. Langmuir1999,15,377-383.
    251. Ma, X., Wu, Y., Jin, S., Tian, Y., Zhang, X., Zhao, Y., Yu, L., Liang, X. Gold Nanoparticles Induce Autophagosome Accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS Nano2011,5,8629-8639.
    252. Jiang, W., Kim, B. Y. S., Rutka, J. T., Chan, W. C. W. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol.2008,3,145-150.
    253. Aryal, S., Hu, C. J., Zhang, L. Polymer cisplatin conjugate nanoparticles for acid-responsive drug delivery. ACS Nano2010,4,251-258. 254. Clementi, C., Miller, K., Mero, A., Satchi-Fainaro, R., Pasut, G. Dendritic poly(ethylene glycol) bearing paclitaxel and alendronate for targeting bone neoplasms. Mol. Pharmaceutics2011,8,1063-1072.
    255. Gillies, E. R., Frechet, J. M. J. Designing macromolecules for therapeutic applications: polyester dendrimers poly(ethylene oxide)"bow-tie" hybrids with tunable molecular weight and architecture. J. Am. Chem. Soc.2002,124,14137-14146.
    256. Khalil, I. A., Kogure, K., Akita, H., Harashima, H. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol. Rev.2006,58,32-45.
    257. Sonawane, N. D., Szoka, F. C, Verkman, A. S. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J. Biol. Chem.2003,278,44826-44831.
    258. Larson, N. and Ghandehari, H. Polymeric conjugates for drug delivery. Chem. Mater.2012,24,840-853.
    259. Chen, X., Lee, H., Zaro, J. L. and Shen,W. Effects of receptor binding on plasma half-life of bifunctional transferrin fusion proteins. Mol. Pharmaceutics2011,8,457-465.
    260. Poon, Z., Lee, J. B., Morton, S. W. and Hammond, P. T. Controlling in vivo stability and biodistribution in electrostatically assembled nanoparticles for systemic delivery. Nano Lett.2011,11,2096-2103.
    261. Liang, X., Meng, H., Wang, Y., He, H., Meng, J., Lu, J., Wang, P. C., Zhao, Y., Gao, X., Sun, B., Chen, C., Xing, G., Shen, D., Gottesman, M. M., Wu, Y., Yin, J. and Jia, L. Metallofullerene nanoparticles circumvent tumor resistance to cisplatin by reactivating endocytosis. Proc. Natl. Acad Sci USA2010,107,7449-7454.
    262. Hellmich, U. A., Lyubenova, S., Kaltenborn, E., Doshi, R., Veen, H. W., Prisner, T. F., Glaubitz, C. Probing the ATP hydrolysis cycle of the ABC multidrug transporter LmrA by pulsed EPR spectroscopy. J. Am. Chem. Soc.2012,134,5857-5862.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700