用户名: 密码: 验证码:
无线中继系统中的编码与协作传输技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信的快速发展,如何实现更高传输速率、更高带宽的无线传输等问题日益重要。这些问题的根源是如何提高信道容量。中继和协作传输技术的出现解决了信号的传输距离问题,能扩大网络覆盖范围,同时提高网络容量,成为近年来的研究热点之一。本文结合现有的理论成果,将传统的信道编码技术应用到中继系统以获得更好的性能,并对具体的协作传输方案进行研究。
     我们首先针对包含一个信源节点、一个中继节点、一个目的节点的(1,1,1)中继信道的时变特性,以最小化系统错误概率为准则,设计了一种新的系统方案。根据编码函数,对不同信道上的发送信号选择具有最佳汉明距离的纠错码进行保护,使系统错误概率最小,并采用时变功率分配算法对信源节点和中继节点的发送功率进行优化。当信道为包含多个中继节点的(1,MR,1)(MR>1)中继信道时,研究了多元低密度校验(Low-Density Parity-Check, LDPC)码在中继系统中的应用,提出一种结合可高效编码的LDPC码的选择性中继协作方案。多元LDPC码的校验矩阵采用双对角结构。根据信道状态信息,对中继节点进行排序,挑选最好的NR个节点进行最大似然译码(NR≤MR)。在准静态瑞利衰落信道下,该方案可降低系统复杂度和系统错误概率。
     接下来,针对包含MS个信源节点、NR个中继节点、一个目的节点的(MS,NR,1)(MS>1, NR>1)中继信道中,各发送用户的相互干扰问题,提出一种叠加调制算法。各用户在发送自己信息的同时协助其他用户进行信息转发,采用联合设计的叠加调制函数形成重构信号,接收端利用该函数完成干扰消除。以最大化系统容量为准则,对各用户的重构信号进行自适应功率分配。当信道为包含多个目的节点的(MS,NR,KD)(MS>1, NR>1, KD>1)中继信道时,给出了一种结合机会通信和网络编码的多用户协作通信方案。各用户通过中断概率判断是否作为伙伴的中继进行信息转发。中继节点借助网络编码技术,对自己的发送信息和伙伴的信息进行处理,然后发送至接收端。接收端同时收到多个发送端的信息,采用相干检测对其进行处理。该方法可合理地选择中继节点,在准静态瑞利衰落信道下显著提高网络的吞吐量。
How to achieve higher transmission rate and provide wider bandwidth is be-coming more and more important with the rapid development of wireless commu-nications. The key issue of these problems is how to increase the channel capacity.The emergence of relay and cooperative transmission can expand the network cov-erage and increase the network capacity. This technology can solve the problem oftransmission distance, which is becoming one of the focuses in recent years. Basedon the existing theoretical results, the traditional coding techniques are appliedto the relay channel in order to achieve the better performance, and cooperativetransmissions are researched in this dissertation.
     We consider the time variant property in (1,1,1) relay channel with one sourcenode, one relay node and one destination node at frst. A new system scheme is de-signed based on the system error probability. According to the encoding function,the error correct code with optimal Hamming distance is chosen for the transmittedsignal on diferent channel in order to minimize the system error probability. More-over, the time variant power allocation algorithm is used to optimize the transmitpower between the source node and relay node. When the channel is (1, MR,1)(MR>1) relay channel consists of multiple relay nodes, a selective relay schemeby using high efcient q-ary Low-Density Parity-Check (LDPC) codes is proposed.The parity check matrices have the dual-diagonal structure. The relay nodes aresorted according to the channel state information, and maximum likelihood decod-ing (MLD) is performed based on the best NRnodes (NR≤MR). This scheme canlower the complexity and error probability of the system on quasi-static Rayleighfading channels.
     Then, a superposition modulation algorithm is proposed, which can mitigatethe inference between users in (MS, NR,1)(MS>1, NR>1) relay channel withMSsource nodes, NRrelay nodes and one destination node. Each user transmitsits own signal while relays other users’ signals, and the superposition modulationfunctions are designed jointly to form the reconstructed signals. The destinationcancels the inference by the use of these functions. The reconstructed signal powerof each user is adjusted to maximize the system capacity. When the channel is(MS, NR, KD)(MS>1, NR>1, KD>1) relay channel consists of multiple des-tination nodes, a new multi-user cooperative communication scheme is presentedbased on the opportunistic communication and network coding. On the basis of outage probability, each user decides whether to help forward its partner’s infor-mation as a relay or not. The relay node processes its own information and thepartner’s information by the use of network coding, and transmits it to the receiver.The receiver can obtain several transmitters’ information and handle them with co-herent detection. This method can select the relay node reasonably and increasethe network throughput evidently in the quasi-static Rayleigh fading channel.
引文
[1] J. G. Proakis, Digital Communications, McGraw-Hill Companies, Inc.,4th ed.,2001.
    [2] D. Tse and P. Viswanath, Fundamentals of Wireless Communication, New York:Cambridge Univ. Press,1st ed.,2005.
    [3] F. H. P. Fitzek and M. D. Kalz, Cooperation in Wireless Networks: Principles andApplications, New York: Springer,2007.
    [4] Y. Li, Distributed coding for cooperative wireless networks: An overview and recentadvances, IEEE Commun. Mag.,2009,47(8):71–77.
    [5]孙岳,网络编码及协作通信关键技术研究,西安电子科技大学博士论文,2009.
    [6] G. Kramer, I. Maric, and R. D. Yates, Cooperative Communications, New York:Now Publisher,2007.
    [7] G. Kramer, Topic in Multi-User Information Theory, New York: Now Publisher,1st ed.,2008.
    [8]3GPP, Futher advancements for E-UTRA,2009.
    [9] E. C. van der Meulen, Transmission of Information in A T-terminal Discrete Mem-oryless Channel, PhD thesis, Dept. of Statistics, University of Clifornia, Berkeley,1968.
    [10] T. Cover and A. Gamal, Capacity theorems for the relay channel, IEEE Trans.Inform. Theory,1979,25(5):572–584.
    [11] E. van der Meulen, Three-terminal communication channels, Adv. Appl. Probab.,1971,3(1):120–154.
    [12] E. C. van der Meulen, A survey of multi-way channels in information theory:1961-1977, IEEE Trans. Inform. Theory,1977,23(6):1–37.
    [13] A. Gamal and M. Aref, The capacity of the semideterministic relay channel, IEEETrans. Inform. Theory,1982,28(3):536.
    [14] C. Berrou, A. Glavieux, and P. Thitimajshima, Near shannon limit error-correctingcoding and decoding: Turbo-codes, in: Proc. IEEE International Conference onCommunications,1993, vol.2,1064–1070.
    [15] D. J. C. MacKay and R. M. Neal, Good codes based on very sparse matrices, in:Proc. Cryptography and Coding.5th IMA Conf., C. Boyd, Ed., Springer, Berlin,Germany,1995,100–111.
    [16] D. J. C. MacKay and R. M. Neal, Near shannon limit performance of low densityparity check codes, Electron. Lett.,1996,32(18):1645–1646.
    [17] M. Sipser and D. A. Spielman, Expander codes, in: Proc.35th Symp. Found. Comp.Sci., Los Alamitos, CA, USA,1994,566–576.
    [18] M. Sipser and D. A. Spielman, Expander codes, IEEE Trans. Inform. Theory,1996,42(11):1710–1722.
    [19] V. Tarokh, N. Seshadri, and A. R. Calderbank, Space-time codes for high datarate wireless communication: performance criterion and code construction, IEEETrans. Inform. Theory,1998,44:744–765
    [20] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, Space-time block codes fromorthogonal designs, IEEE Trans. Inform. Theory,1999,45(5):1456–1467.
    [21] S. N. Diggavi, N. Al-dhahir, A. Stamoulis, and A. R. Calderbank, The value ofspatial in wireless communication, Proceeding of The IEEE,2004,92(2):219–270.
    [22] D. Gesbert, M. Shaf, D. shan Shiu, P. J. Smith, and A. Naguib, From theory topractice-an overview of MIMO space-time coded wireless systems, IEEE Journalon Selected Areas in Communications,2003,21(3):281–302.
    [23] A. Stefanov and E. Erkip, Cooperative space-time coding for wireless networks, in:Proc. IEEE Information Theory Workshop,2003, Paris, Franc,50–53.
    [24] G. J. Foschini, D. Chizhik, M. J. Gans, C. Papadians, and R. A. Valenzuela, Analysisand performance of some basic space–time architectures, IEEE Journal on SelectedAreas in Communications,2003,21(3):303–320.
    [25] G. Kramer, M. Gastpar, and P. Gupta, Cooperative strategies and capacity theo-rems for relay networks, IEEE Trans. Inform. Theory,2005,51(9):3037–3063.
    [26] A. E. Gamal and S. Zahedi, Capacity of a class of relay channels with orthogonalcomponents, IEEE Trans. Inform. Theory,2005,51(5):1815–1817.
    [27] T. M. Cover, Capacity of a class of deterministic relay channels, in: Proc. IEEEInternational Symposium on Information Theory,2007, Nice, France,24–29.
    [28] J. Jiang, A. Goldsmith, and S. Cui, Achievable rates and capacity for gaussianrelay channels with correlated noises, in: Proc. IEEE International Symposium onInformation Theory,2009, Seoul, Korea,179–183.
    [29] H. Sato, Information Transmission Through A Channel with Relay, The AlohaSystem, University of Hawaii,1976.
    [30] Z. Zhang, Partial converse for a relay channel, IEEE Trans. Inform. Theory,1988,34(5):1106–1110.
    [31] C. M. Zeng, F. Kuhlmann, and A. Buzo, Achievability proof of some multiuserchannel coding theorems using backward decoding, IEEE Trans. Inform. Theory,1989,35(6):1160–1165.
    [32] J. A. Thomas, Feedback can at most double Gaussian multiple access channelcapacity, IEEE Trans. Inform. Theory,1987,33(5):711–716.
    [33] H. Shi, T. Asai, and H. Yoshino, Relaying schemes using matrix triangularizationfor MIMO wireless networks, IEEE Trans. Commun.,2007,55(9):1683–1688.
    [34] B. Wang, J. Zhang, and A. Host-Madsen, On the capacity of MIMO relay channels,IEEE Trans. Inform. Theory,2005,51(1):21–43.
    [35] T. Tang, C. B. Chae, and R. W. Heath, On achievable sum rates of a multiuserMIMO relay channel, in: Proc. IEEE International Symposium on InformationTheory,2006,1026–1030.
    [36] Y. Fan and J. Thompson, MIMO confgurations for relay channels: theory andpractice, IEEE Trans. Wireless Commun.,2007,6(5):1774–1786.
    [37] M. A. Khojastepour, Capacity bounds for MIMO shared relay channel with half-duplex constraint, in: Proc. IEEE International Symposium on Information The-ory,2008,1918–1922.
    [38] N. Ratnakar and G. Kramer, The multicast capacity of deterministic relay networkswith no interference, IEEE Trans. Inform. Theory,2006,52(6):2425–2432.
    [39] Y. Li, G. Song, and L. Wang, Analysis of the joint network LDPC codes overorthogonal multi-access relay channel, IEEE Commun. Lett.,2010,14(2):184–186.
    [40] J. Laneman, G. Wornell, and D. Tse, An efcient protocol for realizing coopera-tive diversity in wireless networks, in: Proc. IEEE International Symposium onInformation Theory,2001, Washington D C,294.
    [41] A. Sendonaris, E. Erkip, and B. Aazhang, User cooperation diversity. Part I. Systemdescription, IEEE Trans. Commun.,2003,51(11):1927–1938.
    [42] A. Sendonaris, E. Erkip, and B. Aazhang, User cooperation diversity. Part II.Implementation aspects and performance analysis, IEEE Trans. Commun.,2003,51(11):1939–1948.
    [43] J. Laneman, D. Tse, and G. Wornell, Cooperative diversity in wireless net-works: efcient protocols and outage behavior, IEEE Trans. Inform. Theory,2004,50(12):3062–3080.
    [44] A. Host-Madsen and J. Zhang, Capacity bounds and power allocation for wirelessrelay channels, IEEE Trans. Inform. Theory,2005,51(6):2020–2040.
    [45] H. Permuter, S. Shamai, and A. S. Baruch, Message and state cooperation in mul-tiple access channels, IEEE Trans. Inform. Theory,2011,57(10):6379–6396.
    [46] Z. Ding, K. K. Leung, D. L. Goeckel, and D. Towsley, Opportunistic relaying for se-crecy communications-cooperative jamming vs. relay chatting, IEEE Trans. Wire-less Commun.,2011,10(6):1725–1729.
    [47] Z. Liu, M. Uppal, V. Stankovic, and Z. Xiong, Compress-forward coding with BPSKmodulation for the half-duplex Gaussian relay channel, in: Proc. IEEE Interna-tional Symposium on Information Theory,2008,2395–2399.
    [48] J. Laneman and G. Wornell, Energy-efcient antenna sharing and relaying for wire-less networks, in: Proc. IEEE Wireless Communications and Networking Confer-nce,2000, Chicago,7–12.
    [49] T. Hunter and A. Nosratinia, Cooperation diversity through coding, in: Proc. IEEEInternational Symposium on Information Theory,2002, Laussane, Switzerland,220.
    [50] T. Hunter and A. Nosratinia, Performance analysis of coded cooperation diversity,in: Proc. IEEE International Conference on Communications,2003,2688–2692.
    [51] T. E. Hunter, Coded Cooperation: A New Framework for User Cooperation inWireless Networks, Texas: University of Texas at Dallias,2004.
    [52] T. Hunter and A. Nosratinia, Diversity through coded cooperation, IEEE Trans.Wireless Commun.,2006,5(2):283–289.
    [53] T. Hunter, S. Sanayei, and A. Nosratinia, Outage analysis of coded cooperation,IEEE Trans. Inform. Theory,2006,52(2):375–391.
    [54] B. Zhao and M. Valenti, Distributed turbo coded diversity for relay channel, Elec-tronics Letters,2003,39(10):786–787.
    [55] M. Janani, A. Hedayat, T. Hunter, and A. Nosratinia, Coded cooperation in wire-less communications: space-time transmission and iterative decoding, IEEE Trans.Signal Processing,2004,52(2):362–371.
    [56] J. Laneman and G. Wornell, Distributed space-time-coded protocols for exploit-ing cooperative diversity in wireless networks, IEEE Trans. Inform. Theory,2003,49(10):2415–2425.
    [57] Y. Jing and H. Jafarkhani, Using orthogonal and quasi-orthogonal designs in wire-less relay networks, IEEE Trans. Inform. Theory,2007,53(11):4106–4118.
    [58] L. H.-F. Francis, Constructions of DMT optimal vector codes for asynchronouscooperative networks using decode-and-forward protocols, IEEE Trans. WirelessCommun.,2010,9(7):2392–2400.
    [59] Y. Rong, Optimal linear non-regenerative multi-hop MIMO relays with MMSE-DFE receiver at the destination, IEEE Trans. Wireless Commun.,2010,9(7):2268–2279.
    [60] M. Feghhi and B. Abolhassani, Incremental redundancy cooperative coding usingcomplementary punctured convolutional codes with receive diversity in Nakagamifading environments, in: Proc. IEEE International Symposium on Telecommuni-cations,2008,765–769.
    [61] D. To and J. Choi, Convolutional codes in two-way relay networks with physical-layer network coding, IEEE Trans. Wireless Commun.,2010,9(9):2724–2729.
    [62] Y. Jing, Combination of MRC and distributed space-time coding in networks withmultiple-antenna relays, IEEE Trans. Wireless Commun.,2010,9(8):2550–2559.
    [63] Y. Zhang, G. Zheng, C. Ji, K.-K. Wong, D. Edwards, and T. Cui, Near-optimal jointantenna selection for amplify-and-forward relay networks, IEEE Trans. WirelessCommun.,2010,9(8):2401–2407.
    [64] X. Deng and A. Haimovich, Power allocation for cooperative relaying in wirelessnetworks, IEEE Commun. Lett.,2005,9(11):994–996.
    [65] K. Lee and A. Yener, Iterative power allocation algorithms foramplify/estimate/compress-and-forward multi-band relay channels, in: Proc.IEEE Conference on Information Sciences and Systems,2006,1318–1323.
    [66] Y. Tsai and L. C. Lin, Optimal power allocation for decode-and-forward cooperativediversity under an outage performance constraint, IEEE Commun. Lett.,2010,14(10):945–947.
    [67] D. Bharadia, G. Bansal, P. Kaligineedi, and V. K. Bhargava, Relay and powerallocation schemes for OFDM-based cognitive radio systems, IEEE Trans. WirelessCommun.,2011,10(9):2812–2817.
    [68] M. Elfturi, W. Hamouda, and A. Ghrayeb, Outage probability analysis of dis-tributed coded cooperation for relay channels, in: Proc. IEEE Symposium on Per-sonal, Indoor and Mobile Radio Communications,2007,1–5.
    [69] G. Zheng, Y. Zhang, C. Ji, and K. Wong, A stochastic optimization approach forjoint relay assignment and power allocation in orthogonal amplify-and-forward co-operative wireless networks, IEEE Trans. Wireless Commun.,2011,10(12):4091–4099.
    [70] X. Kang, Y.-C. Liang, and H. K. Garg, Fading cognitive multiple access chan-nels: outage capacity regions and optimal power allocation, IEEE Trans. WirelessCommun.,2010,9(7):2382–2391.
    [71] G. Zhang, H. Zhang, L. Zhao, W. Wang, and L. Cong, Fair resource sharing forcooperative relay networks using nash bargaining solutions, IEEE Commun. Lett.,2009,13(6):381–383.
    [72] H. Ju, E. Oh, and D. Hong, Improving efciency of resource usage in two-hop fullduplex relay systems based on resource sharing and interference cancellation, IEEETrans. Wireless Commun.,2009,8(8):3933–3938.
    [73] Y. Li, B. Vucetic, Z. Zhou, and M. Dohler, Distributed adaptive power allocationfor wireless relay networks, IEEE Trans. Wireless Commun.,2007,6(3):948–958.
    [74] T. Riihonen, S. Werner, and R. Wichman, Hybrid full-duplex half-duplex re-laying with transmit power adaptation, IEEE Trans. Wireless Commun.,2011,10(9):3074–3085.
    [75] H. Zhao and W. Su, Cooperative wireless multicast: performance analysis andpower/location optimization, IEEE Trans. Wireless Commun.,2010,9(6):2088–2100.
    [76] E. C. Peh, Y. C. Liang, Y. L. Guan, and Y. H. Zeng, Power control in cogni-tive radios under cooperative and non-cooperative spectrum sensing, IEEE Trans.Wireless Commun.,2011,10(12):4238–4248.
    [77] Y. Yang, J. Ge, Y. Ji, and Y. Gao, Performance analysis and instantaneous powerallocation for two-way opportunistic amplify-andforward relaying, Institution ofEngineering and Technology,2011,5(10):1430–1439.
    [78] L. Li, X. Zhou, H. Xu, G. Y. Li, D. Wang, and A. Soong, Simplifed relay selectionand power allocation in cooperative cognitive radio systems, IEEE Trans. WirelessCommun.,2011,10(1):33–36.
    [79] Y. Yang, J. Ge, and Y. Gao, Power allocation for two-way opportunistic amplify-and-forward relaying over Nakagami-m channels, IEEE Trans. Wireless Commun.,2011,10(7):2063–2068.
    [80] L. Dai, W. Chen, L. Cimini, and K. Letaief, Fairness improves throughput in energy-constrained cooperative Ad-Hoc networks, IEEE Trans. Wireless Commun.,2009,8(7):3679–3691.
    [81] Z. Yan, X. Zhang, and W. Wang, Exact outage performance of cognitive re-lay networks with maximum transmit power limits, IEEE Commun. Lett.,2011,15(12):1317–1319.
    [82] Y. Zhang, Y. Ma, and R. Tafazolli, Power allocation for bidirectional AF relayingover rayleigh fading channels, IEEE Commun. Lett.,2010,14(2):145–147.
    [83] C. Zhao and K. Kwak, Joint sensing time and power allocation in cooperativelycognitive networks, IEEE Commun. Lett.,2010,14(2):163–165.
    [84] L. Sun and M. R. Mckay, Opportunistic relaying for MIMO wireless communication:relay selection and capacity scaling laws, IEEE Trans. Wireless Commun.,2011,10(6):1786–1797.
    [85] Y. Zou, B. Zheng, and W.-P. Zhu, An opportunistic cooperation scheme and itsBER analysis, IEEE Trans. Wireless Commun.,2009,8(9):4492–4497.
    [86] D. Costa and S. Aissa, Amplify-and-forward relaying in channel-noise-assisted co-operative networks with relay selection, IEEE Commun. Lett.,2010,14(7):608–610.
    [87] I. H. Lee and D. Kim, Outage performance of opportunistic cooperation in amplify-and-forward relaying systems with relay selection, IEEE Commun. Lett.,2012,16(2):224–227.
    [88] E. Beres and R. Adve, Optimal relay-subset selection and time-allocation in decode-and-forward cooperative networks, in: Proc. IEEE Global TelecommunicationsConference,2009,1–6.
    [89] S. Lee, M. Han, and D. Hong, Average SNR and ergodic capacity analysis foropportunistic DFrelaying with outage over rayleigh fading channels, IEEE Trans.Wireless Commun.,2009,8(6):2807–2812.
    [90] F. Ke, S. Feng, and H. Zhuang, Relay selection and power allocation for cooperativenetwork based on energy pricing, IEEE Commun. Lett.,2010,14(5):396–398.
    [91] Y. Zou, B. Zheng, and J. Zhu, Outage analysis of opportunistic cooperation overrayleigh fading channels, IEEE Trans. Wireless Commun.,2009,8(6):3077–3085.
    [92] Y. Xu, P. Wu, L. Ding, and L. Shen, Capacity analysis of selection cooperation inwireless ad-hoc networks, IEEE Commun. Lett.,2011,15(11):1212–1214.
    [93] B. G. Choi, S. J. Bae, K. Cheon, A. S. Park, and M. Y. Chung, Relay selection andresource allocation schemes for efective utilization of relay zones in relay-basedcellular networks, IEEE Commun. Lett.,2011,15(4):407–409.
    [94] Z. Hadzi-Velkov and N. Zlatanov, Outage rates and outage durations of opportunis-tic relaying systems, IEEE Commun. Lett.,2010,14(2):148–150.
    [95] D. Chiarotto, O. Simeone, and M. Zorzi, Spectrum leasing via cooperative oppor-tunistic routing techniques, IEEE Trans. Wireless Commun.,2011,10(9):2960–2970.
    [96] S. A. Hassan and M. A. Ingram, The beneft of co-locating groups of nodes incooperative line networks, IEEE Commun. Lett.,2012,16(2):234–237.
    [97] S. Lee, W. Su, S. Batalama, and J. Matyjas, Cooperative decode-and-forward ARQrelaying: performance analysis and power optimization, IEEE Trans. WirelessCommun.,2010,9(8):2632–2642.
    [98] S. Dehnie and S. Tomasin, Detection of selfsh nodes in networks using CoopMACprotocol with ARQ, IEEE Trans. Wireless Commun.,2010,9(7):2328–2337.
    [99] W. L. C. F. Shih and H. L. Chao, Joint routing and spectrum allocation for multi-hop cognitive radio networks with route robustness consideration, IEEE Trans.Wireless Commun.,2011,10(9):2940–2949.
    [100] Z. Zhang and T. Duman, Capacity-approaching turbo coding and iterative decodingfor relay channels, IEEE Trans. Commun.,2005,53(11):1895–1905.
    [101] K. Ishibashi, K. Ishii, and H. Ochiai, Design of adaptive coded cooperation usingrate compatible Turbo codes, in: Proc. IEEE Vehicular Technology ConferenceFall,2009,1–5.
    [102] Y. Cao and B. Vojcic, Cooperative coding using serial concatenated convolutionalcodes, in: Proc. IEEE Wireless Communications and Networking Conference,2005,1001–1006.
    [103] H. Wen, L. Zhou, and Z. Zhang, Cooperative coding using parallel concatenatedLDPC codes, in: Proc. IEEE Information Theory Workshop,2006,395–398.
    [104] J. Hu and T. Duman, Low density parity check codes over half-duplex relay chan-nels, in: Proc. IEEE International Symposium on Information Theory,2006, Seat-tle, USA,972–976.
    [105] C. Li, M. Khojastepour, G. Yue, X. Wang, and M. Madihian, LDPC code design forhalf-duplex relay networks, in: Proc. IEEE International Conference on Acoustics,Speech and Signal Processing,2007,873–876.
    [106] C. Li, G. Yue, M. Khojastepour, X. Wang, and M. Madihian, LDPC-coded cooper-ative relay systems: performance analysis and code design, IEEE Trans. Commun.,2008,56(3):485–496.
    [107] J. Hu and T. Duman, Low density parity check codes over wireless relay channels,IEEE Trans. Wireless Commun.,2007,6(9):3384–3394.
    [108] P. Razaghi and W. Yu, Bilayer low-density parity-check codes for decode-and-forward in relay channels, IEEE Trans. Inform. Theory,2007,53(10):3723–3739.
    [109] R. G. Gallager, Low-Density Parity-check Codes, MA: MIT Press, Cambridge,1963.
    [110] M. C. Davey and D. J. C. MacKay, Low density parity check codes overGF(q),IEEE Commun. Lett.,1998,2(6):165–167.
    [111] L. Barnault and D. Declercq, Fast decoding algorithm forLDPCover GF(2q), in:Proc. IEEE Information Theory Workshop,2003, Paris, Franc,70–73.
    [112] D. Declercq and M. Fossorier, Decoding algorithms for nonbinaryLDPCcodes overGF(q), IEEE Trans. Commun.,2007,55(4):633–643.
    [113] L. Zeng, L. Lan, Y. Tai, and S. Lin, Dispersed reed-solomon codes for iterativedecoding and construction of q-ary LDPC codes, in: Proc. IEEE Global Telecom-munications Conference,2005, vol.3,1193–1198.
    [114] S. Lin, S. Song, Y. Y. Tai, L. Lan, and L. Zeng, Algebraic constructions of nonbinaryquasi-cyclic LDPC codes, in: Proc. IEEE International Conference on Communi-cations, Circuits and Systems Proceedings,2006,1303–1308.
    [115] Y. Li, G. Song, and L. Wang, Design of joint network-low density parity check codesbased on the EXIT charts, IEEE Commun. Lett.,2009,13(8):600–602.
    [116] C. Hausl and J. Hagenauer, Relay communication with hierarchical modulation,IEEE Commun. Lett.,2007,11(1):64–66.
    [117] K. Zheng, L. Wang, and W. Wang, Performance analysis of coded cooperation withhierarchical modulation, in: Proc. IEEE International Conference on Communica-tions,2008, Beijing,4978–4982.
    [118] Y. Li, B. Vucetic, T. Wong, and M. Dohler, Distributed turbo coding with softinformation relaying in multihop relay networks, IEEE Journal on Selected Areasin Communications,2006,24(11):2040–2050.
    [119] M. Elfturi, W. Hamouda, and A. Ghrayeb, Distributed coded cooperation for relaychannels operating in the decode-and-forward mode, in: Proc. IEEE InternationalConference on Communications,2008, Beijing,4586–4590.
    [120] A. Bin Sediq and H. Yanikomeroglu, Performance analysis of soft-bit maximal ratiocombining in cooperative relay networks, IEEE Trans. Wireless Commun.,2009,8(10):4934–4939.
    [121] J. L. Rebelatto, B. F. Filho, Y. H. Li, and B. Vucetic, Adaptive distributed network-channel coding, IEEE Trans. Wireless Commun.,2011,10(9):2818–2822.
    [122] B. Hochwald, C. Peel, and A. Swindlehurst, A vector-perturbation technique fornear-capacity multiantenna multiuser communication-part II: perturbation, IEEETrans. Commun.,2005,53(3):537–544.
    [123] H. Sneessens, J. Louveaux, and L. Vandendorpe, Turbo-coded decode-and-forwardstrategy resilient to relay errors, in: Proc. IEEE International Conference on Acous-tic, Speech and Signal Processes,2008,3213–3216.
    [124] M. Taherzadeh, A. Mobasher, and A. Khandani, Communication over MIMObroadcast channels using lattice-basis reduction, IEEE Trans. Inform. Theory,2007,53(12):4567–4582.
    [125] N. Fawaz, D. Gesbert, and M. Debbah, When network coding and dirty papercoding meet in a cooperative ad hoc network, IEEE Trans. Wireless Commun.,2008,7(5):1862–1867.
    [126] T. Yang and J. Yuan, Performance of cooperative spatial-interleaved superposi-tion modulation in fading multiple-access channels, in: Proc. IEEE InternationalConference on Communications,2008, Beijing,891–895.
    [127] S. Kaimalettu, A. Thangaraj, M. Bloch, and S. W. McLaughlin, Constellation shap-ing using LDPC codes, in: Proc. IEEE International Symposium on InformationTheory,2007, Nice, France,2366–2370.
    [128] Y. Peng and D. Rajan, Capacity bounds of half-duplex gaussian cooperative inter-ference channel, in: Proc. IEEE International Symposium on Information Theory,2009, Seoul, Korea,2081–2085.
    [129] Y. Sun, M. Uppal, A. Liveris, S. Cheng, V. Stankovic, and Z. Xiong, Nested turbocodes for the costa problem, IEEE Trans. Commun.,2008,56(3):388–399.
    [130] E. Larsson and B. Vojcic, Cooperative transmit diversity based on superpositionmodulation, IEEE Commun. Lett.,2005,9(9):778–780.
    [131] T. Yang and J. Yuan, Performance of iterative decoding for superpositionmodulation-based cooperative transmission, IEEE Trans. Wireless Commun.,2010,9(1):51–59.
    [132] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, Network information fow, IEEETrans. Inform. Theory,2000,46(4):1204–1216.
    [133] N. Cai and R. Yeung, Network coding and error correction, in: Proc. IEEE Infor-mation Theory Workshop,2002, Bangalore, India,119–122.
    [134]王新梅,肖国镇,纠错码-原理与方法(修订版),西安:西安电子科技大学出版社,2001.
    [135] K. Chi and X. Wang, Analysis of network error correction based on network coding,IEE Proceedings Communications,2005,152(4):393–396.
    [136] S.-Y. Li, R. Yeung, and N. Cai, Linear network coding, IEEE Trans. Inform. Theory,2003,49(2):371–381.
    [137] S.-Y. Li, N. Cai, and R. Yeung, On theory of linear network coding, in: Proc. IEEEInternational Symposium on Information Theory,2005,273–277.
    [138] T. Ho, M. Medard, R. Koetter, D. Karger, M. Efros, J. Shi, and B. Leong, A randomlinear network coding approach to multicast, IEEE Trans. Inform. Theory,2006,52(10):4413–4430.
    [139] R. Koetter and M. Medard, An algebraic approach to network coding, IEEE/ACMTransactions on Networking,2003,11(5):782–795.
    [140] P. Sanders, S. Egner, and L. Tolhuizen, Polynomial time algorithms for networkinformation fow, in: Proc. IEEE Symposium on Parallel Algorithms and Architec-tures,2003,286–294.
    [141] S. Jaggi, P. Sanders, P. Chou, M. Efros, S. Egner, K. Jain, and L. Tolhuizen, Polyno-mial time algorithms for multicast network code construction, IEEE Trans. Inform.Theory,2005,51(6):1973–1982.
    [142] T. Ho, R. Koetter, M. Medard, D. Karger, and M. Efros, The benefts of codingover routing in a randomized setting, in: Proc. IEEE International Symposium onInformation Theory,2003,442.
    [143] R. W. Yeung, Information Theory and Network Coding, New York: Springer,2008.
    [144] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft, XORs in theair: practical wireless network coding, IEEE/ACM Transactions on Networking,2008,16(3):497–510.
    [145] S. Yang and R. Koetter, Network coding over a noisy relay: a belief propagationapproach, in: Proc. IEEE International Symposium on Information Theory,2007,Nice, France,801–804.
    [146] Y. Chen, S. Kishore, and J. Li, Wireless diversity through network coding, in: Proc.IEEE Wireless Communications and Networking Conference,2006,1681–1688.
    [147] L. Xiao, T. Fuja, J. Kliewer, and D. Costello, A network coding approach to coop-erative diversity, IEEE Trans. Inform. Theory,2007,53(10):3714–3722.
    [148] Z. Li, Q. Luo, and W. Featherstone, N-in-1retransmission with network coding,IEEE Trans. Wireless Commun.,2010,9(9):2689–2694.
    [149] T. Wang and G. Giannakis, Complex feld network coding for multiuser coopera-tive communications, IEEE Journal on Selected Areas in Communications,2008,26(3):561–571.
    [150] C. Hausl and P. Dupraz, Joint network-channel coding for the multiple-access relaychannel, in: Proc. IEEE International Conference on Sensor and Ad Hoc Commu-nications and Networks,2006,817–822.
    [151] S. Johnson and C. Kellett, Joint network and channel coding for cooperative net-works, in: Proc. IEEE Telecommunication Networks and Applications Conference,2007, Australasian,435–440.
    [152] C. Hausl and J. Hagenauer, Iterative network and channel decoding for the two-wayrelay channel, in: Proc. IEEE International Conference on Communications,2006,vol.4,1568–1573.
    [153] S. Zhang, Y. Zhu, S.-C. Liew, and K. B. Letaief, Joint design of network coding andchannel decoding for wireless networks, in: Proc. IEEE Wireless Communicationsand Networking Conference,2007,780–785.
    [154] X. Xu, M. Flanagan, N. Goertz, and J. Thompson, Joint channel and network cod-ing for cooperative diversity in a shared-relay environment, IEEE Trans. WirelessCommun.,2010,9(8):2420–2423.
    [155] R. H. Y. Louie, Y. H. Li, and B. Vucetic, Practical physical layer network codingfor two-way relay channels performance analysis and comparison, IEEE Trans.Wireless Commun.,2010,9(2):764–777.
    [156] H. J. Yang, Y. Choi, and J. Chun, Modifed high-order PAMs for binary codedphysical-layer network coding, IEEE Commun. Lett.,2010,14(8):689–691.
    [157] T.-W. Yune, D. Kim, and G.-H. Im, Opportunistic network-coded cooperativetransmission with demodulate-and-forward protocol in wireless channels, IEEETrans. Commun.,2011,59(7):1791–1795.
    [158] X. Bao and J. Li, A unifed channel-cetwork coding treatment for user cooperationin wireless ad-hoc networks, in: Proc. IEEE International Symposium on Informa-tion Theory,2006, Seattle, USA,202–206.
    [159] X. Bao and J. Li, Generalized adaptive network coded cooperation (GANCC): aunifed framework for network coding and channel coding, IEEE Trans. Commun.,2011,59(11):2934–2938.
    [160] O. Ordentlich, J. Zhan, U. Erez, M. Gastpar, and B. Nazer, Practical code design forcomputer-and-forward, in: Proc. IEEE International Symposium on InformationTheory,2011,1941–1945.
    [161] Y. Li and B. Vucetic, On the performance of a simple adaptive relaying protocolfor wireless relay networks, in: Proc. IEEE Vehicular Technology Conference Fall,2008, Singapore,2400–2405
    [162] J. Zheng and M. Ma, A utility-based joint power and rate adaptive algorithm inwireless ad hoc networks, IEEE Trans. Commun.,2009,57(1):134–140.
    [163] M. Luby, LT codes, in: Proc. IEEE Symposium on Foundations of Computer Sci-ence,2002, BC, Canada,271–280.
    [164] A. Shokrollahi, Raptor codes, IEEE Trans. Inform. Theory,2006,52(6):2551–2567.
    [165] C. Ng and A. Goldsmith, Transmitter cooperation in ad-hoc wireless networks: doesdirty-paper coding beat relaying?, in: Proc. IEEE Information Theory Workshop,2004,277–282.
    [166] J. H. Wui and D. Kim, Optimal power allocation between unicast and multicastmessages in wireless relay-multicasting networks using superposition coding, IEEECommun. Lett.,2011,15(11):1159–1161.
    [167] K. Shum and C. W. Sung, Transmitter cooperation by recycling dirty paper,in: Proc. IEEE International Symposium on Information Theory,2008, Toronto,Canada,777–781.
    [168] C. K. Sung and I. Collings, Multiuser cooperative multiplexing with interferencesuppression in wireless relay networks, IEEE Trans. Wireless Commun.,2010,9(8):2528–2538.
    [169] P. Viswanath, D. Tse, and R. Laroia, Opportunistic beamforming using dumb an-tennas, in: Proc. IEEE International Symposium on Information Theory,2002,449.
    [170] J. Liu and X. Cai, Cooperative communication using complementary puncturedconvolutional (CPC) codes over wireless fading channels, in: Proc. IEEE WirelessCommunications and Networking Conference,2008,1290–1293.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700