用户名: 密码: 验证码:
非正交多址中继信道复数域网络编码系统性能分析与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多址中继信道是指两个或两个以上的源节点在一个或多个中继节点的帮助下与目的节点进行通信,是蜂窝通信系统上行链路协作中继传输的一种典型模型。根据源节点的传输方式,可分为正交多址中继信道和非正交多址中继信道。相比正交多址中继信道,非正交多址中继信道有较高的吞吐率。复数域网络编码(CFNC)是指多个用户信息在复数域上进行网络编码,利用“和信号”的星座空间来区分用户,接收端则采用最大似然检测算法识别不同用户信号。采用非正交多址中继信道的CFNC系统可以进一步提高非正交多址中继信道的吞吐率。然而,已有研究很少涉及非正交多址中继信道CFNC系统的CFNC编码系数设计、中继转发策略、功率分配优化和编码增益分析,这些问题就是本论文的主要研究内容。
     首先,针对非正交多址接入CFNC系统,通过分析瞬时和统计的误符号概率(SEP)上界,优化设计了源节点和中继节点的CFNC编码系数,这里得到的优化算法适用于任意用户个数的情况。根据提出的中继节点优化CFNC编码系数设计方法,获得了一批优化的CFNC编码系数。研究表明,利用优化后的中继节点CFNC系数,可以避免网络编码后的信号星座的重叠现象,大幅度提高了系统的SEP性能。此外,论文还提出了自适应和非自适应源节点CFNC编码系数优化算法。优化的自适应源节点CFNC系数能提高系统瞬时的SEP性能,进而改善整个系统的平均SEP性能;而优化的非自适应源节点CFNC系数能在多址接入信道相关性较高的情况下,提高系统的SEP性能。
     接着,通过分析基于第K个最优中继选择(KBS)的非正交多址接入CFNC系统(N个源节点、M个中继节点和1个目的节点)的SEP上界,得到了KBS-CFNC系统的分集度、编码增益和功率优化算法。理论研究表明:KBS-CFNC系统的分集度为M-K+2,当K=1时达到满分集M+1;在保证分集度前提下,优化功率分配因子能极大地改进KBS-CFNC系统的SEP性能。优化的功率算法表明:当源-中继链路的性能差于中继-目的链路时,源节点应该分配更多的功率资源以便至少满足有一个中继节点被成功选择;随着源-中继链路性能的提高(增大M值或提高源-中继链路信噪比),更多的功率资源应该分配给中继节点以便提高中继-目的链路的性能;中继节点个数M给定时,随着K值的增加,更多的功率资源应该分配给源节点,使得第K个最优中继节点被成功选择的概率增加。
     然后,基于自适应译码转发中继,深入地理论分析了三种典型的并行多中继(PR)CFNC系统的SEP性能上界、分集度和编码增益。研究表明:在目的节点没有整个网络的CSI而仅有单跳链路的CSI时,自适应译码转发中继能避免中继节点的错误传播现象;对于Ⅰ型PR-CFNC系统,在2M个时刻内发送NM符号,其吞吐率为1/2sym/S/CU;对Ⅱ型PR-CFNC系统,在2个时刻发送N个符号,吞吐率为1/2sym/S/CU;对Ⅲ型PR-CFNC系统,在M+1个时刻发送了N个符号,吞吐率为1/(M+1) sym/S/CU。此外,Ⅰ型和Ⅲ型PR-CFNC系统能达到满分集度M+1,而Ⅱ型PR-CFNC系统分集度为2;从复杂度比较,Ⅰ型系统复杂度最高,其次是Ⅱ型系统,最低的是Ⅲ型系统;从中高信噪比的误符号性能比较,Ⅲ型系统的误符号性能最优,其次是Ⅰ型系统,最低的是Ⅱ型系统。
     通过最小化SEP性能上界,对Ⅲ型PR-CFNC系统的功率分配进行了优化研究。理论和仿真结果表明:在保证分集度的前提下,优化功率分配因子能改进Ⅲ型PR-CFNC系统的SEP性能。优化功率算法表明:随着源-中继链路性能的改善(增大M、提高源-中继链路信噪比、减小源节点的个数或者降低源的调制阶数等),应该减小源节点发射功率,将更多的功率资源分配给中继节点以便提高中继-目的链路的性能,从而提高系统的SEP性能。其次,通过引入信道编码机制,研究了非正交多址接入CFNC系统性能。在源节点和中继节点引入基于软输入软输出译码算法的信道编码,分别给出了中继节点和目的节点的迭代译码结构以及相应的最大后验概率算法(Max-Log-MAP)迭代译码算法。由于在译码结构中采用了多用户的迭代译码算法,本文研究的软输入软输出迭代译码器不是针对单个用户,而是面向整个网络,可以纠正多条链路的信息传输错误,提高系统的可靠性。最后,研究了多址接入中继信道的导频符号设计方案,重点给出了间隔放置导频符号的方法,包括放置的起始位置p和放置的间隔s。通过Cramer-Rao下界分析,得知导频位置p不会影响系统频偏估计性能,而间隔s的增加则能提高系统频偏估计的准确性,由此产生的频偏估计增益称为“放置增益”。接着,论文通过uMMV算法得出了相应的有效信噪比,并揭示了获得“放置增益”的原因是由于间隔放置导频改变了频偏估计值的有效信噪比,有效信噪比越大,则频偏估计的误差越小。理论和仿真分析表明:信道变化越快则系统频偏估计误差越大;系统信噪比越大、导频符号越多则系统频偏估计误差越小,但相比传统的导频符号前置的方法,本文给出的ES放置方法能节省导频符号个数和导频符号发送能量。
The multiple-access relay channel (MARC) represents a typical scenario of cooperative transmissions for uplink cellular networks wherein multiple sources deliver their messages to one common destination with the assistance of one or multiple relays. There are two main MARC schemes based on the source information transmission mode, i.e. orthogonal and non-orthogonal MARC, where the non-orthogonal MARC can attain higher throughput than that of orthogonal one. Complex field network coding (CFNC) uses operations over complex fields and distinguishes the signals by the constellation space of the "summed signal". At the receiver, the received signal is decoded by maximum likelihood detection algorithm. Moreover, the CFNC system with non-orthogonal MARC further improves the throughput. However, existing works have ignored the design of CFNC coding coefficients, relay forwarding strategies, power allocation and coding gain analysis, which are essential to the system design in uplink cellular networks, thus the main focus of this thesis.
     Firstly, by analyzing the instantaneous and statistical symbol error probability (SEP) upper bound for the CFNC system with non-orthogonal MARC, the optimal CFNC coding coefficients at the source and relay nodes are presented for arbitrary number of source nodes, together with some specific optimal CFNC coding coefficients. The results unveil that the optimal CFNC coding coefficients at the relay nodes greatly improve the SEP performance by eliminating the superposition of signals. Besides, adaptive and non-adaptive optimization algorithms for CFNC coding coefficients design at the source nodes are proposed. Adaptive optimized CFNC coding coefficients at the source nodes improve the instantaneous SEP performance and hence improve the average SEP performance. Non-adaptive optimized CFNC coding coefficients at the source nodes improve the SEP performance at higher correlated multiple-access channels.
     Secondly, for non-orthogonal MARC, the SEP upper bound of the CFNC system with K-th optimal relay selection (KBS-CFNC) is analyzed, which consists of N source nodes, M relay nodes and a destination, then the diversity order, coding gain and optimal power allocation algorithms are obtained. The theoretical results show that the diversity order of KBS-CFNC is M-K+2and full diversity M+1can be achieved when K=1. The optimal power allocation can greatly improve the SEP performance of KBS-CFNC. The optimal power allocation allocates more power to the link with worse quality. When the soruce-relay link is worse than the relay-destination link, more power is allocated to the sources such that at least one of the relays could be successfully chosen. As the quality of relay link is improved (improve M or the source-relay quality), more power should be allocated to the relays such as to improve the relay-destination link. Moreover, more power should be allocated to the source nodes as K increases, such as to improve the success choosing probability of the optimal relay node given the number of relays M.
     Thirdly, based on the adaptive decode-and forward (SDF) relay strategy, the SEP upper bound, diversity order and coding gain of three canonical CFNC systems with parallel relay (PR-CFNC) are analyzed. SDF relay strategy can avoid error propagation when the destination owns only single-hop channel side information (CSI). For the type-Ⅰ with PR-CFNC scheme, the throughput is1/2sym/S/CU since NM symbols are transmitted in2M time slots. For the type-Ⅱ with PR-CFNC scheme, the throughput is1/2sym/S/CU since N symbols are transmitted in2time slots. For the type-Ⅲ with PR-CFNC scheme, the throughput is1/(M+1) sym/S/CU since N symbols are transmitted in M+1time slots. Furthermore, type-Ⅰ and type-Ⅲ can achieve full diversity order M+1while type-Ⅱ achieves diversity order2. The implementation complexity of the three PR-CFNC schemes decreases from type-Ⅰ, type-Ⅱ to type-Ⅲ. The SEP performance of type-Ⅲ is the best among the three PR-CFNC schemes, and type-Ⅰ is worse than type-Ⅲ but better than type-Ⅱ.
     The optimal power allocation of type-Ⅲ with PR-CFNC scheme is analyzed by minimizing the SEP upper bound. Both the theoretical and simulated results show that the optimal power allocation can improve the SEP performance. In the optimal allocation, in order to improve the SEP performance of type-Ⅲ with PR-CFNC scheme, more power should be allocated to the relays when the quality source-relay channel is improved (M or the source-relay quality is increased, N is decreased, or the modulation level at the source nodes is decreased).
     Fourthly, the CFNC scheme with channel coding for the non-orthogonal MARC is studied. Channel coding with soft-in soft-out (SISO) decoding is equipped at the source and relay nodes, the iterative decoding structure and the corresponding Max-Log-MAP iterative decoding algorithm are developed. Note that the SISO iterative decoder is applicable for the whole network and multiple transmission error from different links can be corrected.
     Finally, pilot design for multiple-access relay channel is studied and the pilot symbol placement including the start point and the interval is provided. By analyzing the Cramer-Rao lower bound, we show that the selection of start point will not affect the estimation of frequency offset, and increasing the interval will increase the accuracy of frequency offset estimation. The gain over frequency offset estimation by increasing the interval is named as "placement gain". Then the effective SNR is obtained by uMMV algorithm and it is shown that the "placement gain" comes from the increase of the effective SNR, the higher the effective SNR, the smaller the estimation error. Both the theoretical analysis and simulations show that the faster the channel varying, the higher the mean square error (MSE); the higher the SNR and the smaller the number of pilot symbols, then the smaller the MSE. Moreover, the proposed equally space placement method can reduce the number of pilot symbols and hence save the energy for transmitting the pilot symbols.
引文
[1]D. N. C. Tse and P. Viswanath. Fundamentals of wireless communications. Cambridge Univ,2005:10-40.
    [2]M. K. Simon and M.-S. Alouini. Digital communication over fading channels.2th ed. John Wiley & Sons,2005:15-28.
    [3]A. Sendonaris, E. Erkip, and B. Aazhang. User cooperation diversity-part Ⅰ, Ⅱ. IEEE Transactions on Communications.2003,51(11):1927-1948.
    [4]K. J. R. Liu, A. K. Sadek, W. Su, and A. Kwasinski. Cooperative communications and networking. New York:Cambridge University Press,2009:117-150.
    [5]A. Nosratinia, T. E. Hunter, and A. Hedayat. Cooperative communication in wireless networks. IEEE Communications Magazine.2004,42(10):74-80.
    [6]J. Laneman, D. Tse, and G. Wornell. Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Transactions on Information Theory. 2004,50(12):3062-3080.
    [7]C. Li, X. Wang, L. Yang, and W.-P. Zhu. A joint source and relay power allocation scheme for a class of MIMO relay systems. IEEE Transactions on Signal Processing. 2009,57(12):4852-4860.
    [8]M. Hasna and M.-S. Alouini. End-to-end performance of transmission systems with relays over Rayleigh-fading channels. IEEE Transactions on Wireless Communications. 2003,2(6):1126-1131.
    [9]M. Hasna and M.-S. Alouini. Harmonic mean and end-to-end performance of transmission systems with relays. IEEE Transactions on Communications.2004,52(1): 130-135.
    [10]D. B. da Costa and M. D. Yacoub. Dual-hop transmissions with semiblind relays over Nakagami-m fading channels. IET Electronics Letters.2008,44(3):214-216.
    [11]B. Maham and A. Hjorungnes. Asymptotic performance analysis of amplify-and-forward cooperative networks in a Nakagami-m fading environment. IEEE Communications Letters.2009,13(5):300-302.
    [12]I. Krikidis, J. Thompson, S. McLaughlin and N. Goertz. Amplify-and-forward with partial relay selection. IEEE Communications Letters.2008,12(4):235-237.
    [13]A. Nasri, R. Schober and M, Uysal. Error rate performance of network-coded cooperative diversity systems. Global Telecommunications Conference, Florida, USA, 2010. IEEE,2010:1-6.
    [14]T.-W. Yune, D. Kim and G.-H. Im. Opportunistic network-coded cooperative transmission with demodulate-and-forward protocol in wireless channels. IEEE Transactions on Communications.2011,59(7):1791-1795.
    [15]A. Cano, T. Wang, A. Ribeiro and G. B. Giannakis. Link-daptive distributed coding for multisource. EURASIP Journal on Advances in Signal Processing.2008:1-12.
    [16]C. Peng, Q. Zhang, M. Zhao, Y. Yao and W. Jia. On the performance analysis of network-coded cooperation in wireless networks. IEEE Transactions on Information Theory.2008,7(8):3090-3097.
    [17]M. Xiao and M. Skoglund. Multiple-user cooperative communications based on linear network coding. IEEE Transactions on Communications.2010,58(2):3345-3352.
    [18]G. Li, A. Cano, J. Gomez-Vilardebo, G.B. Giannakis and A.I. Perez-Neira. High-throughput multi-source cooperation via complex-field network coding. IEEE Transactions on Wireless Communications.2011,10(5):1606-1617.
    [19]U. R. Nabar, H. Bolcskei and W. F. Kneubuhler. Fading relay channels:performance limits and space-time signal design. IEEE Journal on Selected Areas in Communications. 2004,22(6):1099-1109.
    [20]J. Boyer, D. D. Falconer, and H. Yanikomeroglu. Multihop diversity in wireless relaying channels. IEEE Transactions on Communications.2004,52(10):1820-1830.
    [21]G. Farhadi and N. C. Beaulieu. On the ergodic capacity of multi-hop wireless relaying systems. IEEE Transactions on Wireless Communications.2009,8(5):2286-2291.
    [22]S. Zhang, S. C. Liew and P. Lam. Physical-layer network coding. Mobile computing and networking, New York, USA,2006. ACM,2006:358-365.
    [23]S. Zhang, S. C. Liew and L. Lu. Physical layer network coding schemes over finite and infinite fields. Global Telecommunications Conference, New Orleans, USA,2008. IEEE,2008:1-6.
    [24]S. Katti, S. Gollakota and D. Katabi. Embracing wireless interference:Analog network coding. Applications, technologies, architectures, and protocols for computer communications, Kyoto, Japan,2007. ACM,2007:397-408.
    [25]S. J. Kim, P. Mitran and V. Tarokh. Performance bounds for bidirectional coded cooperation protocols. IEEE Transactions on Information Theory.2008,54(11): 5235-5241.
    [26]J. N. Laneman and G. W. Wornell. Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transactions on Information Theory. 2003,49(10):2415-2425.
    [27]L. Sun, T. Zhang, L. Lu and H. Niu. On the combination of cooperative diversity and multiuser diversity in multi-source multi-relay wireless networks. IEEE Signal Processing Letters.2010,17(6):535-538.
    [28]H. Ding, J. Ge, D. Benevides da Costa and Z. Jiang. A new efficient low-complexity scheme for multi-source multi-relay cooperative networks. IEEE Transactions on Vehicular Technology.2011,60(2):716-722.
    [29]F. Chen, W. Su, S. Batalama and J. Matyjas. Joint power optimization for multi-source multi-destination relay networks. IEEE Transactions on Signal Processing.2011,59(5): 2370-2381.
    [30]V. Havary-Nassab, S. Shahbazpanahi, A. Grami and Z. Q. Luo. Distributed beamforming for relay networks based on second-order statistics of the channel state information. IEEE Transactions on Signal Processing.2008,56(9):4306-4316.
    [31]Y. Jing and H. Jafarkhani. Network beamforming using relays with perfect channel information. IEEE Transactions on Information Theory.2009,55(6):2499-2517.
    [32]E. Koyuncu, Y. Jing and H. Jafarkhani. Beamforming in wireless relay networks with quantized feedback. IEEE Journal on Selected Areas Communications.2008,26(8): 1429-1439.
    [33]J. L. Rebelatto, B. F. Uchoa-Filho, Y. Li and B. Vucetic. Multi-user cooperative diversity through network coding based on classical coding theory. IEEE Transactions on Signal Processing.2012,60(2):916-926.
    [34]X. Guo and X.-G. Xia. A distributed space-time coding in asynchronous wireless relay network. IEEE Transactions on Wireless Communications.2008,7(5):1812-1816.
    [35]Z. Li and X.-G. Xia. A simple alamouti space time transmission scheme for asynchronous cooperative systems. IEEE Signal Processing Letters.2007,14(11): 804-807.
    [36]B. Zhang, K. Niu and Z. He. Relaying scheme based on IDMA for MIMO relay networks. Wireless Communications, Networking and Mobile Computing, Beijing, China,2009. IEEE,2009:1-4.
    [37]E. Beres, R. S. Adve. On selection cooperation in distributed networks. Information Sciences and Systems, New Jersey, USA,2006. IEEE,2006:1056-1061.
    [38]A. Bletsas, A. Khisti, D. P. Reed and A. Lippman. A simple cooperative diversity method based on network path selection. IEEE Journal on Selected Areas Communications.2006,24(3):659-672.
    [39]A. Bletsas, H. Shin and M. Z. Win. Cooperative communications with outage-optimal opportunistic relaying. IEEE Transcations on Wireless Communications.2007,6(9): 3450-3460.
    [40]龙航.无线协同中继通信的预编码技术研究.北京邮电大学,博士论文.2010:15-23.
    [41]B. Zhao and M. C. Valenti. Practical relay networks:a generalization of hybrid-ARQ. IEEE Journal on Selected Areas Communications.2005,23(1):7-18.
    [42]S. Jing, G, Yu and Z. Zhang. Partial channel state informantion based cooperative relaying and partner selection. Wireless Communications & Network Conference, Hong Kong, China,2007. IEEE,2007:975-979.
    [43]Z. Ding, Y. Gong, T. Ratnarajah and C. F. N. Cowan. On the performance of opportunistic cooperative wireless networks. IEEE Transactions on Communications. 2008,56(8):1236-1240.
    [44]Q. F. Zhou, F. C. M. Lau and S. F. Hau. Asymptotic analysis of opportunistic relaying protocols. IEEE Transactions on Wireless Communications.2009,8(8):3915-3920.
    [45]A.S. Ibrahim, A.K. Sadek, W. Su and K.J.R. Liu. Cooperative communications with relay selection:when to cooperate and whom to cooperate with?. IEEE Transactions on Wireless Communications.2008,7(7):2814-2827.
    [46]Y. Zhao, R. Adve and T. Lim. Improving amplify-and-forward relay networks:optimal power allocation versus selection. IEEE Transcations on Wireless Communications. 2007,6(8):3114-3123.
    [47]A. Bletsas, H. Shin and M. Win. Outage optimality of opportunistic amplify-and forward relaying. IEEE Communication Letters.2007, 11(3):261-263.
    [48]S.S. Ikki and M.H. Ahmed. On the performance of cooperative-diversity networks with the N-th best-relay selection scheme. IEEE Transactions on Communications.2010, 58(11):3062-3069.
    [49]J. Tian, Q. Zhang and S. H. Ting. LCR and AFD of decode-and-forward relay networks with Nth best relay selection schemes in rayleigh fading channels. IEEE Wireless Communication Letters.2012, 1(4):380-383.
    [50]M. Ju, H. Song, I. Kim. Exact BER analysis of distributed Alamouti's code for cooperative diversity networks. IEEE Transactions on Communications.2009,57(8): 2380-2390.
    [51]P. A. Anghel and M. Kaveh. Exact symbol error probability of a cooperative network in a Rayleigh-fading environment. IEEE Transactions on Wireless Communications.2004, 3(5):1416-1421.
    [52]H. A. Suraweera and G. K. Karagiannidis. Closed-form error analysis of the non-identical Nakagami-m relay fading channel. IEEE Communication Letters.2008, 12(4):259-261.
    [53]Y. Lee and M.-H. Tsai. Performance of decode-and-forward cooperative communications over Nakagami-m fading channels. IEEE Transactions on Vehicular Technology.2009,58(3):1218-1227.
    [54]Y. Zhao, R. Adve, and T. J. Lim. Outage probability at arbitrary SNR with cooperative diversity. IEEE Communication Letters.2005,9(8):700-702.
    [55]M. O. Hasna and M. S. Alouini. Outage probability of multi-hop transmission over Nakagami fading channels. IEEE Communication Letters.2003,7(5):216-218.
    [56]J. Hu and N. C. Beaulieu. Performance analysis of decode-and-forward relaying with selection combining. IEEE Communication Letters.2007,11(6):489-491.
    [57]L. Zheng and D. N. C. Tse. Diversity and multiplexing:a fundamental tradeoff in multiple-antenna channels. IEEE Transactions on Information Theory.2003,49(5): 1073-1096.
    [58]K. Azarian and H. E. Gamal. The throughput-reliability tradeoff in block-fading MIMO channels. IEEE Transactions on Information Theory.2007,53(2):488-501.
    [59]H. El Gamal, G. Caire and M. O. Damen. The MIMO ARQ channel:diversity-multiplexing-delay tradeoff. IEEE Transactions on Information Theorm.2006,52(8): 3601-3621.
    [60]G. Kramer and A. J. van Wijngaarden. On the white Gaussian multiple-access relay channel. International Symposium on Information Theory, Sorrento, Italy,2000. IEEE, 2000:40.
    [61]L. Sankaranarayanan, G. Kramer and N. B. Mandayam. Cooperation vs. hierarchy:an information-theoretic comparison. International Symposium on Information Theory, Adelaide, Australia,2005. IEEE,2005:411-415.
    [62]G. Kramer, M. Gastpar and P. Gupta. Cooperative strategies and capacity theorems for relay networks. IEEE Transactions on Information Theory.2005,51(9):3037-3063.
    [63]K. Azarian, H. El Gamal and P. Schniter. On the optimality of the ARQ-DDF protocol. IEEE Transactions on Information Theory.2008,54(4):1718-1724.
    [64]M. Yuksel and E. Erkip. Multiple-antenna cooperative wireless systems:A diversity multiplexing tradeoff perspective. IEEE Transactions on Information Theory.2007, 53(10):3371-3393.
    [65]T. M. Cover and A. A. El Gamal. Capacity theorems for the relay channel. IEEE Transactions on Information Theory.1979,25(5):572-584.
    [66]A. Hatefi, R. Visoz and A. Berthet. Joint channel-network turbo coding for the non-orthogonal multiple access relay channel. Personal Indoor and Mobile Radio Communications, Istanbul, Turkey,2010. IEEE,2010:408-413.
    [67]T. Wang and G. Giannakis. Complex field network coding for multiuser cooperative communications. IEEE Journal on Selected Areas in Communications.2008,26(3): 561-571.
    [68]R.Youssef and A. Graell i Amat. Distributed serially concatenated codes for multi-source cooperative relay networks. IEEE Transactions on Wireless Communications.2011, 10(1):253-263.
    [69]Ahlswede R, Cai N, Li S-Y R and Yeung R W. Network information flow. IEEE Transactions on Information Theory.2000,46(4):1204-1216.
    [70]杨波.高频谱效率的无线网络广义协作通信技术研究.解放军信息工程大学,博士论文.2010:19-31.
    [71]Z. Han, X. Zhang and V. H. Poor. High performance cooperative transmission protocols based on multiuser detection and network coding. IEEE Transactions on Wireless Communications.2009,8(5):2352-2361.
    [72]T. T. Pham and H. H. Nguyen. Decorrelate-and-forward relaying scheme for multiuser wireless code division multiple access networks. IET Communications.2010,4(4): 443-451.
    [73]Z. Yi, M. Ju and I.-M. Kim. Outage probability and optimum combining for time division broadcast protocol. IEEE Transactions on Wireless Communications.2011, 10(5):1362-1367.
    [74]M. Ju and I.-M. Kim. Relay selection with ANC and TDBC protocols in bidirectional relay networks. IEEE Transactions on Communications.2010.58(12):914-916.
    [75]H. Ding, J. Ge, D. Benevides da Costa and Z. Jiang. Two birds with one stone: exploiting direct links for multiuser two-way relaying systems. IEEE Transactions on Wireless Communictions.2012, 11(1):54-59.
    [76]L. Xiao, T. Fuja, J. Kliewer and D. Costello. A network coding approach to cooperative diversity. IEEE Transactions on Information Theory.2007,53(10):3714-3722.
    [77]M. Xiao and M. Skoglund. Design of network codes for multiple-user multiple-relay wireless network. International Symposium on Information Theory, Seoul, Korea,2009. IEEE,2009:2562-2566.
    [78]M. Xiao and M. Skoglund. M-user cooperative wireless communications based on nonbinary network codes. Information Theory Workshop, Sicily, Italy,2009. IEEE,2009: 316-320.
    [79]G. B. Giannakis, Z. Liu, X. Ma, and S. Zhou. Space-Time Coding for Broadband Wireless Communications. John Wiley & Sons,2007:70-79.
    [80]Z. Yi, M. Ju and I.-M. Kim. Outage probability and optimum power allocation for analog network coding. IEEE Transactions on Wireless Communications.2011,10(2): 407-412.
    [81]Y. Han, S. H. Ting, C. K. Ho and W. H. Chin. Performance bounds for two-way amplify-and-forward relaying. IEEE Transactions on Wireless Communications.2009, 8(1):432-439.
    [82]J. Yang, P. Fan, T. Q. Duong and X. Lei. Exact performance of two-way relay networks in Nakagami-m fading. IEEE Transactions on Wireless Communications.2011,10(3): 980-987.
    [83]H. Guo, J. Ge and H. Ding. Symbol error probability of two-way amplify-and-forward relaying. IEEE Commun. Letters.2011,15(l):22-24.
    [84]Y.-U. Jang and Y. H. Lee. Performance analysis of user selection for multiuser two-way amplify-and-forward relay. IEEE Communications Letters.2010,14(11):1086-1088.
    [85]H. Ding, J. Ge, D. B. da Costa and Y. Guo. Outage analysis for multiuser two-way relaying in mixed Rayleigh and Rician fading. IEEE Communication Letters.2011, 15(4):410-412.
    [86]J. H. Winters. On the capacity of radio communication systems with diversity in a Rayleigh fading environment. IEEE Journal on Selected Areas in Communications. 1987,5(5):871-878.
    [87]S. M. Alamout. A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications.1998,16(8):1451-1458.
    [88]V. Tarokh, N. Seshadri and A. R. Calderbank. Space-time codes for high data rate wireless communication:performance criterion and code construction. IEEE Transactions on Information Theory.1998,44(2):744-765.
    [89]V. Tarokh, N. Jafarkahani and A. R. Calderbank. Space-time block codes from orthogonal design. IEEE Transactions on Information Theory.1999,45(5):744-765.
    [90]V. Tarokh, N. Seshadri and A. R. Calderbank. Space-time block coding for wireless communications:performance results. IEEE Journal on Selected Areas Communications.1999,17(3):451-460.
    [91]G. J. Foschini. Layered space-time architecture for wireless communication in fading environment when using multiple antennas. Bell Labs Technical Journal,1996,1(2): 41-59.
    [92]Y. Jing and H. Jafarkhani. Using orthogonal and Quasi-orthogonal design in wireless relay networks. IEEE Transactions on Information Theory.2007,53(11):4106-4118.
    [93]K. G. Seddik, Sadek, K. Abmed, S. A. Ibrahim and J. K. R. Liu. Design criteria and performance analysis for distributed space-time coding. IEEE Transactions on Vehicular Technology.2008,7(4):2280-2292.
    [94]F. Oggier, G. Rekaya and J. C. Belfiore. Perfect space-time block codes. IEEE Transactions on Information Theory.2006,52(9):3885-3902.
    [95]M. O. Damen, K. Abed-Meraim and J. C. Belfiore. Diagonal algebraic space-time block cocdes. IEEE Transactions on Information Theory.2002,48(3):628-636.
    [96]Y. Xin, Z. Wang and G. B. Giannakis. Space-time diversity systems based on linear constellation procoding. IEEE Transactions on Wireless Communications.2003,2(2): 294-309.
    [97]A. Host-Madsen and J. Zhang. Capacity bounds and power allocation for wireless relay channel. IEEE Transactions on Information Theory.2005,51(6):2020-2040.
    [98]A.Reznik, S. R. Kulkarni and S. Verdu. Degraded Gaussian multirelay channel:capacity and optimal power allocation. IEEE Transactions on Information Theory,2004,50(12): 3037-3046.
    [99]M. Dohler, A. Gkelias and H. Aghvami. Resource allocation for FDMA based regenerative multi-hop links [J]. IEEE Trans Wireless Commun., vol.3, pp.1989-1993, Nov.2004.
    [100]Y. Liang and V. Veeravalli. Gaussian orthogonal relay channel:optimal resource allocation and capacity. IEEE Transactions on Information Theory,2005,51(9): 3284-3289.
    [101]M. M. Fareed and M. Uysal. BER-optimized power allocation for fading relay channels. IEEE Transactions on Wireless Communications.2008:2350-2359.
    [102]J. Luo, B. S. Blum, L. J. Cimini, J. L. Greenstein and M. A. Haimovich. Decode-and-forward cooperative diversity with power allocation in wireless networks. IEEE Transactions on Wireless Communications.2007,6(3):793-799.
    [103]Y. Yao, X. Cai and G. B. Giannakis. On energy efficiency and optimum resource allocation of relay transmissions in the low-power regime. IEEE Transactions on Wireless Communication.2005,4(6):2917-2927.
    [104]Q.F. Zhou, Y. Li, F.C.M. Lau and S. B. Vucetic. Decode-and-forward two-way relaying with network coding and opportunistic relay selection. IEEE Transactions on Communications.2010,58(11):3070-3076.
    [105]A. Y.-C. Peng, S. Yousefi and I.-M. Kim. On error analysis and distributed phase steering for wireless network coding over fading channels. IEEE Transactions on Wireless Communications.2009,8(11):5639-5649.
    [106]王静,刘向阳,施玉晨,王新梅.并行中继网络中复数域网络编码的优化设计方案.电子科技大学学报.2011,40(1):512-518.
    [107]G.D.Forney. Concatenated codes. Cambridge, MA:MIT Press,1966.
    [108]C. Berrou, A. Glavieux and P. Thitimajshima. Near shannon limit error——correcting coding and decoding:Turbo-codes (1). International Conference on Communications, Geneva, Switzerland,1993. IEEE,1993:1064-1074.
    [109]C.Nill and C.W.Sundberg. List and soft symbol output viterbi algorithms:extensions and comparisons. IEEE Transactions on Communications,1995,43(2/3/4):277-287.
    [110]X. Wang and HV Poor. Iterative (turbo) soft interference cancellation and decoding for coded CDMA. IEEE Transactions on Communications,1999,47(7):1046-1061.
    [111]J.Hagenauer and P.Hoeher. A viterbi algorithm with soft-decision outputs and its applications. Global Telecommunications Conference, Texas, USA,1989. IEEE,1989: 1680-1686.
    [112]W. E. Ryan. Concatenated codes and iterative decoding. Wiley encyclopedia of telecommunications (J. G. Proakis) New York:Wiley and Sons,2003.
    [113]R. J. McEliece, D. J. C. MacKay and J. F. Cheng. Turbo decoding as an Instance of Pearl's 'belief propagation' algorithm. IEEE Journal on Selected Areas Communications,1998,16(2):140-152.
    [114]L. Tong, B. M. Sadler and M. Dong. Pilot assisted wireless transmissions:general model, design criteria, and signal processing. IEEE Signal Processing Magazines,2004, 21(6):12-25.
    [115]Cavers J K. An analysis of pilot symbol assisted modulation for Rayleigh fading channels. IEEE Transactions on Vehicular Technology,1991,40(4):686-693.
    [116]Group Speciale Mobile (GSM) Recommendations, GSM Series 01~12,1990.
    [117]Physical channels and mapping of transport channels onto physical channels(FDD), WCDMA,3GPP TS 25.211,2001.
    [118]Physical Layer Standard for CDMA2000 Spread Spectrum System, CDMA2000,3GPP2 C.S0002-D,2001.
    [119]W. Kuo and M. P. Fitz. Frequency offset compensation of pilot symbol assisted modulation in frequency flat fading. IEEE Transactions on Communications,1997, 45(11):1412-1416.
    [120]M. Morelli, U. Mengali and G. M. Vitetta. Further results in carrier frequency estimation for transmissions over flat fading channels. IEEE Communication Letters, 1998,2(12):327-330.
    [121]O.Besson and P. Stoica. On frequency offset estimation for flat-fading channels. IEEE Communication Letters,2001,5(10):402-404.
    [122]Y. Ying and M.Ghogho. Optimal pilot placement for frequency offset estimation and data detection in burst transmission systems. IEEE Communication Letters,2005, 9(6):549-551.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700