用户名: 密码: 验证码:
液压模块组合挂车动态响应及疲劳寿命预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着运输与物流业快速发展,大型专用运输车被越来越多的运用于重型设备及重型结构的运输上。专用汽车工业在设计与应用过程中不仅要考虑提高运行速度、装载系数以及降低运输成本,更需要提高运行的安全性、平顺性和轻量化的,这已然成为行业的发展趋势。在各种大型专用运输车中,液压模块组合挂车是一种特大、特重的货物陆路运输工具。由于挂车的车架重量与结构尺寸大,其结构弹性固有频率的动态特征与刚柔耦合现象会直接影响车辆系统的动态响应。目前,液压模块组合挂车系统动态响应方面的研究文献较少,主要是由于该车由多部件、机构与系统组成,具有大型复杂多体系统的特点。关于挂车的结构强度的研究多采取静态分析方法,该方法虽然方法简单,但是不能全面地反映挂车在实际运行中结构所承受的随机交变动载荷。因此,本文将有限元分析、多体动力学仿真与结构疲劳分析相结合,以用于对液压模块组合挂车的装载方案设计、以及对系统动态响应特性与结构疲劳强度的研究,具有较强的工程意义和学术价值。论文完成了主要工作和取得的主要结论如下:
     (1)当研究15轴线式液压模块组合挂车系统的动态响应时,在充分考虑车架的弹性固有动态特征后,利用ANSYS建立了车架结构的有限元模型,合理地选取了模型的主自由度,采用子结构缩减自由度的模态分析方法求得结构固有频率与振型。计算结果表明:缩减自由度法得出的车架前20阶模态能够满足模型计算精度要求,大幅提高计算效率;
     (2)探讨了多体系统中刚体、柔体运动学与动力学方程的建立与求解方法。基于流体的力学微分方程组和流体的流动方程,建立了液压悬挂系统的液压缸工作状态动力学方程,并结合多体系统动力学方程,推导出了含液压悬挂系统的挂车多体系统动力学方程;
     (3)在考虑车架弹性动态特征和液压悬挂系统对挂车系统动态响应特性的影响后,建立了15轴线式液压模块组合挂车的多刚体和刚柔耦合多体系统两种模型,结合挂车道路振动试验验证了模型的准确性。对比分析的结果表明:刚柔耦合多体系统模型仿真计算结果与对应试验测点的实际频谱变化规律基本吻合,模态频率值相对误差较小。由此验证了刚柔耦合多体系统模型的准确性;
     (4)在针对液压模块组合挂车的支架装载方案设计中,通过有限元静态分析获得车架结构的应力水平和垂向变形量。并以此为评价参数,研究了支架数量及其位置和液压悬挂系统的支撑方式对车架承受载荷能力的影响。最终提出了具有最少支架数量,同时也能够满足车架强度要求的三支架装载方案P3-2;
     (5)在三支架装载方案P3-2的多体系统动力学模型的基础上,研究了在不同路面不平度及不同车速下的运行工况对挂车系统动态响应特性的影响。仿真计算的结果表明:挂车部件的垂向加速度均方根值与部件间的动载荷随路面不平度及车速的增加而增大,在正弦形凹凸路面冲击下悬架摆臂的垂向加速度和车轴的动载荷急剧增大;液压回路系统能够有效地使同属于一个液压缸组中的车轴承受相等的载荷,同时减小作用于车架上的动载荷;由于支架刚度与液压悬挂系统的影响,车架左右两边和前后部分的垂向加速度值都大于纵向对称面与接近支架的部分。
     (6)在研究挂车的运行工况对摆臂和车架结构疲劳寿命的影响时,运用有限元准静态叠加法进行了结构动态响应分析,计算获得结构的应力历程。基于局部应力应变法建立了摆臂疲劳寿命预测模型。计算结果表明:摆臂疲劳危险部位出现在已发生断裂的断面位置,危险部位的应力水平已进入塑性状态;挂车在B级、C级与D级路面的运行工况下,危险部位的疲劳寿命均大于挂车使用年限;而在凹凸路面的运行下,其寿命随路面起伏幅值及车速的增加而急剧缩短;计算的结果符合物流公司的运行记录:摆臂断裂故障常发生在凹凸不平的复杂路段。
     (7)以国际焊接学会的《焊接结构和构件的疲劳设计》标准的热点应力方法为依据,对车架焊接结构建立了危险部位的疲劳寿命预测模型。计算结果得出:挂车在凹凸路面S2类、车速为5.55m/s的运行工况下,各危险部位的最小疲劳寿命为13.51年小于挂车使用年限,但大于挂车报废年限。根据挂车的摆臂和车架结构疲劳寿命预测的结果,提出了考虑摆臂和车架结构强度的适用运行工况。
With the rapid growth of transportation and logistics industry, large special vehicle are used more and more in transportation of heavy equipments and structures. Special vehicle manufacturers should not only consider increasing vehicle speed, loading coefficient and reducing transportation cost, but also consider improving transport safety, ride comfort and a lightweight structure, which have become the development trend of the whole industry in the design and application process. Hydraulic modular assembly trailer (HMAT) is a specialized large, heavy goods land transportation. Due to the heavy weight and large structure size of the trailer's bogie frame, the natural frequency characteristics and the rigid-flexible coupling phenomenon of the elastic bogie frame directly affect the dynamic response properties of the vehicle system. However, there are few researches on dynamic response of HMAT system today, mainly due to the fact that this type of vehicle is made of multi-structural components, mechanisms and systems with large and complex multi-body system. The past studies of HMAT structural strength problems focused primarily on static analysis method, which cannot fully reflect the structure response under random dynamic load. Therefore, the combination of the finite element analysis, multi-body dynamics simulation and structure fatigue analysis, and their application to the study of HMAT system dynamic response and its structure fatigue strength have engineering significance and academic value. Main contents and conclusions of this thesis are as follows:
     (1) When investigating the dynamic response properties of the15axle HMAT system, after considering the dynamic characteristics of bogie frame's elastic structure, the finite element models of the bogie frame were built using ANSYS software. And with reasonable selection of master degrees of freedom of the model, modal analysis method based on the reduced degree of freedom of the substructures was used to solve the natural frequencies and mode shapes of the bogie frame. The analysis results show that the first20modes of the bogie frame calculated using the reduced degree of freedom method are able to meet the accuracy requirements of the model calculations, while improving the computational efficiency.
     (2) The establishment methods of the kinematic and dynamics equations of rigid and flexible body in multi-body systems were explored. The dynamics equation of the hydraulic cylinder of hydraulic suspension system is established based on the mechanical differential equations and fluid flow equations of the liquid. By combining the dynamic equations of multi-body system, the dynamic equations of the mixed multi-body and hydraulic suspension system model of trailer were derived.
     (3) Based on ADAMS software, the multi-rigid body and rigid-flexible coupling multi-body system models of the15axle HMAT were established with considering the elastic dynamic characteristics of the bogie frame and effect of hydraulic suspension system on the dynamic response properties of trailer. There models were simulated with excitation signal generated by road roughness, and was verified by trailer vibration experiment. The results show that, the measuring points in simulation of rigid-flexible coupling multi-body system model and experiments have the same variation trend of frequency spectrum, the relative difference of modal frequency value is small, and thus the established rigid-flexible coupling multi-body system model is accurate.
     (4) Aiming at the loading scheme design of HMAT with bracket structures, the effects of the number and bracketlocations and the balance support methods of the hydraulic circuit system on the load capacity of the bogie frame were analyzed based on stress level and vertical deformation, as the result of finite element static analysis of the bogie frame. With the least of brackets number, a loading scheme with three brackets was chosen to meet the frame static strength requirements.
     (5) Based on HMAT multi-body system dynamic model of the reasonable loading scheme that was chosen, the effects of trailer's operation conditions on the dynamic response of trailer were studied under different road roughness and various speeds. The simulation results show that, the root-mean-square value of the vertical acceleration of trailer parts and the dynamic load between parts increase with the augmentation of road roughness and trailer speed. Under the impact of sinusoidal uneven road excitation, the vertical acceleration of the swing-arm and the dynamic loads of trailer axle increase sharply. The established hydraulic circuit system could achieve the basic functions of a hydraulic suspension system, with trailer wheels of each hydraulic cylinder group bearing equal load and dynamic load acting on bogie frame reduced. The vertical acceleration of left, right, front and rear parts of the bogie frame is greater than those of longitudinal plane of symmetry or close to bracket positions, owing to the effect of bracket stiffness and hydraulic suspension system.
     (6) When studying the effect of trailer's operation conditions on the fatigue life of swing-arm and bogie frame structures, the stress time histories of these structures were obtained using finite element quasi-static superposition analysis in discrete time points. The fatigue life prediction model of swing-arm was established basing on local stress-strain method. The calculation results show that, the stress concentration positions of swing-arm appear at the cross section of fracture failure location where its stress level has entered into plastic state. With operational conditions of trailer running on ordinary B grade, C grade and D grade roads, the fatigue life of risk points are greater than the service life of trailer. However, on sinusoidal uneven roads, its fatigue life decreases significantly with the intensification of sinusoidal amplitude and the increase of trailer speed. The calculation results are also in line with the logistics company's operation records:the swing-arm fracture failure often occurs in complex rugged roads.
     (7) The fatigue life prediction model of bogie frame's welded structure was established based on the hot spot stress method of Recommendations for Fatigue Design of Welded Joints and Components standard of International Institute of Welding (IIW). The calculation results show that, with operational conditions of trailer running on the class S2of sinusoidal uneven roads and5.55m/s being the trailer speed, the shortest fatigue life of risk points is13.5years and is less than the service life of trailer, but greater than the retirement life of trailer. According to the results of structural fatigue life prediction, the applicable operation conditions were proposed with fatigue life of swing-arm and bogie frame are considered.
引文
[1]乐国巨.组合挂车发展趋势.上海公路,2004,(04):42-45
    [2]余欣悦.全球挂车市场现状及发展趋势.商用汽车,2009,(07):98-101
    [3]王欣、张明辉、高顺德.大型动力平板车技术的发展.工程机械与维修,2006,(12):81-83
    [4]赵龙.组合式液压全挂车.水利电力机械,1994,(05):26-28
    [5]梅彦利,司鹏昆.组合式重型多轴半挂车.专用汽车,2002,(12):43-45
    [6]梅彦利,司鹏昆,罗灯明.重型多轴全挂车液压系统.液压与气动,2002,(11):40-41
    [7]鲍远通,罗灯明.一种重型液压组合式半挂车设计,液压与气动,2005,(05):14-16
    [8]赵静一,刘雅俊,王智勇.基于CAN总线的全液压驱动载重运输车协同控制系统设计,液压与气动,2006,(07):53-55
    [9]赵静一,王智勇,覃艳明,等.TLC900型运梁车电液转向控制系统的仿真与试验分析,2007,43(09):65-68
    [10]袁海斌,袁海文,李运华.基于CAN总线DzY300型运梁车转向系统设计与工程实现.机床与液压,2003,(02):29-30
    [11]汪星刚,盛步云,郑绍春.重型平板运输车转向系统协同控制技术的研究.机床与液压,2006,(01):120-121+142
    [12]张高升.重型工程平板车蓝空系统的研制.武汉理工大学硕士学位论文,2007
    [13]李海鹏,石博强,张文明.多轴挂车转向机构设计方法与计算程序.唐山学院学报,2005,18(04):100-103
    [14]郭朋彦,石博强,肖成勇,等.多轴线液压板挂车转向机构优化设计.工程机械,2009,10(39):32-37
    [15]乔媛媛.液压模块式组合半挂车转向系统仿真及结构优化设计.武汉理工大学硕士学位论文,2009
    [16]邓小禾.液压模块式组合挂车转向系统结构设计分析及数字化平台开发.武汉理工大学硕士学位论文,2011
    [17]张银生,吴运新.液压平板车有限元分析与试验测试.现代制造工程,2009,(01):43-46
    [18]宋金环,石博强,吕丛明,等.挂车液压悬架系统的结构分析与改进设计.专用汽车,2006,(01):38-40
    [19]林程,陈思忠,吴志成.重型半挂车车架有限元分析.车辆与动力技术,2004,(04):23-27
    [20]李建华,马力.低平板液压模块组合挂车连接接头强度分析.商用汽车,2011,(06):64-65
    [21]张卫东,莫旭辉,彭劲松.液压平板车悬架系统的有限元分析与结构优化.机械工程师,2007,(10):34-36
    [22]杨海涛,马力,张琪.液压模块组合挂车低平板失效分析及改进措施.重型汽车,2011,(01):11-13
    [23]冯辉,石博强,胡晓羽.自行式挂车车架结构的设计与优化.专用汽车,2006,(11):36-38
    [24]张宇探,马力,佘高翔.液压模块组合挂车纵梁轻量化设计研究.机械设计, 2011,28(08):66-69
    [25]张中正,马力,张宇探.六轴线液压模块组合挂车横梁拓扑优化设计研究.上海汽车,2011,(06),22-25
    [26]薛金莲,孔庆忠,姚景利,等.液压挂车装载运输强度、变形、预拱的校核及优化.重技术,2001,(01):39-40
    [27]马晓军,秦颖军.大件运输液压挂车装载参数的校核及优化.重型机械科技,2003,(04):13-14
    [28]张宇探,马力,李冰.液压模块组合挂车整体结构有限元计算分析.专用汽车,2010,(01):53-55
    [29]刘兴敏,马力,张宇探.多纵列液压模块组合挂车有限元分析建模研究.重型汽车,2011,(03):9-11
    [30]周俊,马力.液压模块组合挂车装载问题研究.力学与实践,2011,33(01):56-59
    [31]杜媛媛,马力,周俊.液压模块组合挂车装载曲线的有限元标定分析.专用汽车,2012,(05):82-84+88
    [32]陈黝生.组合挂车液压悬挂动载荷分析.同济大学工学硕士学位论文,2007
    [33]涂启养,###,闫兵,等.某液压模块式组合挂车悬架结构件的强度及疲劳损伤分析.汽车科技,2011,(03):54-56+46
    [34]Shabana A A. Flexible Multibody Dynamics:Review of Past and Recent Developments. Multibody System Dynamics,1997,01(02):189-222
    [35]洪嘉振.计算多体系统动力学.北京:高等教育出版社,1999.
    [36]Neuber A H, Cohen R, Hall A S. An Analytical Study of the Dynamics of an Elastic Linkage. Journal of Manufacturing Science and Engineering,1966,88(03):311-317
    [37]Winfrey R C. Elastic Link Mechanism Dynamics. Journal of Manufacturing Science and Engineering,1971,93(01):268-272
    [38]Winfrey R C. Dynamic Analysis of Elastic Link Mechanism by Reduction of Coordinates. Journal of Manufacturing Science and Engineering,1972,94(02): 577-581
    [39]Sadler J P, Sandor G N. A Lumped Parameter Approach to Vibration and Stress Analysis of Elastic Linkages. Journal of Manufacturing Science and Engineering, 1973,95(02):549-557
    [40]Erdman A G, Sandor G N, Oakberg R G. A General Method for Kineto-Elastodynamic Analysis and Synthesis of Mechanisms. Journal of Manufacturing Science and Engineering,1972,94(04):1193-1205
    [41]Bodley C S, Devers A D, Park A C, et al. A Digital Computer Program for The Dynamic Interaction Simulation of Controls and Structure (DISCOS)-Volume Ⅱ. NASA Technical Paper 1219,1987
    [42]Song J O, Haug E J. Dynamic Analysis of Planar Flexible Mechanisms. Computer Method in Applied Mechanics and Engineering,1980, (24),359-381
    [43]Sunada W, Dubowsky S. The Application of Finite Element Methods to the Dynamic Analysis of Flexible Spatial and Co-Planar Linkage Systems. Journal of Mechanical Design,1981,103(03):643-651
    [44]Sunada W, Dubowsky S. Variable Degree-of-Freedom Component Mode Analysis of Inertia Variant Flexible Mechanical Systems. Journal of Mechanical Design,1983, 105(03):371-378
    [45]Lee J H. On The Application of The Modal Integration Method to Flexible Multibody Systems. Computers & Structures,1996,59 (03):553-559
    [46]Wallrapp O, Schwertassek R. Representation of Geometric Stiffening in Multibody System Simulation. International Journal for Numerical Methods in Engineering, 1991,32(08):1833-1850
    [47]Wallrapp O. Standardization of Flexible Body Modeling in Multibody System Codes, Part I:Definition of Standard Input Data. Mechanics of Structures and Machines, 1994,22(03):283-304
    [48]Agrawal O P, Shabana A A. Dynamic Analysis of Multibody Systems Using Component Modes. Computers & Structures,1985,21 (06):1303-1312
    [49]Mousseau C W, Laursenb T A, Lidbergc M, et al. Vehicle Dynamics Simulations with Coupled Multibody and Finite Element Models. Finite Elements in Analysis and Design,1999,31(04):295-315
    [50]Wasfy T M, Noor A K. Computational Strategies for Flexible Multibody Systems. Applied Mechanics Reviews,2003,56(06):553-613
    [51]Betsch P, Steinmann P. A DAE Approach to Flexible Multibody Dynamics. Multibody System Dynamics,2002,08(03):365-389
    [52]Sang-Sup K, Sung-Soo K. A Criterion on Inclusion of Stress Stiffening Effects in Flexible Multibody Dynamic System Simulation. Computers and Structures,1997, 62(06):1035-1048
    [53]Friberg O. A Method for Selecting Deformation Modes in Flexible Multibody Dynamic. International Journal for Numerical Methods in Engineering,1991,32(08): 1637-1655
    [54]Geradin M, Cardona A. Flexible multibody Dynamics:A Finite Element Approach. John Wiley & Sons Ltd Published,2001
    [55]洪嘉振,蒋丽忠.柔性多体系统刚_柔耦合动力学.力学进展,2000,30(01):15-19
    [56]洪嘉振,尤超蓝.刚柔耦合系统动力学研究进展.动力学与控制学报,2004,02(02):1-6
    [57]Turcic D A, Midha A, Bosnik J R. Dynamic Analysis of Elastic Mechanism Systems Part Ⅰ:Applications. Journal of Dynamic Systems, Measurements and Control,1984, 106(04):249-254
    [58]Likins P W. Finite Element Appendage Equations for Hybrid Coordinate Dynamic Analysis. International Journal of Solids and Structures,1972,08(05):709-731
    [59]Yoo H H, Ryan R R, Scott R A. Dynamics of Flexible Beams Undergoing Overall Motions. Journal of Sound and Vibration,1995,181(02):150-167
    [60]Kane T R, Ryan R R. Dynamics of A Cantilever Beam Attached to A Moving Base. Journal of Guidance, Control Dynamics,1987,10(02):139-151
    [61]张卫华.机车车辆动态模拟.北京:中国铁道出版社,2006
    [62]Wu P B, Zeng J, Dai H U. Dynamic Response Analysis of Railway Passengercar With Flexible Carbody Model Based on Semi-active Suspension. International Association for Vehicle System Dynamics,2004, (41):774-783
    [63]陈欣,林逸,方传流.综述多柔体系统动力学在汽车技术中的应用.吉林工业大学学报,1997,27(01):96-101
    [64]Hac A. Stochastic Optimal Control of Vehicles With Elastic Body and Active Suspension. Journal of Dynamic Systems Measurement and Control,1986,108(2): 106-110
    [65]Yoshimura T, Sugimoto M. An Active Suspension for A Vehicle Travelling on Flexible Beams with An Irregular Surface. Journal of sound and vibration,1990, 138(3):433-445
    [66]Diana G, Cheli F, Bruni S, et al. Interaction Between Railroad Superstructure and Railway Vehicles. Vehicle System Dynamics:International Journal of Vehicle Mechanics and Mobility,1994,23(Sup 01):75-86
    [67]Diana G, Cheli F, Bruni S. Dynamic Interaction Between Rail Vehicles and Track for High Speed Train. Vehicle System Dynamics:International Journal of Vehicle Mechanics and Mobility,1995,24(Sup 01):15-30
    [68]Diana G, Cheli F, Collina A, et al. The Development of A Numerical Model for Railway Vehicles Comfort Assessment through Comparison with Experimental Measurements. Vehicle System Dynamics:International Journal of Vehicle Mechanics and Mobility,2002,38(03):165-183
    [69]Dietz S, Netter H, Sachau D. Fatigue Life Prediction of a Railway Bogie under Dynamic Loads through Simulation. Vehicle System Dynamics:International Journal of Vehicle Mechanics and Mobility,1998,29(06):385-402.
    [70]Dietz S, Netter H, Sachau D. Fatigue Life Prediction by Coupling Finite Element and Multibody System Calculations. Procceding of ASME Design Engineering Technical Conferences'97, Sacramento, California,1997
    [71]Ferraro L, Fogaca M, Ururahy M, et al. Comfort Study of a Medium-Sized Truck With the Use of Adams Considering Frame Flexibility Imported From a Nastran Finite Element Model. SAE Technical Paper,1999,1999-01-3062.
    [72]Hong Su. Automotive CAE Durability Analysis Using Random Vibration Approach. Proceedings of MSC 2nd Worldwide Automotive Conference, Dearborn,2000
    [73]Kim H S, Yim H J, Kim C B. Computational Durability Prediction of Body Structure in Propotype Vehicle. International Journal of Automotive Technology,2002,03(04): 129-135
    [74]Fichera G, Lacagnina M, Petrone F. Modeling of Torsion Beam Rear Suspension by Using Multibody Method. Multibody System Dynamics,2004,12(04):303-316
    [75]Masahiro K, Sanshiro S, Toshihide S, et al. Development of Kinematical Analysis Method for Vehicle. Komatsu Technical Report,2004,50(01):13-18
    [76]Yang Xiaobo, Zhang Dajun, Medepalli S, et al. Suspension Tuning Parameters Affecting Impact Harshness Performance Evaluation. SAE Technical Paper,2006, 2006-01-0991
    [77]Keshavarz M A, Bayani M, Azadi S. Improving Vehicle Vibration Behavior via Structural Modification with Random Road Input. SAE 2009 Noise and Vibration Conference and Exhibition,2009,2009-01-2093
    [78]程海涛,王成国,钱立新.考虑车体柔性的货车动力学仿真.铁道学报,2000,22(06):40-45
    [79]王成国,孟广伟,原亮明,刘敬辉.新型高速客车构架的疲劳寿命数值仿真分析.中国铁道科学,2001,22(03):91-95
    [80]杨波,王学林,胡于进,等.多轴汽车平川酬生的柔性模型研究.机械工程学报,2003,39(12):145-150
    [81]夏长高,宫镇.刚柔耦合多体车辆操纵稳定性研究.汽车工程,2004,26(05):564-567
    [82]任尊松,孙守光,李强,等.构架结构振动与动态应力仿真研究.机械程学报,2004,25(05):187-192.
    [83]马天飞,王登峰,梁和平.利用MSC.ADAMS/Car建立轿车的刚弹耦合模型.计算机辅助工程,2006(15),增刊:238-240
    [84]黄泽好.摩托车人-机刚柔耦合系统动态特性研究.重庆大学博士学位论文,2006
    [85]缪炳荣.基于多体动力学和有限元法的机车车体结构疲劳仿真研究.西南交通大学博士学位论文,2006
    [86]张立军,张宇,赵亮.基于悬架刚柔耦合模型的汽车平顺性.农业机械学报,2008,39(08):28-32
    [87]包学海,池茂儒,卢耀辉,等.基于子结构法的车辆系统刚柔混合动力学建模方法研究[J].铁道机车车辆,2009,09(03):8-11
    [88]谢云叶.D32-平车刚柔系统动态响应及凹底架疲劳强度研究.北京交通大学博士学位论文,2009
    [89]郝赫.多轴重型汽车刚弹祸合虚拟样机分析与匹配.吉林大学博士学位论文,2011
    [90]宫岛,周劲松,孙文静,等.高速列车弹性车体与转向架耦合振动分析.交通运输工程学报,2011,11(04):41-47
    [91]Nguyen Phuc Hieu. The Effect of Vibrations on Automobile Frame when Moving on The Road. Hanoi University of Science and Technology PhD Thesis, Vietnam,1999
    [92]Dao Manh Hung. The Research of The Dynamic Load Between Truck Wheels and Road Surface in Vietnamese Using Conditions. University of Transport and Communications PhD thesis, Vietnam,2006
    [93]Tran Minh Son. The Research of Automobile Bogie Frame Strength Under the Excitation of Random Road Surface in Vietnam. Military Technical University PhD thesis, Vietnam,2002
    [94]徐斌,高跃飞,余龙.MATLAP有限元结构动力学分析与工程应用.北京:精华大学出版社,2009
    [95]曾攀.有限元分析与应用.北京:清华大学出版社,2004.
    [96]王勖成,邵敏.有限单元法基本原理和数值方法.第二版.北京:清华大学出版社,1997
    [97]傅志方,华宏星.模态分析理论与应用.上海:上海大学出版社,2000
    [98]纳特著H G,范宗喜,吴祖玉译.时间序列和模态分析的理论与实践导论.北京:电子工业出版社,1988
    [99]Grimes R G, Lewis J G, Simon H D. A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems. SIAM Journal on Matrix Analysis and Applications,1994,15(01):228-272
    [100]Rajakumar C, Rogers C R. The Lanczos Algorithm Applied to Unsymmetric Generalized Eigenvalue Problem. International Journal for Numerical Methods in Engineering,1991,32(05):1009-1026
    [101]Guyan R J. Reduction of Stiffness and Mass Matrices. AIAA Journal,1965,03(02): 380
    [102]Chang Xiaolin, Zhou Wei. Contact Model on Augmented Lagrange Method and Its Engineering Application.岩石力学与工程学报,2004,23(09):1568-1573
    [103]李妍.基于ANSYS软件的接触问题分析及在工程中的应用.吉林大学硕士学位论文,2004
    [104]张会杰,祝兵,高飞.Ansys多点约束技术的应用.甘肃科技,2007,23(02):169-171
    [105]王超,高秀华,张小江等.多轴车辆转向杆系刚柔耦合分析.机械设计与制造,2011,(11):202-204
    [106]Householder A S. Unitary Triangularization of a Nonsymmetric Matrix. Journal of the Association for Computing Machinery,1958,05(04):339-342
    [107]Hansen P B. Householder Reduction of linear equations. Journal of ACM Computing Surveys,1992,24(02):185-194
    [108]包学海,池茂儒,卢耀辉,等.基于子结构法的车辆系统刚柔混合动力学建模方法研究.铁道机车车辆,2009,29(03):8-11.
    [109]杨为,邱清盈,胡建军.机械结构的理论模态分析方法.重庆大学学报,2004,27(06):1-4
    [110]Craig R J, Bampton M. Coupling of Substructures for Dynamic Analyses. AIAA Journal,1968,06(07):1313-1319.
    [111]贾长治,殷军辉,薛文星等.MD ADAM虚拟样机从入门到精通.北京:机械工业出版社,2010
    [112]袁士杰,吕哲勤.多刚体系统动力学.北京:北京理工大学出版社,1992
    [113]Nikravesh P E. An Overview of Several Formulations for Multibody Dynamics. Product Engineering Part 3, Eco Design-Technologies and Green Energy, Springer Science and Business Media, Springer Netherlands,2005:181-207
    [114]Roberson R E, Wittenburg J. A Dynamical Formalism for An Arbitrary Number of Interconnected Rigid Bodies, with Reference to the Problem of Satellite Attitude Control. Proceedings of the Third Congress of the International Federation of Automatic Control, Butterworth, London,1966
    [115]Roberson R E. The Path Matrix of A Graph Its Contruction and Its Use Evaluating Certain Products. Computer Methods in Applied Mechanics and Engineering,1984, 42(01):47-56
    [116]Orlandea N, Chace M A, Calahan D A. A Sparsity-Oriented Approach to the Dynamic Analysis and Design of Mechanical Systems Part I. Journal of Manufacturing Science and Engineering,1977,99(03):773-779
    [117]Haug E J. Computer Aided Kinematics and Dynamics of Mechanical System Volume I:Basis Methods. Allyn and Bacon Published, Massachusetts,1989
    [118]Malczyk P, Fraczek J, Cuadrado J. Parallel Index-3 Formulation for Real-time Multibody Dynamics Simulations. The First Joint International Conference on Multibody System Dynamics, Lappeenranta, Finland,2010
    [119]Kane T R, Levinson D A. Formulation of Equations of Motion for Complex Spacecraft. Journal of Guidance, Control and Dynamics,1980,03(02):99-112
    [120]Kane T R, Levinson D A.The Use of Kane's Dynamical Equations in Robotics. The International Journal of Robotics Research,1983,02(03):3-20
    [121]董龙雷,闫桂荣,杜彦亭等.高斯最小拘束原理在一类刚柔耦合系统分析中的应用.兵工学报,2001,22(03):347-351
    [122]Shabana A A. Dynamics of Multibody Systems. New York, Cambridge University Published,2005
    [123]Garcia J J, Bayo E. Kinematic and Dynamic Simulation of Multibody Systems:The Real-Time Challenge. New York, Springer-Verlag Published,1994
    [124]黄文虎,邵成勋.多柔体系统动力学.北京:科学出版社,1996
    [125]缪炳祺,曲广吉,夏邃勤等.关于柔性航天器动力学模型的降阶问题.中国工程科学,2001,03(11):60-64
    [126]邢俊文.MSC.ADAMS Flex与AutoFlex培训教程.北京:科学出版社,2006
    [127]朴明伟.车辆动态系统协同仿真及刚柔耦合关键技术的研究与应用.大连交通大学博士学位论文,2010
    [128]梁智权.流体力学.重庆:重庆大学出版社,2002
    [129]Merritt H E. Hydraulic Control Systems. NewYork, John Wiley & Sons, Inc Published,1967
    [130]庄继德.计算汽车地面力学.北京:机械工业出版社,2001
    [131]刘勋,黄世伟,朱利静,等.半挂车钢板弹簧及轮胎的刚度等效分析.专用汽车,2008,(04):44-46
    [132]GB 7031-1986车辆振动输入与路面平度表示方法.北京:中国标准出版社,1987
    [133]李庆扬,王能超,易大义.数值分析.第四版.武汉:中华科技大学出版社,2006
    [134]Griffiths D F, Higham D J. Numerical Methods for Ordinary Differential Equations: Initial Value Problems. Springer Undergraduate Mathematics Series Published,2010
    [135]袁兆鼎,费景高,刘德贵.刚性常微分方程初值问题的数值解法.北京:科学出版社,1987
    [136]Hairer E, Wanner G. Solving Ordinary Differential Equation II:Stiff and Differential Algebraic Problems. Springer in Computational Mathematics Series Published,2010
    [137]贾长治,殷军辉,薛文星等.MD ADAMS虚拟样机从入门到精通.北京:机械工业出版社,2010
    [138]Negrut D, Dyer A. ADAMS/Slover Primer. Ann Arbor,2004
    [139]刘献栋,邓志党,高峰.公路路面不平度的数值模拟方法研究.北京航空航天大学学报,2003,29(09):843-846
    [140]杨益明,刘奕贯.路面不平度数学模型的研究进展.上海汽车,2010,03:23-26
    [141]段虎明,石峰,谢飞,等.路面不平度研究综述.振动与冲击,2009,28(09):95-101
    [142]张亚欧,马吉盛,吴大林,等.基于Fourier逆变换法的路面不平度模拟.河北工业大学学报,2005,34(05):66-69
    [143]桂水荣,陈水生,唐志军.基于Fourier逆变换法的桥面不平度模拟及测试分析.公路工程,2007,23(06):39-43
    [144]GB 4970-1996汽车平顺性随机输入行驶试验方法.北京:中国标准出版社,1996
    [145]陆明炯.实用机械工程材料手册.沈阳:辽宁科学技术出版社,2004
    [146]傅祥炯.结构疲劳与断裂.西安:西北工业大学出版社,1995
    [147]姚卫星.结构疲劳寿命分析.北京:国防工业出版社,2003
    [148]赵少汴.抗疲劳设计—方法与数据.北京:机械工业出版社,1997
    [149]周传月.MSC. Fatigue疲劳分析应用与实例.北京:科学出版社,2005
    [150]Manson S S. Behavior of Materials under Conditions of Thermal Stress. NACA Report 1170 Technical Note 2933, National Advisory Committee on Aeronautics, 1954:317-350
    [151]Neuber H. Theory of Stress Concentration for Shear-Strained Prismatical Bodies With Arbitrary Nonlinear Stress-Strain Law. Journal of Applied Mechanics, Transactions of The ASME,1961,28(04):544-550
    [152]Schijve J. Fatigue of Structures and Materials. Springer Science & Business Media Published,2009
    [153]舒陶,任宏光,郭克平.局部应力应变Neuber法与有限元求法的比较.弹箭与制导学报,2009,29(01):267-269
    [154]Molski K, Glinka G A Method of Elastic-Plastic Stress Stram Calculation at A Nothch Root. Materials Science and Engineering,1981,50(01):93-100
    [155]潘广和.估算低周疲劳寿命能量法的探讨.农业机械学报,1994,25(04):106-111
    [156]张忠平.对估算金属切口强度的能量法与Neuber法的比较.力学与实践,1999,21(02):34-36
    [157]何柏林,王斌.疲劳失效预测的研究现状和发展趋势.机械设计与制造,2012,(04):279-281
    [158]唐金,沙云东,郭小鹏.基于局部应力应变场强法的薄壁缺口结构随机声疲劳寿命估算.沈阳航空工业学院学报,2010,27(03):30-34
    [159]董月香,高增梁.疲劳寿命预测方法综述.大型铸锻件,2006,03:39-41+52
    [160]郑立春,姚卫星.疲劳裂纹形成寿命预测方法综述.力学与实践,1996,18(04):10-14
    [161]易当祥,刘春和,赵韶平等.三维疲劳裂纹扩展的可靠性分析.飞机设计,2008,28(02):33-36
    [162]Paris P C, Erdogan F. A Critical Analysis of Crack Propagation Laws. Journal of Fluids Engineering,1963,85(04):528-533
    [163]王自强,陈少华.高等断裂力学.北京:科学出版社,2009
    [164]丁星.40Cr钢疲劳裂纹扩展特性研究.昆明工学院学报,1995,20(05):58-62
    [165]Forman R G. Study of Fatigue Crack Initiation from Flaws Using Fracture Mechanics Theory. Engineering Fracture Mechanics,1972,04(02):333-345
    [166]陈篪.论裂纹扩展的判据.金属学报,1977,13(1,2):57-72
    [167]吴建国.裂纹扩展与损伤演化理论与应用研究.北京航空航天大学博士学位论文,2009
    [168]Newman J C, Phillips E P, Swain M H. Fatigue-Life Prediction Methodology Using Small-Crack Theory. International Journal of Fatigue,1999,21(02):109-119
    [169]吴学仁,刘建中.基于小裂纹理论的航空材料疲劳全寿命预测.航空学报,2006,27(02):219-226.
    [170]阎楚,良王公.权雨流计数法及其统计处理程序研究.农业机械学报,1982,(04):88-101
    [171]王宏伟,邢波,骆红云.雨流计数法及其在疲劳寿命估算中的应用.矿山机械,2006,34(03):95-97
    [172]Lalanne C. Mechanical Vibration & Shock-Fatigue Damage:Volumme IV. Paris: Mermes Science Publications,1999
    [173]董乐义,罗俊,程礼.雨流计数法及其在程序中的具体实现.计算机技术与应用,2004,24(03):38-40
    [174]郭小鹏沙云东张军.基于雨流计数法的随机声疲劳寿命估算方法研究.沈阳航空工业学院学报,2009,26(03):9-13
    [175]Miner M A. Cumulative Damage in Fatigue. Journal of Applied Mechanics,1945, (67):A159-A164
    [176]周张义.高速货车转向架焊接部件疲劳强度研究.西南交通大学博士学位论文,2009
    [177]谢素明,时慧焯,李娅娜等.基于IIW标准的提速客车转向架焊接构架疲劳寿 命预测.大连铁道学院学报,2006,27(03):17-21
    [178]IIW Doc. Recommendations for Fatigue Design of Welded Joints and Components XIII-1965-03/XV-1127-03. Paris:International Institute of Welding Published,2003
    [179]BS EN 1993-1-9. Eurocode 3:Design of steel structures-Part 1-9:Fatigue. British Standard Published,2005
    [180]BS 7608:1993. Fatigue design and assessment of steel structures. British Standard Published,1993
    [181]AAR. Manual of Standards and Recommended Practices, Section C-Part Ⅱ: Specifications for Design Construction of freight cars. Washington:The Association of American Railroads Published,1997
    [182]GB 50017-2003.钢结构设计规范.北京:中国标准出版社,2003
    [183]Bishop N W M, Sherratt F. Finite Element Based Fatigue Calculations. Farnham UK: National Agency for Finite Element Methods and Standards Published,2000
    [184]Haiba M, Barton D C, Brooks P C, et al. Review of Life Assessment Techniques Applied to Dynamically Loaded Automotive Conlponents. Computers & Structures, 2002,80(5,6):481-494
    [185]Conle F A, Mousseau C W. Using Vehicle Dynamics Simulations and Finite-element Results to Generate Fatigue Life Contours for Chassis Components. International Journal of Fatigue,1991,13(03):195-205
    [186]Socie D F, Morrow J D. Review of Contemporaty Approaches to Fatigue Damage Analysis-A Report of The Fracture Control Program. University of Illinois Published, 1976
    [187]Ince A, Glinka G. A Modification of Morrow and Smith-Watson-Topper Mean Stress Correction Models. Fatigue & Fracture of Engineering Materials & Structures,34(11): 854-867
    [188]David D W. Limits on Morrow Mean Stress Correction of Manson-Coffin Life Prediction Models. Proceedings of ASME Turbo Expo 2011, Vancouver, Canada, 2011:85-92
    [189]Atzori B, Meneghetti G, Ricotta M. A Compatible Method to Summarise The Low-And High-Cycle Fatigue Test Results of Ductile Irons And Structural Steels. Giornata IGF Forni di Sopra (UD),2012,153-166
    [190]聂宏,乔新.一种新的应变疲劳材质参数估算方法.南京航空学院学报,1992,24(02):226-231.
    [191]聂宏,常龙.基于局部应力应变法估算高周疲劳寿命.南京航空航天大学学报,2000,32(01):75-79
    [192]王甲畏,王德禹.基于热点应力的FPSO焊接结构疲劳问题研究.船舶工程,2005,27(01):62-66
    [193]彭凡,姚云建,顾勇军.热点应力法评定焊接接头疲劳强度的影响因素.焊接学报,2010,31(07):83-86

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700