用户名: 密码: 验证码:
TC4板材局部自阻电加热数控渐进成形的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛及钛合金具有优良的性能,在航空航天等部门得到广泛使用,目前应用数量最多的钛合金是TC4。现有的钛合金热加工制造方法工艺复杂,加工费用昂贵,延长了制作周期。而金属板材单点数控渐进成形技术是一种先进的无模成形技术,能够适应产品的多品种、少批量生产。
     为了实现TC4钛合金等难成形板料的数控渐进成形,本文首次提出难成形板料局部自阻电加热数控渐进成形技术,并构建了一套实验装置,采用理论分析、数值分析和实验研究相结合的研究方法,对成形机理、工艺数值分析、成形实验、摩擦磨损机理、摩擦和润滑等方面展开了研究,为这项技术的实际应用提供了理论和工艺依据。主要研究内容和学术贡献如下:
     (1)研究了成形机理。局部自阻电加热渐进成形是一种剪切变形,厚度变化遵循余弦定理。加工侧板料能够形成综合性能良好的网篮组织。通过分析成形原理,找到了研究的关键因素为电加热原理、热传递和高温塑性成形,并找到了相应的材料和工艺因素。
     (2)采用非线性有限元分析软件Marc对TC4钛板局部自阻电加热渐进成形进行数值分析,提出了模拟方法和过程,分析了加工中电压和电流的分布,各种工艺因素对温度场、工具头受力、板料应力和应变的影响规律。根据板料受力状态,把加工区域分为三个部分:弯曲变形,均匀剪切成形,反向弯曲成形。综合考虑加工中应力、应变、加工效率、成形精度和板料氧化等因素,在加工中应该采用较大的电流、层间距和中等工具头直径。
     (3)采用正交试验对数值分析进行了验证,确定了各工艺因素对板料加工温度和成形极限影响的显著性水平排列和影响规律。结论表明,电流和进给速度是最重要的工艺因素。TC4板料未加工侧的最佳成形温度范围为500~600℃。确定了各工艺因素对成形精度的影响规律,针对反向成形小角度零件出现的鼓包问题,提出了正向成形然后反向成形的解决办法。针对钛板的热胀冷缩效应,提出了放大加工模型的办法。分析了工艺因素对零件表面形貌的影响规律,提出采用控制电流在线动态监控温度的方法。成形后材料的硬度得到提高,而抗拉强度降低。合理控制成形温度,并防止板料在空气中的氧化,是提高成形件材料性能的关键因素。
     (4)对金属板料渐进成形和局部自阻电加热渐进成形摩擦机理进行了研究,指出可以用黏着摩擦理论描述力学模型。局部自阻电加热数控渐进成形的摩擦是一种混合摩擦,分为黏着干摩擦区和边界摩擦区,提出了摩擦力计算公式,并找到了提高加工中润滑的办法。
     (5)通过研究工艺参数对成形中的摩擦和磨损的影响,提出寻找一层厚度适宜的二硫化钼耐高温自润滑层,是提高润滑和TC4板料性能,减少板料氧化和磨损的关键。研究表明,电沉积镍基二硫化钼自润滑涂层是一种理想的润滑方法,并提出了一套工艺过程和最佳工艺参数。
Titanium alloys have been widely used for aerospace applications because of superior mechanical properties, and Ti-6Al-4V is the most commonly used alpha/bata titanium alloy in the world. Low-speed forming techniques, such as superplastic forming, are usually used to process Ti-6Al-4V at present, but complex heat-resistant dies and expensive heating equipment are needed. In recent years, single point incremental forming (SPIF) has emerged as a flexible forming method that allows manufacturing of 3D sculptured sheet metal parts without the need for expensive, dedicated tools, and the process is economical to form complex parts in small to medium batches.
     In order to apply the single point incremental forming technique in the forming of Ti-6Al-4V titanium sheet, in the current work, a novel technique named electric hot single point incremental forming (EHSPIF) was proposed to process hard-to-form sheet metals, and a processing system was developed. With the help of theoretical analysis, numerical analysis and experimental study, the research presented in the dissertation includes the forming mechanism, the numerical analysis and optimization of the technology, forming experiment of Ti-6Al-4V titanium sheet, the mechanism of friction and wear, and abrasion and lubrication test. The research provides a theoretical and technical basis for the practical application of this technology. The results and the main contributions of the dissertation are as following.
     (1) EHSPIF is a kind of shear deformation, the change of thickness obeys the cosine law, and basketwave microstructure with high performance can be formed on the formed side. By analyzing the forming mechanism, key factors including electric hot, heat transfer and hot plastic deformation were pointed out, and factors of material and processing were also given.
     (2) Electric hot incremental forming of Ti-6Al-4V titanium sheet was simulated by using MSC.Marc software, and the simulation method and process were given. The distribution of voltage and current was analysed, and influencing regularities of every factor on temperature fields, force, and stress and strain of sheet metal were also studied. According to force status of sheet, the forming region is divided into three parts: the bending deformation, shear forming, reverse bending forming. In order to aquire a workpiece with high combination property, larger current and step down, middle diameter tool were proposed to adopt.
     (3) Orthogonal experiments were designed to verify results of numerical analysis, factors were arranged according to the significance level of impact on temperature field and forming limit, and the influencing regularity of every factor was also given. The results show that the current and feed speed are important technological factors, and the best forming temperature range is 500~600℃. The influencing regularity of every factor on forming accuracy was also studied and given. Surface bulging occured when a small angle workpiece was negative formed, and the solution was given. The influence of each processing factor on the surface topography was studied, and online detection and current control were proposed to control temperature accurately. The material property of the forming workpiece was studied, and methods to improve the property were found.
     (4) Friction mechanisms of SPIF and EHSPIF were studied, and the mechanical model can be described by adhesive friction theory. The friction of EHSPIF is a mixed friction, and is divided into adhesive dry friction and boundary friction. The formula for calculating friction was proposed, and the way to improve lubricating effect was found.
     (6) Influences of process parameters on friction and wear were investigated, and a molybdenum disulfide self-lubricating coating with appropriate thickness was proposed to improve the lubricating effect and property of forming sheet, at the same time, to decrease the oxidation and wear of sheet metal. The electrolytic codepositon of molybdenum disulfide with nickel was proposed as an ideal lubrication used in EHSPI, and a set of processes and optimal parameters were suggested.
引文
[1]松原茂夫.板材の逐次逆张出し·绞り成形.见:日本塑性加工学会.平成7年度塑性加工春季讲演会论文集.日本:日本塑性加工学会,1995:209~210.
    [2]周六如.金属板料数控渐进成形机理及工艺的研究,[博士学位论文].武汉:华中科技大学, 2004.
    [3]熊庆华,王梦寒,周杰.TC4钛合金管径向温锻成形工艺仿真.锻压装备与制造技术. 2000(3):50~52.
    [4]黄卫东,陈静,杨海欧. TC4钛合金激光快速成形力学性能.航空制造技术,2007(5):73~76.
    [5]逯福生,贾翃.世界钛工业现状及今后发展趋势.钛工业进展.2001,18(5):1~5.
    [6]郝斌.世界钛材市场回顾与展望.钛工业进展.2000(2):5~8.
    [7]方景春.金属板材数控渐进成形工艺的研究,[硕士学位论文].武汉:华中科技大学,2006,4.
    [8] Leszak, E. Apparatus and Process for Incremental Dieless Forming Patent US3342051A1, published 1967-09-19.
    [9] Powell N., Andrew C. Incremental forming of flanged sheet metal components without dedicated dies. Proceedings of the Institution of Mechanical Engineers. Pt.B, Journal of Engineering Manufacture,1992,206:41~47.
    [10]松原茂夫.數值制禦逐次成形法.塑性と加工,1994, 35(406):1258~1263.
    [11]松原茂夫.半球头工具による薄板の逐次逆张出し成形.塑性と加工,1994, 35(406):1311~1316.
    [12]松原茂夫.板材の重ねあわせ逐次成形数値制御工作機械による成形システムの研究.第47回塑性加工連合講演會論文集,1996:145~146.
    [13] Jeswiet J., Micari F., Hirt G., et al. Asymmetric single point incremental forming of sheet metal. Annals of CIRP, 2005, 54(2):88~144.
    [14]北澤君義,林真太郎,山崎純生. 2パス法によるアルミニウム薄板のCNCインクリメンタル半球面状張出成形.第47回塑性加工連合講演會論文集,1996:125~126.
    [15]吉川勝幸.角R付き四角形シェルのインクリメンタル直角壁立て張出し成形.平成10年度塑性加工春季講演會論文集,1998:283~284.
    [16] Shim M. S., Park J J. The Formability of Aluminum Sheet in Incremental Forming. Journal of Materials Processing Technology,2001,113:654~658.
    [17]丁勇.金属板料数字化渐进成形工艺规划及轨迹优化,[博士学位论文].武汉:华中科技大学,2003.
    [18]莫健华,丁勇,黄树槐.金属板材数控单点渐进成形加工轨迹优化研究.中国机械工程, 2003,14(24):2138~2140.
    [19]毛锋.金属板材数控渐进成形关键技术研究,[博士学位论文].武汉:华中科技大学,2005.
    [20]北澤君義,中島明.薄板の円筒狀CNCインクリメンタル成形の成形限界.第48回塑性加工連合講演會論文集,1997:111~112.
    [21] Young D.,J eswiet J. Forming Limit Diagrams for Single Point Incremental Forming of Aluminum Sheet. Proceedings of the Institution of Mechanical Engineers,Part B,Journal of Engineering Manufacture,2005,219:359~364.
    [22]北澤君義等.各種薄鋼板のCNCインクリメンタルパス円すぃ狀張出し成形成形限界.第49回塑性加工連合講演會論文集,1998:131~132.
    [23]戴昆,苑世剑,王仲仁.轴对称件多道次数控点成形过程的理论分析.塑性工程学报,1998, 5(2):26~32.
    [24] Filice L., Frantini L., Micari F.Analysis of Material Formability in Incremental Forming [J],Annals of the CIRP,2002,51(1):199~202.
    [25]裴永生.薄板多点成形过程有限元分析的研究,[博士学位论文].吉林:吉林大学,2004.
    [26] Iseki H.. An approximate deformation analysis and FEM analysis for the incremental bulging of sheet metal using a spherical roller.Journal of Material Processing Technology,2001,111: 150~154.
    [27] Pohlak M.,Küttner R.,Majak J. Simulation of Incremental Forming of Sheet Metal Products. 4th International DAAAM Conference.Tallinn,Estonia,2004:143~145.
    [28] Bambach M., Hirt G., Junk S.Modelling and Experimental Evaluation of the Incremental CNC Sheet Metal Forming Process. Proceedings of VII International Conference on Computational Plasticity,COMPLAS VII.Barcelona,Spain:CIMNE,2003:1~16.
    [29] Bambach M., Hirt G., Ames J.Modeling of Optimised Strategies in the Incremental CNC Sheet Metal Forming Process. NUMIFORM 2004, Proceedings of the 8th International Conference on Numerical Methods in Indust rial Forming Processes. Columbus: the Ohio State University, 2004:1969~1974.
    [30] Bambach M., Hirt G. Performance Assessment of Element Formulations and Constitutive Laws for the Simulation of Incremental Sheet Forming (ISF). Proceedings of VIII International Conference on Computational Plasticity, COMPLAS VIII. Barcelona, Spain: CIMNE (International Center for Numerical Methods in Engineering),2005:1~4.
    [31] G. Ambrogio, I. Costantino, L. De Napoli, et al. Influence of some relevant process parameters on the dimensional accuracy in incremental forming: a numerical and experimental investigation. Journal of Material Processing Technology,2004,153–154:501~507.
    [32] Minoru Yamashita,Manabu Gotoh,Shin-Ya Atsumi.Numerical simulation of incremental forming of sheet metal.Journal of Material Processing Technology,2008,199:163~172.
    [33]李迎浩.金属板材数字化渐进成形过程数值模拟,[博士学位论文].武汉:华中科技大学,2005.
    [34]尹长城,王元勋,吴胜军.金属板材单点渐近成形过程的数值模拟.塑性工程学报,2005,12(2):17~21.
    [35]李泷杲,高霖,韦红余.金属板料渐进成形有限元仿真过程中复杂成形路径的构建方法.机械工程学报,2006,42(6):227~230.
    [36]甘文星.金属板材数控单点渐进成形回弹及数值模拟的研究,[硕士学位论文].武汉:华中科技大学,2003.
    [37] Allwood J.M., King G.P.F., Duflou J. 2005, A Structured Search for Applications of the Incremental Sheet Forming Process by Product Segmentation,Journal of Engineering Manufacture, 219/B2:239~244.
    [38] Ambrogio G., Filice L. A Simple Strategy for Improving Geomet ry Precision in Single Point Incremental Forming.Proceedings of the 8th International Conference on Technology of Plasticity (ICTP 2005).Verona,Italy,2005:357~358.
    [39]北澤君義,守国栄時.薄板の精密インクリメンタルフォーミングへの形状修正アルゴリズムの応用.塑性と加工(日本塑性加工学会誌)2003,44(506):224~228.
    [40] Ji Y.H., Park J.J.Formability of magnesium AZ31 sheet in the incremental forming at warm temperature. Journal of Materials Processing Technology,2008,Volume 201:354~358.
    [41] Duflou J. R.,Callebaut B.,Verbert J.,et al. Improved SPIF performance through dynamic local heating.International Journal of Machine Tools & Manufacture,2008,48:543~549.
    [42]莫健华,韩飞.金属板材数字化渐进成形技术研究现状.中国机械工程,2008,19(4):491~497.
    [43] Duflou J. R.,Lauwers B.,Verbert J.Medical Application of Single Point Incremental Forming: Cranial Plate Manufacturing.2nd International Conference on Advanced Research in Virtual and Rapid Prototyping,VRAP,Leiria, Portugal,2005:161~166.
    [44] Ambrogio G., De Napoli L., Filice L., et al. Application of Incremental Forming Process for High Customised Medical Product Manufacturing [J]. Journal of Materials Processing Technology,2005,162-163:156~162.
    [45] Jeswiet J.,Duflou J. R., Szekeres A.,et al. Custom Manufacture of a Solar Cooker—a Case Study.Advanced Materials Research,2005,68:487~492.
    [46]莫健华,黄树槐,韩明.板材数控无模成型加工机,中国,B21D 22,ZL00115996.8[P],2000- 8-31.
    [47] Arnold Puzik.Incremental Sheet Forming with a Robot System for an Industrial Application.The 41st CIRP Conference on Manufacturing Systems, 2008:421-424.
    [48] Lamminen L.,Tuominen T., Kivivuori S. Incremental Sheet Forming with an Industrial Robot- Forming Limits and Their effects on Component Design [J]. Advanced Materials Research, 2005,68:457~464.
    [49]徐树成,王先进.板成形中摩擦系数测定的研究进展.塑性工程学报,2000,7(2):40~43.
    [50]田中繁一等.塑性工具を用いた少数回押噫みインクリメンタルフォーミングによる曲面の成形,第48回塑性加工连合讲演会论文集,1997:129~130(日本).
    [51]康小明,马泽恩,何涛,等.机翼整体壁板喷丸成形CAD/CAM/CAE系统.航空制造工程, 1998(6):35~36.
    [52]李明哲,苏世忠.金属板料无模多点成形专用CAD/CAM与CAT软件的开发.中国机械工程,1993(3):14~16.
    [53]程万军,李明哲,陈建军.板材多点模成形的成形极限及回弹研究.农业机械学报,2001(2): 96~98.
    [54]李明哲,蔡中义,崔相吉,等.多点成形—金属板材柔性成形的新技术.金属成形工艺,2002, (6):5~9.
    [55]李东平,隋振,蔡中义,等.板材多点成形技术研究综述.塑性工程学报,2001,(2):46~48.
    [56]马振平,李宇.普旋道次曲线轨迹对成形影响分析.锻压技术,1999(1):21~24.
    [57] Masujiro Hayama,王强.普旋过程中旋轮道次的制定对产品的影响.锻压技术, 1989(5):45~51.
    [58]刘兴家,张奕黄.封头旋压成形旋轮运动轨迹确定方法的研究.塑性工程学报,1997(4):80~83.
    [59]康达昌,高西成,孟晓峰,等.平板毛坯普旋变形方式的研究.塑性工程学报,1998(4):102~106.
    [60]刘建华,杨合,李玉强,等.旋压技术基本原理的研究现状与发展趋势.重型机械学报,2002(3):1~5.
    [61]王成和,刘克璋.旋压技术.机械工业出版社,1986.
    [62]杜坤,杨合.多道次普旋技术研究进展.机械科学与技术,2001,7(4):558~561.
    [63] Iseki H. A simple deformation analysis for incremental bulging of sheet metal using high speedwater jet.Advanced Technology of Plasticity 1999 (Proceedings of the Sixth ICTP):1483~1488.
    [64] Lee Sung Ho, Lee Dong Nyung.Estimation of the magnetic pressure in tube expansion by electromagnetic forming. Journal of Materials Processing Technology,1996,57:311~315.
    [65]李春峰.高能率成形技术.北京:国防工业出版社,2001.
    [66]李洪涛,王绍安,邱春城,等.电磁成形工艺及其应用.电加工,1999,(3):36~39.
    [67]赵林,周锦进.板材电磁成形实验研究.金属成形工艺,1995,13(2):7~10.
    [68]周立军,杨学泉.电磁成形技术及其应用.水利电力机械,1996,(1):29~32.
    [69]欧阳伟,黄尚宇.电磁成形技术的研究与应用.塑性工程学报,2005,12(3):35~40.
    [70]季忠,吴诗惇,李淼泉.板料激光成形时的温度场研究[J]塑性工程学报,1997(6):14~18.
    [71]陈敦军,向毅斌,李淼泉,等.激光成形工艺方法及其发展前景.热加工工艺,2000,(3):50~51.
    [72]方刚.激光成形技术的特点及其应用.应用激光,2001,21(2):107~110.
    [73]周建忠,张永康,杨继昌,等.基于激光冲击波的板料塑性成形新技术.中国机械工程,2002 (22):1938~1941.
    [74]杨继昌,周建忠,张永康,等.激光冲压金属板料成形的研究.江苏大学学报(自然科学版),2002,(1):1~4.
    [75]张恒大.月球车钛合金轮圈的热旋压成形工艺研究[硕士学位论文].哈尔滨:哈尔滨工业大学,2006.
    [76]工程材料实用手册编辑委员会.工程材料实用手册,铝合金镁合金钛合金.中国标准出版社.1989:589~590.
    [77]《中国航空材料手册》编辑委员会.TC4.中国航空材料手册,中国标准出版社,2002,第4卷:104~132.
    [78]李寿萱.板金成形原理与工艺.西北工业大学出版社,1985.
    [79]理有亲,林兆荣,陈春奎,等.钛板冲压成形技术.国防工业出版社,1986.
    [80]姚泽坤.锻造工艺学.西北工业大学出版社,1998.
    [81] Metals Park,Ohio.Forming,ASM Metal Handbook,8th Edition,Vol4,1970.
    [82]蒋骏,理有亲,张中元.钛合金零件制造技术.国防工业出版社,1991.
    [83] Hussain G.,Gao L., Hayat N., et al. Tool and lubrication for negative incremental forming of a commercially pure titanium sheet. Journal of Materials Processing Technology, 2008, 203: 193~201.
    [84] Hussain G.,Gao L.,Zhang Z.Y. Formability evaluation of a pure titanium sheet in the cold incremental forming process. The International Journal of Advanced ManufacturingTechnology,2008,37:920~926.
    [85] Duflou J.R., Callebaut1 B., Verbert J., et al.Laser assisted incremental forming: formability and accuracy improvement. Annals of the CIRP,2007,56:273~276.
    [86]陈中奎.金属板料冲压成形过程有限元数值模拟的研究与开发.北京航空航天大学,2000年12月.
    [87]陈火红,杨剑,薛小香,等.新编Marc有限元实例教程.北京:机械工业出版社,2007.
    [88]石磊.钛合金切削加工中刀具与工件性能匹配的研究,[硕士学位论文].济南:山东大学,2007.
    [89]中国机械工程学会焊接学会,电阻焊(IV)专业委员会.电阻焊理论与实践.北京:机械工业出版社,1994.
    [90] Tslaf A. L. A thermophysical criterion for the weldability of eleetric contact material in a steady-state regime. IEEE Tran. CHMT, 1982, CHMT-5(1):47~152.
    [91]中国机械工程学会焊接学会,焊接手册第二卷:材料的焊接.北京:机械工业出版社,2007.
    [92] Rong Shean Lee, Huan Chang Lin. Process design based on the deformation mechanism for the non-isothermal forging of Ti–6Al–4V alloy. Journal of Materials Proceesing Technology,1998,79(1-3):224~235.
    [93]赵振铎,邵明志,张召铎,等.金属塑性成形中的摩擦与润滑.北京:化学工业出版社,2004.
    [94]赵选民.试验设计方法.北京:科学出版社,2006:64~118.
    [95] Hussain G., Gao L. A novel method to test the thinning limits of sheet-metals in negative incremental forming.International Journal of Machine Tools and Manufacture, 2007,47(3- 4):419~435.
    [96]全永昕.摩擦磨损原理.杭州:浙江大学出版社,1988:147~167.
    [97]戴雄杰.摩擦学基础.上海:上海科学技术出版社,1984:1~22.
    [98]余俊.摩擦学.长沙:湖南科学技术出版社,1984:51~59.
    [99]茹铮.塑性加工摩擦学.北京:科学出版社,1992:25~162.
    [100]姚若浩.金属压力加工中的摩擦与润滑.北京:冶金工业出版社,1990:50~67.
    [101]郑林庆.摩擦学原理.北京:高等教育出版社,1994:187~197.
    [102]王松年.摩擦学原理及应用.北京:中国铁道出版社,1990:6~24.
    [103] Da Hai He,Rafael R Manory,Norm Grady.Wear of Railway Contact Wires Against Current Collector Materials.Wear,1998,215:146~155.
    [104] Shunichikubo, KojiKato. Effect of Arc Discharge on Wear Rate of Cu-impregnated Carbon StripinUn-lubricatedSliding Against Cu Trolley Under Electric Current. Wear,1998,216: 172~178.
    [105] Tu J.P.,Qi W. X.,Yang Y. Z.Effect of Aging Treatment on the Electrical Sliding Wear Behavior of Cu-Cr-Zr Alloy[J].Wear,2002,249:1021~1027.
    [106]李鹏.载流摩擦磨损试验机的研制及滑板材料摩擦磨损和载流性能研究, [博士学位论文].武汉:武汉材料保护研究所,2007.
    [107] Greenwood J. A. Constriction resistance and the real area of contact. British Journal of Applied Physics,1966,17:162.
    [108]凤仪,王文芳,王成福.电流密度对碳纤维/铜/石墨复合材料摩擦系数的影响.机械工程材料,2000,24(5):40.
    [109]凯尔A.电接触和电接触材料.北京:机械工业出版社,1993.
    [110] He Dahai, Rafael Manory.A novel electrical contact material with improved self-lubrication for railway current collectors.Wear,2001,249:626.
    [111] Chen Z., Liu P.,Verhoeven J. D., et al.Sliding wear behavior of deformation- processed Cu-15 vol. % Cr in situ composites. Wear,1996,195:214~222.
    [112] Chen Z., Liu P., Verhoeven J. D., et al.Electrotribological behavior of Cu-15 vol. % Cr in situ composites under dry sliding.Wear,1997,203-204:28~35.
    [113] Hiroki Nagasawa, Koji Kato. Wear mechanism of copper alloy wire sliding against iron-base strip under electric current.Wear,1998,216:179~183.
    [114]翟文杰,山本雄二.外加电场对边界润滑条件下钢—钢摩擦副摩擦磨损性能的影响.摩擦学学报,2000,6:435~438.
    [115] Zhaoa H.,Barber G. C., Liu J. Friction and wear in high speed sliding with and without electrical current. Wear,2001,249:409~414.
    [116]松山晋作.受电弓的受流摩擦学.电力牵引快报,1997,1:52~60.
    [117] He Da hai, Rafael Manory,Harry Sinkis.A sliding wear tester for overhead wires and current collectors in light rail systems.Wear,2000,239:10~20.
    [118] Konchits V. V., Kim C. K.Electric current passage and interface heating.Wear,1999,232:31.
    [119]张敏,凤仪.电流对碳纳米管-银-石墨复合材料摩擦磨损性能的影响.摩擦学学报,2005, 25(4):328~332.
    [120]贾淑果,郑茂盛,刘平,等.在加载电流作用下Cr对Cu-Ag合金磨损性能的影响.摩擦学学报,2005,25(5):484~488.
    [121]马行驰,何国求,陈成澍,等.现代轨道交通摩擦集电材料及相关载流摩擦磨损研究进展.材料导报,2007,21(3):63~66.
    [122]任志俊.粉末冶金摩擦材料的研究发展概况.机车车辆工艺,2001,6:1~5.
    [123]梁若清,冯勇祥,陆木林.日本电力机车受电弓滑板的发展及浸渍金属碳滑板的开发.机车电传动,1994,5:45~47.
    [124]刘建军,朱波,王成国.碳纤维复合材料电力机车受电弓滑板的研制.工程塑料应用, 2003,31(8):39~41.
    [125]阎兆旺,吴渝英,等.电力机车用碳-碳复合材料受电弓滑板.中国专利, CN1178745A,1998.
    [126] Roos A.,Chinyama G., Hedenqvist P.Thermal stability of pyrolytic tin oxide films on aluminum. Thin Solid Films,1993,236:40~45.
    [127] L aet J.,Scheers J.,Terryn H.,et al.Characterization of aluminum surface treatments with electrochemical impedance spectroscopy and spectroscopic ellipsometry. Electrochimica Acta, 1993,38:2103~2109.
    [128]徐洮,陈建敏,赵家政.多孔质铝阳极氧化膜的结构及其摩擦学性能研究.摩擦学报,1996, 16(2):97~104.
    [129]何文芳.钛阳极氧化.电镀与环保,1998,18(6):26~27.
    [130]庞迎春.钛合金表面多孔TiO2的制备及提高涂层结合性能的研究,[硕士学位论文].南京:南京航空航天大学,2007.
    [131]毕冬梅,龙北玉.钛合金微弧氧化膜形成过程中的特性研究.云南大学报,2005, 27(5A): 548~551.
    [132]杨龙.微弧氧化技术在Ti–6Al–4V表面制备钙/磷涂层的研究,[硕士学位论文].吉林:吉林大学,2006.
    [133]赵海军.铜-石墨及镍-石墨金属基自润滑复合材料的电沉积工艺和性能研究,[博士学位论文].上海:上海交通大学,2007.
    [134] Chang Y. C.,Chang Y. Y.,Lin C. I.Process aspects of the electrolytic codeposition of molybdenum disulfide with nickel.Electrochimica Acta,1998,43(3-4):315~324.
    [135] Kuo Shenglung.The influence of process parameters on the MoS2 content of Ni-MoS2 composite coating by the robust design method[J].Journal of the Chinese Institute of Engineers,2004,27 (2):243~251.
    [136]丁光玉,任卫,冯辉霞,等.高温固体自润滑复合材料的研究现状与进展.材料导报,2007, 21(5A):241~243.
    [137]曾华梁,吴仲达,陈钧武,等.电镀工艺手册.北京:机械工业出版社,1997:92~96.
    [138]夏益祥,李荻.钛合金镀后热处理对镀层结合力的影响.稀有金属材料与工程,2001, 30(5):388~391.
    [139] Ghouse M., Viswanathan M.,Ramachandran E. G.Electrodeposition of nickel-molybdenum disulfide and nickel-tungsten disulfide.Metal Finishing,1980,78(4):44~47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700