用户名: 密码: 验证码:
天气雷达观测资料质量控制方法研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多种雷达资料质量问题会对雷达资料的应用特别是雷达资料同化和降水估测等定量应用产生非常严重的影响,因此研究业务运行过程中天气雷达(中国新一代天气雷达CINRAD, WSR-88D,双偏振WSR-88D雷达)出现的各种质量问题(非气象回波,速度模糊)是具有重要的科学意义和实际意义的。本文首先对CINRAD业务运行出现的电磁干扰回波进行了分析和处理;并在此基础上发展了"Test Pattern"的识别方法,以此剔除了两者在反射率因子和径向速度中造成的污染;再对飓(台)风发生过程中,模糊的径向速度资料进行了分析,发展了拟合模糊速度和涡旋模型的方法,来生成背景涡旋风场,自动对观测速度进行退模糊;最后对双偏振雷达观测的生物回波进行了分析,发展了识别鸟类回波的方法,来剔除鸟类回波对径向速度带来的污染。本论文工作的开展提高了天气雷达基数据的质量,并为雷达产品的质量及其应用提供了强有力的基础。主要内容概括如下:
     (1)对新一代天气雷达在业务运行中遇到的干扰回波特点进行了分析,旨在解决雷达异常回波中的干扰回波问题,着重了解干扰回波在图形中显示中的特点,分析了多普勒(CINRAD/SA)雷达干扰回波的特点,即干扰回波的孤立性及其条幅状分布,并结合当前国内外滤波的部分方法,模拟人眼识别干扰回波过程中的思维逻辑,提出了人工智能的滤除干扰回波方案,并在实验中取得了较好的效果。
     (2)针对CINRADSA(B)业务运行中出现的"Test Pattern"进行分析,总结出"Test Pattern"的特点,同时对反射率因子和径向速度进行处理,得到区分该种回波资料与其他回波(降水回波、各种污染回波、晴空回波)的五个特征函数,包含反射率有效探测比率Rz, RF (Range Folding)值比率Rrf,有效回波匹配比率Rvz,反射率库间沿径向变化RNaz,反射率库间沿方位变化RNrz;并在此基础上,发展了基于模糊逻辑‘'Test Pattern'’的识别方法;通过对各种不同类型回波的统计结果说明该方法在识别‘'Test Pattern"中的作用;并且给出了镶嵌强降水回波的“Test Pattern"识别处理结果。
     (3)通过直接对飓(台)风观测的原始模糊速度资料进行参数化涡旋模型的拟合,发展了一种最小二乘法来估计飓(台)风的最大切向风速VM和它离飓(台)风涡旋中心的径向距离RM。在本方法中,由于模糊造成的锯齿状不连续性都通过一个非传统的方法包含在一个价值函数公式中,这样可以确保价值函数在全局极小值周围的平滑和收敛性。并用模拟的雷达速度观测值来检查在控制参数的空间(VM,RM)内,全局极小值周围的价值函数几何学特征,从理论上论述该涡旋分析方法模拟飓(台)风观测速度的可行性。
     (4)精细调整了涡旋分析,使VM和RM估计为高度的函数,因此可以为退模糊第一步中的背景检查在雷达扫描的每个仰角产生一个合适的背景径向速度场。这将以前开发的基于VAD的退模糊方法升级为自适应性地应用于飓(台)风扫描雷达径向速度中。对出现的严重模糊的径向速度的WSR-88D雷达飓风扫描观测到的飓风数据(602个体扫)、以及CINRAD/SA雷达扫描观测到的台风个例展开了测试,并用个例分析结果来举例说明了该涡旋分析方法升级后的稳定性和改进的性能。
     (5)基于模糊逻辑算法,对业务运行的KICT双偏振雷达在2012年秋季迁徙季节收集到的鸟类回波和昆虫回波分别进行了统计分析,并发展了鸟类回波的识别技术。该技术可以通过以下两个步骤实现:(1)利用现有的业务双偏振WSR-88D雷达回波分类算法,发展简化的雷达回波分类算法,简单的将观测到的雷达回波分为三类:降水回波,地物回波和生物回波;(2)利用对鸟类回波和昆虫回波的分析,提取了区分两者的偏振特征参数,再对已经判定为生物回波的回波点进行判断,找出其中的鸟类回波,并给予标记和剔除。
All kinds of radar data quality issues have very serious effects on radar data application, especially on radar data assimilation and quantitative precipitation estimation, so studying radar data quality problems (non-meteorological echo, especially non-meteorological echo caused by the radar hardware limitations or failure, and velocity aliasing) observed from operational weather radar (China New Generation of Weather Radar CINRAD, WSR-88D, WSR-88D dual polarization radar) has important scientific meaning and practical significances. Firstly, analyzes and processes the EMI (Electromagnetic Interference) echo observed from the CINRAD operation, and then develop "Test Pattern" identification algrithom, remove pollution cause by them for both reflectivity and radial velocity data. Analyze aliased radial velocity from hurricane (typhoon) wind, develop fitting vortex model to aliased velocity method, and generate background vortex wind field, dealiase observed velocity automatically. Finally, analyze biological echo from polarmetric radar observation, develop birds echo identification method to remove the radial velocity containments caused by birds echo. These works improve the quality of weather radar based data, and provide a strong foundation for the quality of the radar product and its application. The main contents are summarized as follows:
     (1) Collect the EMI echo observed from operation CINRAD, aimed at resolving the EMI abnormal echo problem, focus on understanding the graphic display characteristics of EMI echo, analyze the characteristics of the doppler (CINRAD/SA) radar EMI echo, which knows as isolation and the antenna-like distribution, combine with current filter methods, simulate the logic of identify EMI echo from human eye, propose an automatic method to filter out EMI echo, and good results achieved in the experiments by using this method.
     (2)"Test Pattern" caused by test signal or radar hardware failures in CINRAD S A and SB radar operational observations are investigated. In order to distinguish the "Test Pattern" from other types of radar echo such as, precipitation echo, clear air echo, all other kinds of clutters, five feature functions including reflectivity effective echo rate Rz, RF (Range Folding) value rate Rrf, effective echo mismatching rate Rvz, reflectivity gate to gate change along radial RNaz, reflectivity gate to gate change along azimuth RNrz, are proposed. Based on fuzzy logical method,"Test Pattern" identification algorithm has been developed. The statistical results form all kinds of radar echoes indicated the performance of the algorithm. Individual case analysis of "Test Pattern" with heavy precipitation echo inside was showed.
     (3) A least-squares method is developed to estimate the maximum tangential velocity Vm and its radial distance Rm from the hurricane vortex center by fitting a parametric vortex model directly to raw aliased velocities scanned from a hurricane. In this method, aliasing-caused zigzag-discontinuities are formulated into the cost-function via an unconventional approach to ensure the cost-function to be smooth and concave around the global minimum. Simulated radar velocity observations are used to examine the cost-function geometry around the global minimum in the space of control parameters (Vm, Rm).
     (4) This AR vortex analysis is refined in this paper to estimate Vm and RM as functions of height, so a suitable reference radial-velocity field can be produced on each tilt of radar scan for the reference check in the first step of dealiasing. This upgrades the previously developed VAD-based dealiasing method adaptively for applications to radar radial velocities scanned from hurricanes. The robustness and improved performance of the upgraded method are exemplified by the results from extensive tests with severely aliased radial velocities scanned by WSR-88D radars from hurricanes (602volumn scans) and CINRAD/SA from typhoons.
     (5) Based on the fuzzy logic algorithms, processing the collected birds echo and insects echo from operation KICT polarimetric radar in the fall of2012respectively by statistical analysis, then developing birds echo identification algorithm. This technology can be achieved through the following two steps:(1) using existed polarimetric WSR-88D radar echo classification algorithm to simply divide radar echo into three categories:precipitation, ground clutter and biological echoes.(2) Using birds echoes and insects echo analysis, extracting the polarization characteristic parameters to distinguish them, then examining the echo points that has been determined as biological echo, to identify birds echo then mark it and remove it.
引文
1.崔哲虎,程明虎.2004:区域膨胀法在剔除Doppler雷达径向速度中地物杂波的应用.气象科技,32(1):63-64.
    2.胡东明,伍志方.2003CINRAD/SA雷达日常维护及故障诊断方法气象,29(10):26-28.
    3.江源,刘黎平,庄薇.2009:多普勒天气雷达地物回波特征及其识别方法改进.应用气象学报,20(2):203-213.
    4.梁海河,张沛源,葛润生.2002:多普勒天气雷达风场退模糊方法研究.应用气象学报,13(5):591-560.
    5.刘黎平,吴林林,杨引民.2007:基于模糊逻辑的分步式超折射地物回波识别方法的建立和效果分析气象学报,65(2):252-260.
    6.刘黎平,王致君.1996:双线偏振雷达探测的云和地物回波的特性及其识别方法,高原气象,5(3):303—310.
    7.刘黎平,张沛源,梁海河,牛防,周海光.2003:双多普勒雷达风场反演误差和资料的质量控制.应用气象学报,14(1):17-29.
    8.闵锦忠,周振波,彭霞云,高庆九.2005:扩展VAP对单多普勒雷达径向风的反演及质量控制.南京大学学报,41(6):590-602.
    9.彭戎,游德辉.1993:一次超折射地物回波实例分析.贵州气象,17(1):43-46.
    10.邵玲玲,黄炎.2004:WSR-88D雷达降水产品的优化.气象,30(5):25-29.
    11.史锐,程明虎,崔哲虎,王柏忠.2004:长江流域多普勒雷达回波强度资料对比分析.气象,30(11):27-31.
    12.陶祖钰,石坚.1993:多普勒速度模糊的切向消除技术.应用气象学报,4(2):145~153.
    13.王改利,刘黎平,阮征.2007:多普勒雷达资料在暴雨临近预报中的应用.应用气象学报,18(3):288-295.
    14.王瑾,刘黎平.2009CINRAD/CD雷达反射率因子同化对中尺度数值模式云微物理量场调整的分析.高原气象,28(1):173-185.
    15.王红艳,刘黎平,王改利,庄薇,张志强,陈小雷.2009:多普勒天气雷达三维数字组网系统开发及应用.应用气象学报,20(2):214-224.
    16.王志武,周红根,林忠南.2005:新一代天气雷达SA&B的故障分析[J].现代雷达,27(1):16-18.
    17.肖弟权,何建新.1994:用TMS320C25实现天气雷达地物回波抑制成都科技大学学报,(5):88-92.
    18.肖艳姣,刘黎平.2006:新一代天气雷达网资料的三维格点化及拼图方法研究.气象学报,64(5):648-656.
    19.——,万玉发,王珏,王斌,王志斌.2012:一种自动多普勒雷达速度退模糊算法研究.高原气象,31(4):1119-1128.
    20.许小峰.2003:中国新一代多普勒天气雷达网的建设与技术应用.中国工程科学,05(6):7-14.
    21.杨传凤,黄秀韶,刁秀广.2005:济南CINRAD/SA雷达发射高压故障诊断.气象,31(1):88-89.
    22.俞小鼎,姚秀萍,熊廷南等编.多普勒天气雷达原理与业务应用.北京:气象出版社,2005,22-25.
    23.中国气象局培训中心.新一代天气雷达讲义.
    24.张建云,蔡启铭.1991:地物对双线偏振雷达探测的影响.高原气象,10(2):147-155.
    25.张培昌,杜秉玉,戴铁丕编.雷达气象学.北京:气象出版社,2001,102-117.
    26.张志强,刘黎平,谢明元,等.2007CINRAD三维拼图显示系统[J].气象,33(9):19-24.
    27.郑媛媛,俞小鼎等.2004:一次典型超级单体风暴的多普勒天气雷达观测分析.气象学报,62(3):317-328.
    28.张少波,陆汉城,张鹏,等.2007:基于MVAD技术的多普勒雷达径向速度退模糊方法的改进研究.热带气象学报,23(5):497-504.
    29.周海光,王玉彬.2005:2003年6月30口梅雨锋大暴雨β和γ中尺度结构的双线偏振雷达反演.气象学报,63(3):301-312.
    30.周红根,周向军,祁欣,王尧钧,汤建国,曹德煜.2007CINRAD/SA天气雷达伺服系统特殊故障分析.气象,33(2):98-101.
    31.周红根,朱敏华,段素莲,等.2005CINRAD/SA雷达故障分析.气象,31(10):39-42.
    32.周红根,柴秀梅,胡帆,蔡勤;周良;吴田.2008:新一代天气雷达回波异常情况分析.气象,34(6):112-115.
    33.周鑫,汤志亚,郭在华.2009:风场反演中距离圈上速度退模糊方法研究.成都信息工程大学学报,24(3):268-272.
    34. Andersson, T., P. P. Alberoni, P. Mezzasalma, D. B. Michelson, and S. Nanni,1997:Anomalous propagation:Identification from terrain and sea waves using vertical reflectivity profile analysis. Preprints,28th Conf. on Radar Meteorology. Austin, TX, Amer. Meteor. Soc.,93-94.
    35. Bachmann, S., Dusan Zrnic,2007:Spectral Density of Polarimetric Variables Separating Biological Scatterers in the VAD Display. J. Atmos. Oceanic Technol.,24,1186-1198.
    36. Bargan, D. W., and R. C. Brown,1980:Interactive radar velocity unfolding, 19th Conf. on Radar Meteorology, Miami, FL, Amer. Meteor. Soc.,278-283.
    37. Baron Services,2009:WSR-88D dual-polarization program report:Antenna component test.113 pp. [Available from Baron Services, Inc.,4930 Research Park Dr., Huntsville, AL 35805.]
    38. Battan, L. J.,1973:Radar Observation of the Atmosphere. University of Chicago Press,324 pp.
    39. Baynton, H. W.,1979:The case for Doppler radars along our hurricane affected coasts. Bull. Amer. Meteor. Soc.,60,1014-1023.
    40. Bech, J., B. Codina, J. Lorente, and D. Bebbington,2002:Monthly and daily variations of radar anomalous propagation conditions:How "normal" is normal propagation? Preprints, Second European Conf. on Radar Meteorology, Delft, Netherlands, Copernicus.
    41. Bellon, A., and A. Kilambi,1999:Updates to the McGill RAPID (Radar Data Analysis, Processing and Interactive Display) system. Preprints,29th Int. Conf. on RadarMeteorology, Montreal, QC, Canada, Amer. Meteor. Soc.,121-124.
    42. Bergen W. R., S. C. Albers,1988:Two and three dimensional de-daliasing of Doppler radar velocities. J. Atomos Ocean Technol.,7,118-128.
    43. Bluestein, H. B., C. W. Christopher, A. L. Pazmany,2004:Doppler Radar Observations of Dust Devils in Texas. Mon. Wea. Rev.,132,209-224.
    44. Boren T. A., J. R. Cruz, D. Zrnic.1986:An artificial intelligence approach to Doppler weather radar veloxity dealiasing. Proc 23rd Conf on Radar Meteorology, Snowmass, CO, Amer. Meteor. Soc.,107-110.
    45. Borowska, L., D. Zrnic,2012:Use of Ground Clutter to Monitor Polarimetric Radar Calibration. Journal of Atmospheric and Oceanic Technology,29,159-176.
    46. Brandes, E., G. Zhang, and J. Vivekanandan,2002:Experiments in rainfall estimation with polarimetric radar in a subtropical environment. J. Appl. Meteor.,41,674-685.
    47. Brown, R. A.,1998:Nomogram for aiding the interpretation of tornadic vortex signatures measured by Doppler radar. Wea. Forecasting,13,505-512.
    48.——, and V. T. Wood,1991:On the interpretation of single-Doppler velocity patterns within severe thunderstorms. Wea. Forecasting,6,32-48.
    49. Browning, K. A., and R. Wexler,1968:The determination of kinematic properties of a wind field using Doppler radar. J. Appl. Meteor.,7,105-113.
    50. Collier, C. G., S. Lovejoy, and G. L. Austin,1980:Analysis of bright bands from 3-D radar data. Preprints,19th Conf. on Radar Meteorology, Miami Beach, FL, Amer. Meteor. Soc.,44-47.
    51. Cornelius, R.,1994:Detecting ground clutter contamination of weather radar data with neural networks. Preprints, World Congress on Neural Networks, San Diego, CA, International Neural Network Society.
    52. Crowe, C., C. J. Schultz, M. R. Kumjian, L. D. Carey, W. A. Petersen,2012:Use of dual-polarization signatures in diagnosing tornadic potential. Electronic Journal of Operational Meteorology,13(5),57-78.
    53. da Silveira, R. B., and A. R. Holt.2001. An automatic identification of clutter and anomalous propagation in polarization diversity weather radar data using neural networks. IEEE Trans. Geosci. Remote Sens.,39,1777-1788.
    54. Doviak, R. J., and D. Zrnic,1998:Polarimetric upgrades to improve rainfallmeasurements. NOAA/NSSL Tech. Rep.,110 pp.
    55.——,——,1992:Doppler Radar and Weather Observations.2d ed. Academic Press,562 pp.
    56.——, V. Bringi, A. Ryzhkov, A. Zahrai, and D. Zrnic',2000:Considerations for polarimetric upgrades to operational WSR-88D radars. J. Atmos. Oceanic Technol.,17,257-278.
    57.——, and D. S. Zurnic,2006:Doppler Radar and Weather Observations. Second Edition. Dover Publications,562 pp.
    58. Eilts, M. D., and S. D. Smith,1990:Efficient dealiasing of Doppler velocities using local environment constraints.J. Atmos. Oceanic Technol.,7,118-128.
    59. Emanuel, K. A.,1997:Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci.,54, 1014-1026.
    60. Fabry, F., C. Frush, I. Zawadzki, and A. Kilambi,1997:On the extraction of near-surface index of refraction using radar phase measurements from ground targets. J. Atmos. Oceanic Technol.,14,978-987.
    61. Fulton, R. A., J. P. Breidenbach, D. J. Seo, D. A. Miller, and T. O'Bannon,1998:The WSR-88D rainfall algorithm. Wea. Forecasting,13,377-395.
    62. Frush, C,, R. J, Doviak, M, Sachidananda, D. S. Zrnic,2002:Application of the SZ phase code to mitigate range-velocity ambiguities in weather radars. J. Atmos. Oceanic Technol.,19,413-430.
    63. Galletti, M., D. S. Zrnic, V. M. Melnikov, R. J. Doviak,2012:Degree of Polarization at Horizontal Transmit:Theory and Applications for Weather Radar. IEEE Transactions on Geoscience and Remote Sensing,50,1291-1301.
    64. Gao, J., K. K. Droegemeier,2004. A Variational Technique for Dealiasing Doppler Radial Velocity Data. Journal Of Applied Meteorology,43:934-940.
    65. Gao, J., K. K. Droegemeier, J. Gong, and Q. Xu,2004:A method for retrieving mean horizontal wind profiles from single-Doppler radar observations contaminated by aliasing. Mon. Wea. Rev.132:1399-1409.
    66. Giuli, D., M. Gherardelli, A. Freni, T. A. Seliga, and K. Aydin,1991:Rainfall and clutter discrimination by means of duallinear polarization radar measurements. J. Atmos. Oceanic Technol.,8, 777-789.
    67. Gong, J., L. Wang, and Q. Xu,2003:A three-step dealiasing method for Doppler velocity data quality control. J. Atmos. Oceanic Technol.,20,1738-1748.
    68. Gourley, Jonathan J., Pierre Tabary, and Jacques Parent du Chatelet,2007:A Fuzzy Logic Algorithm for the Separation of Precipitating from Nonprecipitating Echoes Using Polarimetric Radar Observations. J. Atmos. Oceanic Technol.,24,1439-1451.
    69. Grecu, M., and W. F. Krajewski,1999:Detection of anomalous propagation echoes in weather radar data using neural networks. IEEE Trans. Geosci. Remote Sens.,37,287-296.
    70. Grecu, M., and W. E. Krajewski,2000:An efficient methodology for detection of anomalous propagation echoes in radar reflectivity data using neural networks.J. Atmos. Oceanic Technol.17, 121-129.
    71. Haase, G., and T. Landelius,2004:Dealiasing of Doppler radar velocities using a torus mapping. J. Atmos. Oceanic Technol.,21,1566-1573.
    72. Hannesen, R.,2001:Quantitative precipitation estimation from radar data—A review of current methodologies. MUSIC European Commission Project, Deliverable 4.1,31 pp.
    73. Hodur, R. M.,1997:The Naval Research Laboratory's coupled ocean/atmosphere mesoscale prediction system (COAMPS). Mon. Wea. Rev.125,1414-1430.
    74. Hogg, W. D.,1978:Quality control and analysis of an archive of digital radar data. Preprints,18th Conf. on Radar Meteorology, Atlanta, GA, Amer. Meteor. Soc.,150-154.
    75. Hyang Suk Park, A. V. Ryzhkov, D. S. Zrnic, Kyung-Eak Kim. (2009) The Hydrometeor Classification Algorithm for the Polarimetric WSR-88D:Description and Application to an MCS. Weather and Forecasting 24:3,730-748.
    76. Ivic', I. R., D. S. Zrnic', and T. Y. Yu,2009:Use of coherency to improve signal detection in dual-polarization weather radars. J. Atmos. Oceanic Technol.,26,2474-2487.
    77. James C. N., Jr R A. Houze.2001:A real-time four dimensional Doppler dealiasing scheme. J Atmos. Ocean. Technol.,20,1738-1748.
    78. James. W. Wilson, Tammy M. Weckwerth, J. Vivekanandan, Roger M.Wakimoto and Robert W. Russell,1994:Boundary layer clear-air radar echoes:origin of echoes and accuracy of derives winds, B.Colorado,J. Atmos. Oceanic Technol.11,1184-1206.
    79. Jiang Y., and Q. Xu,2013:Adaptive dealiasing for Doppler velocities scanned from hurricanes and typhoons. J. Meteor. Sco. Japan, (revised).
    80. Jing, Z., and G. Wiener,1993:Two-dimensional dealiasing of Doppler velocities. J. Atmos. Oceanic Technol.,10,798-808.
    81. Joss, J., and R. W. Lee,1995:The application of radar-gauge comparisons to operational precipitation profile corrections. J. Appl. Meteor.,34,2612-2630.
    82. Jou, B. J-D., W-C. Lee, S-P. Liu, and Y-C. Kao,2008:Generalized VTD retrieval of atmospheric vortex kinematic structure. Part I:Formulation and error analysis. Mon. Wea. Rev.,136,995-1012.
    83. Keeler, R. J., and R. E. Passarelli,1990:Signal processing for atmospheric radars. Radar in Meteorology, D. Atlas, Ed., Amer.Meteor. Soc.,199-230.
    84. Keenan, T. D.,2003:Hydrometeor classification with a C-band polarimetric radar. Aust. Meteor. Mag., 52,23-31.
    85. Kessinger, C., S. Ellis, and J. Van Andel.2001. NEXRAD data quality:the AP clutter mitigation scheme. Preprints,30th International Conference on Radar Meteorology, Munich, Germany,707 709.
    86. Kessinger, C., S. Ellis, J. Vanandel, and J. Yee,2003:The AP clutter mitigation scheme for the WSR-88D. Preprints of 31st conference on radar meteorology, Seattle Washington, Amer. Meteor. Soc,526-529.
    87. Kosko, B.,1992:Neural Networks and Fuzzy Systems:A Dynamical Systems Approach to Machine Intelligence. Prentice Hall,449 pp.
    88. Krajewski, W. F., and B. Vignal,2001:Evaluation of anomalous propagation echo detection in WSR-88D data:A large sample case study. J. Atmos. Oceanic Technol.,18,807-814.
    89. Kumjian, M., A. V. Ryzhkov,2012:The impact of size sorting on the polarimetric radar variables. Journal of the Atmospheric Sciences,69,204-2060.
    90. Lakshmanan V, Hondl K, Stumpf G, et al.2003. Quality control of weather radar data using texture features and a neural network.5th Int'1 Conf. on. Adv. in Patt. Recogn., IEEE, Kolkota.
    91. Lee, G. W., Y.-H. Cho, K.-E. Kim, and I. Zawadzki,2005:Identification and removal of non-precipitation echoes using the characteristics of radar echoes. Preprints,32d Conf. on RadarMeteorology, Albuquerque, NM, Amer. Meteor. Soc., CDROM,4R.3.
    92. Lee, W-C., B. J-D. Jou, P-L. Chang, and S-M. Deng,1999:Tropical cyclone kinematic structure retrieved from single-Doppler radar observations. Part I:Interpretation of Doppler velocity patterns and the GBVTD technique. Mon. Wea. Rev.,127,2419-2439.
    93. Lee, R., G. Della Bruna, and J. Joss,1995:Intensity of ground clutter and of echoes of anomalous propagation and its elimination. Preprints,27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc.,651-652.
    94. Lim, S., V. Chandrasekar, and V. N. Bringi,2005:Hydrometeor classification system using dual-polarization radar measurements:Model improvements and in situ verification. IEEE Trans. Geosci. Remote Sens.,43,792-801.
    95. Liou, Y. C., T-C. C. Wang, W. C. Lee, and Y-J. Chang,2006:The retrieval of asymmetric tropical cyclone structures using Doppler radar observations and the method of extended GBVTD. Mon. Wea. Rev.,134,1140-1160.
    96. Liu, H., and V. Chandrasekar,2000:Classification of hydrometeors based on polarimetric radar measurements:Development of fuzzy logic and neuro-fuzzy systems, and in situ verification.
    97. Liu, Shun, Qin Xu, Pengfei Zhang,2005:Identifying Doppler Velocity Contamination Caused by Migrating Birds. Part II:Bayes Identification and Probability Tests. J. Atmos. Oceanic Technol.,22, 1114-1121.
    98. Marc Berenguer, Daniel Sempere-Torres, Carles. Corral, And Rafael Sanchez-Diezma,2005:A Fuzzy Logic Technique for Identifying Nonprecipitating Echoes in Radar Scans, Barcelona, Spain, J. Atmos. Oceanic Technol.23,1157-1180.
    99. Martin, William J., Alan Shapiro,2007:Discrimination of Bird and Insect Radar Echoes in Clear Air Using High-Resolution Radars. J. Atmos. Oceanic Technol.,24,1215-1230.
    100. Marzano, F., D. Scaranari, M. Montopoli, and G. Vulpiani,2008:Supervised classification and estimation of hydrometeors from C-band dual-polarized radars:A Bayesian approach. IEEE Trans. Geosci. Remote Sens.,46,85-98.
    101. Melnikov, V. M., D. S. Zrnic, R. M. Rabin, and P. Zhang,2008:Radar polarimetric signatures of fire plumes in Oklahoma, Geophys. Res. Lett.,35, L14815.
    102.——, D. Zrnic, R. Doviak, and J. Carter,2003:Calibration and performance analysis of NSSL's polarimetric WSR-88D. Report of the National Severe Storms Laboratory, Norman, OK,73069,77 pp.
    103.——, Richard J. Doviak, Dusan S. Zrnic, David. J. Stensrud,2011:Mapping Bragg Scatter with a Polarimetric WSR-88D. J. Atmos. Oceanic Technol.,28,1273-1285.
    104. Merritt M W.1984:Automatic velocity dealiasing for real-time applications. Proc 22nd conf on Radar Meteorolocy, Zurich, Amer. Meteor. Soc.,528-544.
    105. Mike Dixon, Cathy Kessinger and John Hubbert,2006:Echo classification within the spectral domain to discriminate ground clutter from meteorological targets.Boulder,Colorado, A.M.Society, Atlanta, GA,30
    106. Moszkowicz, S., G. J. Ciach, and W. F. Krajewski,1994:Statistical detection of anomalous propagation in radar reflectivity patterns. J. Atmos. Oceanic Technol.,11,1026-1034.
    107. Mueller, E. A., and A. L. Sims,1975:Statistics of high radar reflectivity gradients. Preprints,16th Radar Meteorology Conf., Houston,TX, Amer. Meteor. Soc.,401-403.
    108. Nicol, J. C., P. Tabary, J. Sugier, J. Parent-du-Chatelet, and G.Delrieu,2003:Non-weather echo identification for conventional operational radar. Preprints,31st Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc.,542-545.
    109. Pamment, J. A., and B. J. Conway,1998:Objective Identification of Echoes Due to Anomalous Propagation in Weather Radar Data. Journal of Atmospheric and Oceanic Technology,15,98-113.
    110.Pratte, F., R. Gagnon, and R. Cornelious,1993:Ground clutter characteristics and residue mapping. Preprints,26th Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc.,50-52.
    111.Pratte, R. J. Keeler, R. Gagnon, and D. Sirmans,1995:Clutter processing during anomalous propagation conditions. Preprints,27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor.Soc., 139-141.
    112.Ray, P., C. Ziegler,1977:De-Aliasing First-Moment Doppler Estimates.Journal Of Applied Meteorology,16,563-564.
    113.Riley, G. F., Jr., and P. M. Austin,1976:Some statistics of gradients of precipitation intensity. Preprints,17th Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc.,492-497.
    114.Rosenfeld, D., E. Amitai, and D. B. Wolff,1995:Classification of rain regimes by the three-dimensional properties of reflectivity fields.J. Appl. Meteor.,34,198-211.
    115.Ryzhkov, A. V., and D. S. Zrnic,1995:Comparison of dualpolarization radar estimators of rain. J. Atmos. Oceanic Technol.,12,249-256.
    116.——, Dusan Zrnic,1996:Assessment of Rainfall Measurement That Uses Specific Differential Phase. J. Appl. Meteor.,35,2080-2090.
    117.——, S. Giangrande, and T. Schuur,2003:Rainfall measurements with the polarimetric WSR-88D radar. Report of the National Severe Storms Laboratory, Norman, OK,73069,98 pp.
    118.——, Scott E. Giangrande, Valery M. Melnikov, Terry J. Schuur,2005a:Calibration Issues of Dual-Polarization Radar Measurements. J. Atmos. Oceanic Technol.,22,1138-1155.
    119.——, T. J. Schuur, D. W. Burgess, P. L. Heinselman, S.E.Giangrande, and D. S. Zrnic',2005b:The Joint Polarization Experiment:Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc.,86,809-824.
    120. Schuur, T. J., A. V. Ryzhkov, and P. L. Heinselman,2003a:Observations and classification of echoes with the polarimetric WSR-88D radar. NOAA/National Severe Storms Laboratory Rep.,46 pp.
    121.——, P. Heinselman, K. Scharfenberg, A. Ryzhkov, D. Zrnic, V. Melnikov, and J. Krause,2003b: Overview of the Joint Polarization Experiment (JPOLE), Report of the National Severe Storms Laboratory, Norman, OK,73069,39 pp.
    122. Smith, P. L.,1990:Precipitation measurement and hydrology:Panel report. Radar in Meteorology, D. Atlas, Ed., Amer. Meteor. Soc.,607-618.
    123. Steiner, M., C. Kessinger, and B. S. Ferrier,1999:Evaluation of algorithm parameters for radar data quality control. Preprints,29th Conf. on Radar Meteorology, Montreal, QC, Canada, Amer. Meteor. Soc.,582-585.
    124. Steiner, M., and J. A. Smith,2002:Use of Three-Dimensional Reflectivity Structure for Automated Detection and Removal of Nonprecipitating Echoes in Radar Data. Journal of Atmospheric and Oceanic Technology,19,673-686.
    125. Stanski, H. R., L. J. Wilson, and W. R. Burrows,1989:Survey of common verification methods in meteorology. World Meteorological Organization World Weather Watch Tech. Rep.8,114 pp.
    126. Straka, J. M.,1996:Hydrometeor fields in a supercell storm as deduced from dual-polarization radar. Preprints,18th Conf. on Severe Local Storms, San Francisco, CA, Amer. Meteor.Soc.,551-554.
    127.——, and D. S. Zrni_c,1993:An algorithm to deduce hydrometeor types and contents from multiparameter radar data. Preprints,26th Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc.,513-516.
    128. Tabary, P., G. Scialom, and U. Germann,2001:Real-time retrieval of the wind from aliased velocities measured by Doppler radars. J. Atmos. Oceanic Technol.18,875-882.
    129. Tang, L., J. Zhang, Y. Wang, and K. Howard,2011:Identification of biological and anomalous propagation echoes in weather radar observations-an imaging processing approach.35th Conf. on Radar Meteorology. Pittsburgh, PA, Amer. Meteor. Soc.
    130. Torres, S. M., Y. F, Dubel, D. S. Zrnic,2004:Design, implementation, and demonstration of a staggered PRT algorithm for the WSR-88D. J. Atmos. Oceanic Technol.21,1389-1399.
    131. VanAndel, J.,2001:Radar echo classifier algorithm development using Python. Preprints,30th Int. Conf, on Radar Meteorology, Munich, Germany, Amer. Meteor. Soc.,704-706.
    132. Vatistas, G. H., V. Kozel, and W. C. Mih,1991:A simpler model for concentrated vortices. Exp. Fluids,11,73-76.
    133. Vivekanandan, J., D. S. Zrni_c, S. Ellis, D. Oye, A. V. Ryzhkov, and J. M. Straka,1999:Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80,381-388.
    134. Weber, M. E., M. L. Stone, and J. A. Cullen,1993:Anomalous propagation associated with thunderstorm outflows. Preprints,26th Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc.,238-240.
    135. Willoughby, H. E., R. W. R. Darling, and M. E. Rahn,2006:Parametric representation of the primary hurricane vortex. Part I1:A new family of sectionally continuous profiles. Mon. Wea. Rev.,134,1102-1120.
    136. Wood, V. T.,1994:A technique for detecting a tropical cyclone center using a Doppler radar. J. Atmos. Oceanic Technol.,11,1207-1216.
    137.——, and L. W. White,2011:A New Parametric Model of Vortex Tangential-Wind Profiles: Development, Testing, and Verification. J. Atmos. Sci.,68,990-1006.
    138.——, and R. A. Brown,1992:Effects of radar proximity on single-Doppler velocity of axisymmetric rotation and divergence. Mon. Wea. Rev.,120,2798-2807.
    139. Wurman, J., and C. R. Alexander,2005:The 30 May 1998 Spencer, South Dakota, Storm. Part Ⅱ: Comparison of Observed Damage and Radar-Derived Winds in the Tornadoes. Mon. Wea. Rev.,133, 97-119.
    140. Xu, Q.,2009:Bayesian perspective of the unconventional approach for assimilating aliased radar radial velocities. Tellus,61A,631-634.
    141.——,2011:Measuring information content from observations for data assimilation:Spectral formulations and their implications to observational data compression. Tellus,63A,793-804.
    142.——, K. Nai, and L. Wei,2007:An innovation method for estimating radar radial-velocity observation error and background wind error covariances. Quart. J. Roy. Meteor. Soc.,133,407-415.
    143.——and——. (2012), A two-step variational method for analyzing severely aliased radar velocity observations with small Nyquist velocities. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2075.
    144.——,——, and L. Wei,2010:Fitting VAD wind to aliased radial-velocity observations-A minimization problem with multiple minima. Quart. J. Roy. Meteor. Soc.,136,451-461.
    145.——,——, L. Wei, P. Zhang, S. Liu, and D. Parrish,2011:A VAD-based dealiasing method for radar velocity data quality control. J. Atmos. Oceanic Technol.28,50-62.
    146.——,——, L. Wei, and Q. Zhao,2009:An unconventional approach for assimilating aliased radar radial velocities. Tellus,61A,621-630.
    147.——and L. Wei,2011:Measuring information content from observations for data assimilation: Utilities of spectral formulations for radar data compression. Tellus,63A,1014-1027.
    148.——, Y. Jiang, and L. Liu,2013:Fitting parametric vortex to aliased Doppler velocities scanned from hurricane. MWR, (revised).
    149. Yamada, Y., and M. Chong,1999:VAD-based determination of the Nyquist interval number of Doppler velocity aliasing without wind information. J. Meteor. Soc. Japan,77,447-457.
    150. Yo-Han Cho, Gyuwon Lee, Kyung-Eak Kim and Isztar Zawadzki,2006:Identification and Removal of Ground Echoes and Anomalous Propagation Using the Characteristics of Radar Echoes, Tae.Korea, J.Atmos. Oceanic Technol.23,1206-1222.
    151. Zahrai A, Zrnic D.,1997:Implementation of polarimetric capability for the WSR-88 D(NEXRAD) radar. Conference on Radar Meteorology,28th, Austin, TX.
    152. Zaugg S., G. Saporta, E. van Loon, H. Schmaljohann, F. Liechti,2008:Automatic identification of bird targets with radar via patterns produced by wing flapping. Journal of The Royal Society Interface 5:26,1041-1053.
    153. Zhang, G., J. Vivekanandan, and E. Brandes,2001:A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens.,39,830-841.
    154.——, S. Luchs, A. Ryzhkov, M. Xue, L. Ryzhkova, Q. Cao,2011:Winter precipitation microphysics characterized by polarimetric radar and video disdrometer observations in central Oklahoma. Journal of Applied Meteorology and Climatology,50,1558-1570.
    155. Zhu, L., and J. Gong,2006:A study on application OIQC method to velocity dealiasing of Doppler radar VAD velocity data. Plateau Meteorology,25,862-869.
    156. Zhang J., Wang S., Clarke B,2004 WSR-88D reflectivity quality control using horizontal and vertical reflectivity structure. Preprints, the 11th Conference on Aviation, Range, and Aerospace Meteorology, AMS, P5.4.
    157.——,——.2006. An Automated 2D Multipass Doppler Radar Velocity Dealiasing Scheme. Journal Of Atmospheric and Oceanic Technology,23:1239-1248.
    158. Zhang, P,2004. Detection of Birds and Insects Using Polarimetric Radar Observation. In 11th Conference on Aviation, Range, and Aerospace.
    159.——, Shun Liu, Qin Xu,2005a:Identifying Doppler Velocity Contamination Caused by Migrating Birds. Part I:Feature Extraction and Quantification. J. Atmos. Oceanic Technol.,22,1105-1113.
    160.——, A. V. Ryzhkov, and D. S. Zrnic,2005b:Observation of insects and birds with a polarimetric prototype of WSR-88D radar. Preprints,32d Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., CD-ROM,9R6.
    161.——, A. Ryzhkov, and D. Zrnic,2007:Kelvin-Helmholtz waves observed by a polarimetric prototype of the WSR-88D radar. In 33rd Conference on Radar Meteorology.
    162.——, D. Zrnic, and A. Ryzhkov,2013:Partial Beam Blockage Correction Using Polarimetric Radar Measurements. J. Atmos. Oceanic Technol.
    163. Zrnic, D., and A. Ryzhkov,1998:Observation of insects and birds with a polarimetric radar. IEEE Trans. Geosci. Remote Sens.,36,661-668.
    164.——,——,1999:Polarimetry for Weather Surveillance Radars. Bull. Amer. Meteor. Soc.,80,389-406.
    165.——,——, J. M. Straka, Y. Liu, and J. Vivekanandan,2001 Testing a procedure for the automatic classification of hydrometeor types. J. Atmos. Oceanic Technol.,18,892-913.
    166.——, R. Doviak, G. Zhang, and A. Ryzhkov,2010:Bias in differential reflectivity due to cross coupling through the radiation patterns of polarimetric weather radars. J. Atmos. Oceanic Technol., 27,1624-1637.
    167.——, Valery M. Melnikov, Alexander V. Ryzhkov,2006a:Correlation Coefficients between Horizontally and Vertically Polarized Returns from Ground Clutter. J. Atmos. Oceanic Technol.,23, 381-394.
    168.——,——, and J. K. Carter,2006b:Calibrating differential reflectivity on the WSR-88D. J. Atmos. Oceanic Technol.,23,944-951.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700