用户名: 密码: 验证码:
高功率掺镱光纤主振荡功率放大系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
种子源主振荡功率放大(MOPA)系统具有高斜率效率、输出脉冲特性可以通过种子光源控制等优点,因而成为近年来高脉冲能量、高峰值功率脉冲激光输出系统的主要方式。
     本论文对采用掺镱光纤的高功率MOPA进行了理论和实验方面的研究,重点研究了工作在较低重复率脉冲输出状态的高功率脉冲MOPA系统。论文的主要工作和创新点如下:
     1.首次对泵浦功率100~1000W的超高功率连续和脉冲状态掺镱光纤放大器(YDFA)进行了详细的理论模拟,分别研究了不同泵浦功率下,信号峰值、脉宽、重复率参数变化对放大效果的影响。模拟发现相邻脉冲之间的放大自发辐射(ASE)功率增长速度随泵浦功率的增加而极快的增大,以至于脉冲重复率降到几十kHz量级以下时,ASE功率超过了信号平均功率,这在普通高功率YDFA中观察不到。
     2.首次模拟分析了增益光纤中的ASE功率分布情况随时间的演变过程,发现了正向ASE功率分布曲线的峰值位置随着时间增加向光纤输出端移动的现象,由此解释了正向ASE功率增长慢于反向ASE功率的原因,提出了“ASE建立时间”的概念。
     3.首次模拟研究了脉冲泵浦状态下,不同泵浦脉冲宽度对信号脉冲放大效果的影响,发现信号脉冲的放大效果并非一直随泵浦脉宽的增加而增强,而是存在一个放大效果最强的泵浦脉宽;找到了不同泵浦功率下放大效果最强的泵浦脉冲宽度,综合比较了不同泵浦脉宽进行放大时的泵浦能量消耗、ASE功率、输出脉冲峰值。
     4.首次研究了脉冲泵浦YDFA中信号脉冲与泵浦脉冲的时间匹配对放大效果的影响。发现当信号脉冲峰值位于泵浦脉冲末尾时,能得到最强的放大效果;若信号脉冲注入时间略有延迟,放大效果会有比较明显的减弱。而且发现泵浦功率越大时,信号脉冲经过相同延迟时间之后,其放大效果减弱的程度越严重。
     5.对掺镱光纤MOPA系统的信号源激光器和采用脉冲泵浦方式的功率放大级分别进行了实验研究。通过优化放大级的泵浦脉冲宽度,成功把放大后输出光的ASE功率降到了连续泵浦状态下的1/8,同时信号脉冲峰值功率略高于连续泵浦。实验证明了脉冲泵浦方式与传统的连续泵浦方式相比,在抑制ASE功率方面有明显优势,与理论模拟的结论相符。
In recent years, the master-oscillator power-amplifier (MOPA) scheme becomes themain choice of high energy, high peak power pulsed laser systems due to its manyadvantages, such as high slope efficiency and easily manageable output pulsecharacteristics via the control of the seed source.
     In this thesis, high power MOPAs based on ytterbium-doped fibers are studiedboth theoretically and experimentally with an emphasis focused on low repetition,high power pulsed MOPA systems. The main work and findings are summarizedbellow:
     1. Ultra high power pumped continuous-wave and pulsed ytterbium-doped fiberamplifiers (YDFAs) under a pump power in the range100~1000W are systematicallystudied via numerical simulation for the first time, to the best of my knowledge. Theinfluences of the peak power, pulse width, and repetition rate of the signal pulse onthe performance of the amplifier under different pump-power levels are studied. Theresults show that the accumulation speed of the amplified spontaneous emission (ASE)power between two adjacent pulses increases drastically with the increasing of thepump power. When the repetition rate of the signal decreased to several tens of kHz,the ASE power surpasses the signal’s average power, which usually can not beobserved in conventional high power pumped YDFAs(<100W).
     2. The evolution of the ASE power distribution in the gain fiber along time isanalyzed for the first time. The feature that the peak of the forward ASE power movesto the fiber’s output end with the increasing of the time is noticed, and is used toexplain why the forward ASE power accumulates more slowly than the backwardASE power. A concept named “ASE power building time” is proposed.
     3. For pulse-pumped amplifiers, the influence of the width of the pump pulse onthe performance of the amplifier is studied for the first time, to my knowledge.Simulation results reveal that the amplification of the signal-pulse does not alwaysincrease with the width of the pump-pulse, and there exists an optimum pump-pulsewidth for a given signal-pulse width, at which the gain for the signal is the highest.The optimum pump-pulse widths under different pump power are analyzed, and thepump energy consumption, ASE power, output signal peak power under different pump-pulse widths are investigated.
     4. For the first time, the influence of the timing between the pump-pulse andsignal-pulse on the performance of the amplifier is analyzed. It has been found thatthe signal-pulse gets the maximum gain when its peak is placed to the end ofpump-pulse, and the gain will decrease dramatically if the signal pulse is delayed alittle bit. Farther research reveals that the higher the pump power, the more thedecrease of the gain for the signal-pulse with the same time delay from the optimumtiming.
     5. An Yb-doped fiber laser, the master-oscillator, and an Yb-doped pulselypumped fiber amplifier, the power-amplifier, are set up and experimentally studied.By optimizing the width of the pump-pulse, the ASE power is successfully reduced to1/8of that of the amplifier under continuous-wave pumping, while the peak power ofthe amplified signal-pulse is improved a little bit. The experimental results show thatthe pulsed-pump method is superior to the conventional continuous-pump method insuppressing the inter-pulse ASE power, which agrees well with our theoretialprediction.
引文
[1] M.Y.Cheng, Y.C.Chang, A.Galvanauskas et al.. High-energy and high peak powernanosecond pulse generation with beam quality control in200-μm core highlymultimode Yb-doped fiber amplifiers. Opt.Lett.,2005,30(4):358~360
    [2] F.D.Teodoro, C.D.Brooks. Multistage Yb-doped fiber amplifier generatingmegawattpeak-power, subnanosecond pulse. Opt.Lett.2005,30(24):3299-3301
    [3] S. Alam, A. T. Harker, R. J. Horley, F. Ghiringhelli et al.. All-Fibre, High Power,Cladding-Pumped1565nm MOPA Pumped by High Brightness1535nm PumpSources. in Conference on Lasers and Electro-Optics/Quantum Electronics andLaser Science Conference and Photonic Applications Systems Technologies, OSATechnical Digest (CD)(Optical Society of America,2008), paper CWJ4.
    [4] C.G.Ye, P.Yan, M.L.Gong et al.. Pulsed pumped Yb-doped fiber amplifier at lowrepetition rate. Chin.Opt.Lett.2005,3(5):249-250
    [5]张芳沛,楼祺洪,周军等.高功率双包层光纤放大器.光纤光学.2007,44(1):38-44
    [6]黄绣江,刘永智,隋展.超短脉冲光纤激光器新进展及其应用.应用光学.2004,25(6):16-21
    [7] M.W.Wtight, G.C.Valley. Yb-doped fiber amplifier for deep-space opticalcommunications. Lightwave Technol.2005,23(3):1369-1374
    [8] J.Limpert, S.Hofer, A.Liem et al..100-W average-power, high-energy nanosecondfiber amplifier. Applied Physics B.2002,75:477-479
    [9] F.Roser, J.Rothhard, B.Ortac et al..131W220fs fiber laser system. Optics Letters.2005,30(20):2754-2756
    [10]P.Dupriez, A.Piper, A.Malinowski et al.. High Average Power, High RepetitionRate, Picosecond Pulsed Fiber Master Oscillator Power Amplifier Source Seededby a Gain-Switched Laser Diode at1060nm. IEEE Photonics Technology Letters.2006,18(9):1013-1015
    [11]沈华,丁广雷,王屹山等.包层泵浦fs光纤放大器的实验研究.强激光与粒子束.2005,17(9):1341-1343
    [12]刘东峰,陈国夫,王贤华.自起振被动锁模掺Er3+光纤环形腔孤子激光器的实验研究.中国科学(A辑).1999,29(7):656-661
    [13]刘艳格,张春书,孙婷婷.输出平均功率大于2W的高功率、包层抽运、超短脉冲铒镱共掺光纤激光器.物理学报.2006,55(9):4679-4684
    [14]S.Maryashin, A.Unt, V.P.Gapontsev.10-mJ pulse energy and200W averagepower Yb-doped fiber laser. Proc.of SPIE.2006, Vol.6102
    [15]L.F.Kong, Q.H.Lou, J.Zhou et al.. Power amplifier for1064nm usingYb3+-doped double-clad fiber. Chinese Optics Letters.2004,2(2):98-99
    [16]D.B.S.Soh, C.Codemard, S.Wang et al.. A980nm Yb-doped fiber MOPA sourceand its frequency doubling. IEEE Photonics Technology Letters.2004,16(4):1032-1034
    [17]H.B.Lv, P.Zhou, H.Xiao et al.. All-fiberized Tm-doped fiber MOPA with30-Woutput power. Chinese Optics Letters.2012,10(5):051403
    [18]郭占城,付圣贵,贾秀杰等.用于相干合成大模面积光纤放大器的实验研究.光子学报.2007,36(9):1660-1663
    [19]E.Snitzer, H.Po, F.Hakimi et al, Double Clad, Offset Core Nd3+Fiber Laser,Proceedings of Conference on Optical Fiber Sensors,1988, Postdeadline paperPD5,533-536
    [20]H.Jeong, S.Choi, K.Oh, Continuous wave single transverse mode laser oscillationin a Nd3+-doped large core double clad fiber cavity with concatenated adiabatictapers, Optics Communications,2002,213:33-37
    [21]J.Wang, D.T.Walton, L.A. Zenteno, All-glass high NA Yb3+-doped double-cladlaser fibres made by outside-vapour deposition, Electronics Letters,2004,40(10),590-591
    [22]吕福云,樊亚仙,王宏杰等,包层抽运调Q光纤激光器的实验研究,中国激光,2003,30(12):1057-1060
    [23]郑瑶雷, Er3+/Yb3+共掺包层泵浦光纤激光器和放大器的理论和实验研究(硕士学位论文),中国科学院研究生院,2003
    [24]Anping Liu, Kenichi Ueda, The absorption characteristics of circular, offset,and rectangular double-clad fibers, Optics Communications,1996,132:511-518
    [25]M.H.Muendel, Optimal inner cladding shapes for double-clad fiber lasers, Lasersand Electro-Optics Conference(CLEO'96),1996, Summaries of papers presentedat the Conference on:209
    [26]Anping Liu, Kenichi Ueda, Propagation losses of pump light in rectangulardouble-clad fibers, Optical Engineering,1996,35(11):3130-3134
    [27]赵楚军,陈光辉,慕伟等,高功率光纤激光器抽运耦合技术研究进展,激光与光电子学进展,2007,44(3):35-43
    [28]Y.Jeong, J.K.Sahu, D.J.Richardson et al, Seeded erbium/ytterbium codoped fibreamplifier source with87W of single-frequency output power, Electronics Letters,2003,39(24)
    [29]L.F.Kong, Q.H.Lou, J.Zhou et al..133-W pulsed fiber amplifier withlarge-mode-area fiber. Optical Engineering.2006,45(1):010502
    [30]C.Alegria, Y.Jeong, C.Codemard et al,83-W Single-Frequency Narrow-Linewidth MOPA Using Large-Core Erbium–Ytterbium Co-Doped Fiber, IEEEPhotonics Technology Letters,2004,16(8):1825-1827
    [31]Y.Jeong, J.K.Sahu, D.B.S.Soh et al, Tunable single-frequencyytterbium-sensitized erbium-doped fiber MOPA source with150W (51.8dBm) ofoutputpower at1563nm, Optical Fiber Communication Conference,2005, PDP1
    [32]E.Yablonovith. Inhibited Spontaneous Emission in Solid-State Physics andElectronics. Phys.Rev.Lett.1987,58(20):2059-2062
    [33]S.John. Stronglocalization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett.1987,58(23):2486–2489
    [34]T.A.Birks, J.C.Knight, P.S.J.Russell. Endlessly single-mode photonic crystalfiber, Optics Letters.1997,22(13):961-963
    [35]J.K.Sahu, C.C.Renaud, K.Furusawa et al.. Jacketed air clad cladding pumpedytterbium doped fibre laser with wide tuning range. Electronics Letters.2001,37(18):1116-1117
    [36]W.J.Wadsworth, R.M.Percival, G.Bouwmans et al.. High power air-clad photoniccrystal fibre laser. Optics Express.2003,11(1):48-53
    [37]K.Li, Y.S.Wang, W.Zhao et al.. High-power double-clad large-mode-areaphotonic crystal fiber laser. Chinese Optics Letters.2005,3(8):457-459
    [38]V.Pureur, L.Bigot, G.Bouwmans et al.. Ytterbium-doped solid core photonicbandgap fiber for laser operation around980nm. Applied Physics Letters.2008,92:061113
    [39]J.Boullet, Y.Zaouter, R.Desmarchelier et al.. High power ytterbium-dopedrod-type three-level photonic crystal fiber laser. Optics Express.2008,16(22):17891-17902
    [40]M.Hildebrandt, M.Frede, P.Kwee et al.. Single-frequency master-oscillatorphotonic crystal fiber amplifier with148W output power. Optics Express.2006,14(23):11071-11076
    [41]刘博文,胡明列,宋有建等.高功率掺镱大模面积光子晶体光纤飞秒激光放大器的实验研究.中国激光.2008,35(3):479-480
    [42]A.Shirakawa, H.Maruyama, K.Ueda et al.. High-power Yb-doped photonicbandgap fiber amplifier at1150-1200nm. Optics Express.2009,17(2):447-454
    [43]E.Stiles. New developments in IPG fiber laser technology. Proceedings of the5thInternational Workshop on Fiber Lasers.2009
    [44]K.K.Chen, J.H.V.Price, S.Alam et al.. Polarisation maintaining100W Yb-fiberMOPA producing μJ pulses tunable in duration from1to21ps. Optics Express.2010,18(14):14385-14394
    [45]L.Lago, A.Mussot, M.Douay et al.. High-energy Yb-doped fiber MOPA in thens-kHz regime for large-scale laser facilities front-end. SPIE.2011,791410
    [46]C.Zheng, H.T.Zhang, W.Y.Cheng et al.. Single Mode MOPA StructuredAll-Fiber Yb Pulse Fiber Amplifier at Low Repetition. Laser Physics.2011,21(6):1081-1084
    [47]C.Zhu, I.N.Hu, X.Q.Ma et al.. Single-frequency and single-transverse modeYb-doped CCC fiber MOPA with robust polarization SBS-free511W output.OSA/ASSP.2011
    [48]D.Engin, W.Lu, F.Kimpel et al.. Short-wavelength (1010-1030nm)Yb-fiber-MOPA-based multi-aperture high-power uplink laser beacons for spacecommunication. SPIE.2012,82460k
    [49]A.K.Zaytsev, C.L.Wang, C.H.Lin et al.. Effective pulse recompression afternonlinear spectral broadening in picosecond Yb-doped fiber amplifier. LaserPhysics.2012,22(2):447-450
    [50]L.Zhou, J.P.Ning, C.Chen. High Power Er/Yb Codoped Double Clad FiberPulsed Amplifier Based on an All-Fiber Configuration. Chinese Physics Letters.2009,26(6):064215
    [51]L.Zhou, J.P.Ning, C.Chen et al.. Analysis of a novel stimulated Brilluin scatteringsuppression mechanism through self phase modulation process in the high powershort pulse fiber amplifier. Journal of Optoelectronics and Biomedical Materials.2009,1(1):157-164
    [52]韩群,宁继平,周雷等.高功率Er/Yb共掺光纤脉冲放大器中ASE的影响分析.激光技术.2009,33(5):541-544
    [53]韩群,宁继平,张伟毅等.高功率抽运铒镱共掺光纤放大器中放大自发辐射抑制方法的研究.光学学报.2009,29(12):252-257
    [54]白晓磊,宁继平,张伟毅等.脉冲泵浦双包层掺Yb3+光纤放大器理论研究.半导体光电.2010,31(4):512-517
    [55]W.Y.Zhang, J.P.Ning, B.Chen. Suppression of ASE by Using Pulsed-PumpedTechnique in Fiber Amplifier. Advanced Materials Research.2012,vols403-408:2508-2512
    [56]H.M.Pask, R.J.Carman, D.C.Hanna et al.. Ytterbium-doped silica fiber lasers:versatile sources for the1-1.2μm region. IEEE Journal of Selected Topics inQuantum Electronics.1995,1(1):2-13
    [57]D.C.Hanna, R.W.Percival, I.R.Perry et al.. An ytterbium-doped monomode fiberlaser: broadly tunable operation from1.010μm to1.162μm and three-leveloperation at974nm. Journal of Modern Optics.1990,37(4):517-525
    [58]刘东峰,陈国夫,王贤华等.掺Yb3+光纤激光器及放大器.激光与红外.1999,29(4):243-245
    [59]R.Paschotta, J.Nilsson, A.C.Tropper et al.. Ytterbium-doped fiber amplifiers.IEEE Journal of Quantum Electronics.1997,33(7):1049-1056
    [60]杜戈果,激光介质掺杂浓度浅议,激光与红外,2000,30(1):58-60
    [61]F.He, J.H.V.Price, D.J.Richardson. Optimisation of short pulse multi-stage Ybfiber amplifier systems using commercial gain-modelling software. Conference onLasers and Electro-Optics (CLEO).2006
    [62]F.He, J.H.V.Price, K.T.Vu et al.. Optimisation of cascaded Yb fiber amplifierchains using numerical-modelling. Optics Express.2006,14(26):12846-12858
    [63]Y.Wang, C.Q.Xu. Modeling and optimization of Q-switched double-clad fiberlasers. Applied Optics.2006,45(9):2058-2071
    [64]P.Myslinski, D.Nguyen, J.Chrostowski. Effects of Concentration on thePerformance of Erbium-Doped Fiber Amplifiers. Lightwave Technology.15(1):112-120
    [65]T.J.Whitley, R.Wyatt. Alternative Gaussian spot size polynomial for use withdoped fiber amplifiers. Photonics Technology Letters.1993.5:1325–1327
    [66]P.Myslinski, J.Chrostowski. Gaussian mode radius polynomials for modelingdoped fiber amplifiers and lasers, Microwave and Optical Technology Letters.1996,11(2):61–64
    [67]陆金甫,关治,偏微分方程数值解法,北京:清华大学出版社,1987
    [68]汤怀民,胡健伟,微分方程数值解法,南开大学出版社,1990
    [69]C.G..Ye, P.Yan, M.L.Gong et al.. Pulsed pumped Yb-doped fiber amplifier at lowrepetition rate. Chinese Optics Letters,2005,3(5):249-250
    [70]C.C.Renaud, H.L.Offerhaus, J.A.Alvarez-Chavez et al.. Characteristics ofQ-Switched Cladding-Pumped Ytterbium-Doped Fiber Lasers with DifferentHigh-Energy Fiber Designs. IEEE Journal of Quantum Electronics,2001,37(2):199-206
    [71]胡姝玲,谢春霞,吕福云等.脉冲泵浦掺镱双包层光纤激光器的动力学研究.光子学报.2005,34(3):329-332
    [72]C.Bohling, H.Zimmermann, K.Hohmann et al.. Synchronised Pulsed PumpedFiber Amplifiers. OSA,2007
    [73]Y.Kong, Q.Z.Liu, D.Chen et al.. Pulsed pumped Yb3+-doped double-claddingfiber amplifier. Journal of Modern Optics,2009,56(5):597-600
    [74]X.J.Huang, B.L.Guo, W.K.Yang et al.. Pulsed-pumped optical fiber amplifier.Chinese Optics Letters,2009,7(8):712-714
    [75]W.Yong, Alejandro Martinez-Rios, H.Po. Experimental study of stimulatedBrillouin and Raman scatterings in a Q-switched cladding-pumped fiber laser.Optical Fiber Technology,2004,10:201-214
    [76]Y.X.Fan,F.Y.Lu,S.L.Hu, et al.. Hybrid Q-Switched Cladding Pumped FiberLaser. Chinese Journal of Lasers.2002,A29:206-208
    [77]Z.J.Chen, A.B.Grudinin, J.Porta, J.D.Minelly. Enhanced Q-switching indouble-clad fiber lasers. Optics Letters.1998,23(6):454-456
    [78]Y.X.Fan, F.Y.Lu, S.L.Hu, et al..105-kW Peak-Power Double-Clad Fiber Laser.IEEE Photonics Technology Letters.2003,15(5):652-654
    [79]张亮,王智勇,张辉等.基于受激布里渊散射的调Q光纤激光器研究.激光技术.2008,32(1):44-46
    [80]C.N.Pannell, TUSSELL P St J, and T.P. Newson, Stimulated Brillouin scatteringin optical fibers: the effects of optical Amplification, Journal of the OpticalSociety of America B.1993,10(4):684-690
    [81]吕福云,翟爱亭,樊亚仙等.其于SBS过程自调Q掺铒光纤激光器的研究.中国激光.2001,28(4)
    [82]Nathan A. Brilliant, Stimulated Brillouin scattering in a dual-clad fiber amplifer.Journal of the Optical Society of America B.2002,19(11):2551-2557
    [83]G.P.Agrawal, Nonlinear Fiber Optics, Third Edition&Applications of NonlinearFiber Optics.
    [84]杜卫冲,谭华耀,刘颂豪,一种新型的光纤光栅调Q掺Er光纤激光器,光学学报,1997,17(8):1077-1079
    [85]吕福云,樊亚仙,刘玉洁等,全光纤调Q激光器的实验研究,南开大学学报,1999,32(1):74-76
    [86]周炳昆,高以智等.激光原理.国防工业出版社(第四版)
    [87]P.R.Morkel, K.P.Jedrzejewski, E.R.Taylor. Q-switched neodymium-dopedphosphate glass fibre lasers. IEEE Journal of Quantum Electronics.1993,29(7):2178-2188
    [88]D. Zalvidea, N. A. Russo, R. Duchowicz, M. Delgado Pinar, A. Díez, J.L. Cruzand M.V. Andrés, High repetition rate acoustic-induced Q-switched all-fiber laser,Opt. Commun.,2005,244:315-319
    [89]L. Luo and P.L. Chu, Passive Q-switched erbium-doped fibre laser with saturableabsorber, Opt. Commun.,1999,161:257-263
    [90]H. H. Kee, G. P. Lees and T. P. Newson, Narrow linewidth CW and Q-switcherbium-doped fiber loop laser, Electron. Lett.,1998,34(13):1318-1319
    [91]P. Roy, D. Pagnoux, L. Mouneu, and T. Midavaine, High efficiency1.53μm all-fibre pulsed source based on a Q-switched erbium doped fibre ring laser, Electron.Lett.,1997,33:1317-1318
    [92]C. C. Renaud, R. J. Selvas-Aguilar, J. Nilsson, A. B. Grudinin, and P. W. Turner,Compact, high energy Q-switched cladding pumped fiber laser with a tuning rangeover40nm, IEEE Photonics Technology Letters,1999,11(8):976-978
    [93]Product catalogs of Polaroid,Inc.,IRE-Polus,SDL,1998
    [94]FULBERT. L., ACCOMO R., MOLVA E., BESESTY P. and MOUTTET, Micro-chip laser rang finder, Proc. Conf. Lasers and. Electro Optics. Anaheim,1996,97-98
    [95]徐之光,戴武涛,樊亚仙等.可调谐的调Q掺Yb3+双包层光纤激光器[J].光子学报.2003,32(5):520-522
    [96]H.M.Zhao, Q.H.Lou, J.Zhou et al. High-Repetition-Rate MHz AcoustoopticQ-Switched Fiber Laser[J]. IEEE Photonics Letters.2008,20(12):1009-1011
    [97]Y.Z.Wang, D.Z.Yang, P.P.Jiang et al. Linearly polarized Q-switched pulse Ybfiber laser with average output power over10W[J]. Laser Physics Letters.2009,6(6):461-464
    [98]R.W.Gilsdorf, J.C.Palais. Single-mode fiber coupling efficiency withgraded-index rod lenses. Applied Optics.1994,33(16):3440-3445
    [99]W.J.Tomlinson. Applications of GRIN-rod lenses in optical fiber communicationsystems. Applied Optics.1980,19(12):1127-1138
    [100] J.C.Palais. Fiber coupling using graded-index rod lenses. Applied Optics.1980,19(12):2011-2018
    [101] A.Yariv. Optical Electronics,3rd edition. Holt, Rinehart&Winston, New York.1985, Chapter2, pp:23-24
    [102] W.C.Jing, D.G.Jia, F.Tang et al.. Design and implementation of a broadbandoptical rotary joint using C-lenses. Optics Express.2004,12(17):4088-4093
    [103] CASIX-A JDS Uniphase Company. Telecom optics: C-lens (CASIX,2004).http://www.casix.com/product/Telecom_C_lens.htm
    [104] S.Q.Wang, Y.Ruan, D.L.Yin, Z.W.Yang. The calculation and analyzing of theRL of C-lens collimator. Optoelectronic Technology and Information (in Chinese).2003,16(1):24-28
    [105] W.C.Jing, Y.Zhang, G.Zhou. New structure for bit synchronization in aterabit-per-second optical interconnection network. Optical Engineering.2002,41:1644-1649
    [106] W.Jing, Y.Zhang, G.Zhou et al.. Rotation angle optimization of the polarizationeigenmodes for detection of weak mode coupling in birefringent waveguides.Optics Express.2002,10:972-977
    [107]陈博,宁继平,张伟毅.同步脉冲泵浦抑制光纤放大自发辐射实验研究.激光与红外.2012,42(2):143-147

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700