用户名: 密码: 验证码:
多逆变器型微网运行与复合控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
包含不同能源形式和不同容量电源的微网系统是目前国际上研究的热点,微网主要包括旋转电机接口和逆变器型接口两种形式的微源,前者如微型燃气轮机、柴电机组、小水电等技术成熟,组网方便,而后者逆变器型微源不具备旋转电机或区域电网同步发电机组一样优良的外特性,如何控制微网中多个微源逆变器间的协调运行,实现不同容量逆变型微源间功率精确分配和环流控制,提升微网集群电源供电模式下供电质量,提出高效电能质量管理平台,是实现微网运行控制亟待解决的关键。
     针对多逆变器型微网运行与控制以及特殊电能质量问题,本文在国家重点基础研究发展计划项目(973计划)“分布式发电供能系统相关基础研究”子项“微网及含微网配电系统电能质量分析与控制”(2009CB219706)、湖南省研究生科研创新项目(CX2011B130)“多逆变器环境大型光伏电站(并网、微网)电能质量一些问题的研究”以及湖南大学博士论文选题资助计划资助下,详细阐述了含微网配电网高效电能质量控制方法,对微网综合控制策略、逆变型微源复合控制方法、含微网配电网电能质量综合控制平台进行了讨论,从逆变器型微网内部到外部配电网,从整体控制策略到单元控制方法,形成了较为完善的微网高效用能控制方法的基本研究方法和技术方案,研究重点及取得的成果主要体现在以下几个方面:
     1、论述了分布式发电和微网的研究现状,阐述了课题研究的意义,总结了微网结构和定义、系统特点、微源种类以及主要控制方法和控制的主要问题,比较了现有微网的控制策略及各自优势,对课题研究的主要科学内容和对微网运行与控制、特殊电能质量问题及复合控制方法以及群控平台的研究进展进行了综述。
     2、提出了一种微源对等控制和主从控制结合的多逆变器型微网的综合控制策略,在这种控制策略中,设计了具备恒压恒频功能的改进下垂控制器,作为微网孤岛运行时提供基准电压和频率并分享负荷功率变化,并以等效输出阻抗成感性为例,分析了等效输出阻抗对功率分配的影响机理及传统下垂控制法的局限,针对一种包含电压电流环的多环反馈控制器结构,通过构造积分器,重新设计等效输出阻抗,解除无功功率控制与等效输出阻抗的制衡关系,使改进下垂控制器在不同容量微源并联系统应用中具备较强的鲁棒性能,提高了负荷功率分配精度,有效降低系统环流;设计了适用于电压源逆变器的PQ控制器,保证微源输出功率等于设定值。构造了采用上述改进下垂控制器和PQ控制器的多逆变器型微网仿真平台用于后续章节分析。
     3、根据逆变型微源的拓扑结构、输出特性、网络构造以及负荷特性,针对微网特殊电能质量问题,在主动控制和被动治理两个层而提出了电能质量综合治理措施。其中,在主动控制方向,提出一种具备谐波和无功补偿功能的微源逆变器控制方法,可根据调度指令发出有功和补偿谐波及无功,补偿非线性负载产生的谐波,保证并网节点电能质量处于较高水平;仿照区域电网同步发电机运行特性提出一种基于虚拟同步发电机技术的微网逆变器控制器,并与传统功率下垂控制法对比,分析了其在抑制微网系统环流方面的优势;三相四线制微网逆变器输出电压波形受电网畸变电压、负载谐波电流和直流侧电压中点平衡的共同作用,为使直流侧电压中点维持稳定并使输出电压波形跟踪参考电压,针对一种四桥臂逆变器结构进行建模,提出一种三相四线制微网四桥臂逆变器高质量并网H-∞控制方法,构造高带宽鲁棒控制器对中线桥臂和三相桥臂进行统一控制,在较大中线电流和电网电压畸变情况下四桥臂逆变器能够克服各种扰动因素影响,能够提升微网供电质量;提出电网电压不平衡条件下改进PQ控制方法,基于平衡假设的前馈解耦PQ控制是微网典型的控制策略,通过对这种微网控制策略进行功率分析,并利用开关函数法分析并网逆变器输出性能,基于平衡假设的控制策略在电网电压不平衡条件下逆变器的输出会包含三次谐波和负序分量,在原有的PQ控制结构基础上叠加前馈负序电压控制环以抵销电网电压负序分量从而维持三相平衡,并通过改进的开关函数调制法降低三次谐波分量输出。
     4、在提出的微网控制结构基础上,进行了各工况暂态特性仿真分析,分析了典型的感应电动机负荷对微网暂态稳定的影响、微网联网、孤岛模式切换特殊时刻的供电质量水平、有目的的切除负荷、切除微源对微网系统供电的影响、改变微源输出功率时微网的暂态响应、对不平衡负荷、非线性负荷等引起的特殊电能质量问题进行了仿真分析。
     5、提出一种含微网和分布式发电以及电能质量控制装备的配网综合电能质量管理平台,介绍了基于多Agent系统的网架结构和通信方式及其约束条件,提出一种由核心层、汇聚层、接入层和对外服务层构成的含分布式发电、微网和电能质量控制装备的网络拓扑,在算例部分,提出微网与配电网静止无功发生器(DSTATCOM)联合运行系统和逆变型微源与静止无功补偿器(SVC)联合运行系统,详细研究具备相同逆变器拓扑结构的电能质量治理装备与微源的相互影响机理和控制域耦合关系以及电能质量治理装置在平抑微网电压波动、协助低电压穿越和补偿无功方面的效果,并探讨了APF装置不同安装点和控制方法应用于低压微网中效能比较,以及就高渗透率下微网并入配网的动态过程进行了详细分析并比较了逆变型接口微源和旋转电机型微源在支撑配网功率、辅助故障穿越过程中的作用。
     本文就多逆变器型微网运行与控制方法和一些特殊电能质量问题治理方法进行了讨论,主要提出了一种基于改进下垂控制方法和PQ控制的微网控制新结构,提出了主被动相结合的微网电能质量治理方案,并就逆变型微网特殊电能质量问题复合控制方法进行了讨论,完成了多逆变器型微网多工况暂态仿真,提出含分布式发电、微网以及电能质量控制装备的综合能力按管理平台,从理论到方法,从方法到仿真,配合集中控制平台可增强微网功率控制能力和提升电能质量水平,研究成果可应用于大型光伏电站组网、屋顶电站、智能配网、农业配电网、新能源以及其他特别是多组逆变器并联的场合。
Micro-grid system containing different energy forms and power source capacities has become a hot international research topic currently, which includes micro-sources with rotating machine interface and micro-sources with inverter interface. The technology of the former type such as micro turbine, diesel generator units and small hydroelectric power plant is already mature. However, the latter type is not equipped with excellent outside characteristics as synchronous generators in large power system. Thus, how to control the coordination mechanism between multi micro source inverters in micro-grid system, how to realize accurate power distribution between micro sources with different capacity as well as circulation control and how to improve power supply quality are the key problems to realize micro-grid operation that need to be solved urgently.
     Due to the operating and control as well as some special power quality problems of micro-grid with inverters, meanwhile, under the support of the following projects: the sub-item " Power Quality Analysis and Control of Micro-grid and distribution system with micro-grid"(2009CB219706) of The National Basic Research Program Basic Science Research of Distributed Power Generation Systems"(973Program) Hunan Province Graduate Student Scientific Research Innovation Project(CX2011B130)"Power Quality Research on Large Photovoltaic Station(Gird-connected state, Islanded state) with Multi Inverters Environment", Hunan university Ph.D. thesis selection aid scheme in2009, the paper illustrates efficient power quality control of distribution system with micro-grid, discusses the comprehensive control strategies of micro-grid, compound control methods of micro-sources with inverters, power quality integrated management platform of distribution system with micro-grid not only from inner parts of micro-grid with inverters to external distribution system, but also from the whole control strategies to unit control methods, thus forms comparatively perfect basic research and technical methods of efficient use of energy on micro-grid. The key points and achievements are showed as follows:
     1. Research status of distributed generation and micro-grid has been described. The paper expounds the subject significance and summarizes micro-grid structure and definition, system characteristics, micro source varieties,the principal control method and primary problems existing in control process. The existing micro-grid control strategies and their respective advantages have been contrasted. Then, the main subject research content, micro-grid operation and control, special power quality problems, compound control method and group control platform research have been summed up.
     2The integrated control scheme of multi-inverter interface micro-grid based on the combination of peer-to-peer and master-slave control is raised. In this control strategy, improved drooping controller with constant voltage constant frequency function has been designed to supply voltage and frequency standard for micro-grid in island operation mode and to share load power variation. The paper takes inductive equivalent output impedance as an example, analyzing its influence mechanism to power distribution and the limitations of traditional drooping control method. Directing at the multi-loop feedback controller structure containing voltage and current loop, by constituting integrators, redesigning equivalent output impedance, removing the balance relationship between reactive power control and equivalent output impedance, the improved drooping controller possesses strong robustness ability in application of micro source parallel system with different capacities, which increased load power distribution precision as well as reduced system circulation effectively. PQ controller which is suitable for voltage source inverter has been devised, ensuring that micro source output power is equal to the reference value. Multi-inverter interface micro-grid simulation platform adopted the above improved drooping controller and PQ controller is structured for subsequent chapters analysis.
     3.According to topology structure, output characteristics, network structure and load characteristics of micro-sources with inverters, comprehensive power quality control measures haves been presented in active and passive control aspects directing at special power quality problems in micro-grid. In the active control direction, inverter control method with harmonic suppression and reactive power compensation function has been put forward. Active power can be sent out while harmonic generated by nonlinear load and reactive power can compensated according to scheduling instruction. Meanwhile, power quality of grid-connected node can be guaranteed at high level. Following operation characteristic of synchronous generator in power grid, micro-grid inverter controller based on a virtual synchronous generator technology has been described. Moreover, contrasting with traditional power drooping control method, the paper analyzes its advantages in the way of suppressing circulation. Output voltage waveform of three-phase four-wire micro-grid inverter is affected by grid distortion voltage, harmonic current of load and neutral-point voltage balance at dc side jointly. In order to maintain neutral-point voltage stable and to make output voltage waveform tracking reference voltage, the paper has set up model according to a four-bridge arm inverter structure and proposed four-bridge arm inverter high quality grid-connected H-oocontrol method for three-phase four wire micro-grid. High bandwidth, wide robust controller has been built to control neutral bridge arm and three-phase bridge arm unified. The four-bridge arm inverter could overcome various kinds of disturbance factors under the large neutral current or grid voltage distortion conditions, which could improve micro-grid power quality. Improved PQ control methods under voltage unbalance conditions of power grid have been proposed. Feed-forward decoupling PQ control based on balance assumption is a typical micro-grid control strategy. By carrying out power analysis on the above control strategy and taking advantage of switch function method to analyze output performance of grid-connected inverter, the output of inverter would contain3th order harmonic and negative sequence component based on balance assumption control strategy under voltage unbalance condition. On the basis of the original PQ control structure, negative sequence voltage control loop has been imposed to offset negative sequence components in power grid voltage. Thereby, three-phase balance can be maintained. Furthermore,3th order harmonic component output could be reduced by the modified switch function modulation method.
     4、Based on the proposed micro-grid control structure, transient characteristics simulation analysis under various working conditions has been carried out. The paper analyzes and simulates the transient stability influence caused by typical induction motor load, power supply quality level at special moment when micro-grid change the operation mode, the impacts on micro-grid power supply when remove load or micro source purposely, micro-grid transient response process when change micro source output power and special power quality problem induced by unbalanced load or nonlinear load. The paper analyzes the dynamic process of micro-grid connecting to distribution grid in detail, compares the role of inverter interface micro source with rotating machine interface micro source in supporting distribution grid power and assisting passing through voltage breakdown process.
     5、An integrated management platform including micro-grid, distributed generation and power quality control equipments has been presented. Grid structure as well as communication mode with its constraint condition based on multi-agent system have been introduced. The paper raised the network topology consisting of core layer, convergence layer, access layer and foreign service layer. In the examples, micro-grid combined with DSTATCOM operation system as well as inverter interface micro-source combined with static var compensator (SVC) operation system have been proposed. Besides, the mutual interaction mechanism and coupling relation in control field between power quality management equipment equipped with the same topological structure as inverters and micro-sources, as well as the effect that power quality control equipment performed in the aspect of suppressing micro-grid voltage fluctuation, assisting low-voltage crossing and compensating reactive power have all been studied in detail.
     The paper discusses multi-inverter interface micro-grid operation and control methods as well as management methods on some special power quality problems. A new micro-grid control structure based on improved drooping control methods and PQ control has been presented chiefly. Besides, micro-grid power quality management scheme combined with active and passive control has been put forward. According to compound control methods on special power quality problems of inverter interface micro-grid, transient simulations of multi-inverter interface micro-grid under various working conditions have been completed. Furthermore, the paper set up integrated management platform including distributed generation, micro-grid and power quality control equipments from theory to method, then to simulation. Coordination of centralized control platform could strengthen the control ability of micro-grid power and promote the level of power quality. The research results can be applied in such occasions as large photovoltaic power station, roof power station, intelligent distribution network, agricultural distribution network, new energy and especially multi-group parallel inverters.
引文
[1]Lasseter R H. Micro-grids. IEEE Power Engineering Social Transmission Distribution Conference, New York,2002:27-31.
    [2]Lasseter R H, Piagi P. Micro-gird:a conceptual solution. Proceedings of IEEE 35th Annual Power Electronics Specialists Conference, Germany, Aachen, 2004:4285-4295.
    [3]郑健超.电力前沿技术的现状和前景.中国电力.1999,32(10):9-12.
    [4]王成山,肖朝霞,王守相.微网综合控制与分析.电力系统自动化,2008,32(7):98-103.
    [5]鲁宗相,王彩霞,闵勇,等.微电网研究综述.电力系统自动化,2007,31(19):100-107.
    [6]王成山,高菲,李鹏,等.可再生能源与分布式发电接入技术欧盟研究项目述评.南方电网技术,2008,2(6):1-6.
    [7]梁才浩,段献忠.分布式发电及其对电力系统的影响,电力系统自动化,2001,25(12):53-56.
    [8]梁有伟, 胡志坚, 陈允平.分布式发电及其在电力系统中的应用研究综述.电网技术.2003,27(12):1-6.
    [9]S. S. Venkata. What Future Distribution Engineers Need To Learn. IEEE Transaction On Power Systems.2004,19(1):17-21.
    [10]郭列锦,赵亮.基于可再生能源的分布式多目标供能系统.西安交通大学学报.2002,(5):441-445.
    [11]宋之平.试论分布式能量系统在电力建设中的地位.华北电力大学学报.2005,32(1):54-59.
    [12]王成山,李鹏.分布式发电、微网与智能配电网的发展与挑战.电力系统自动化,2010,34(2):10-14.
    [13]陈金富, 韩民晓, 刘迅.分布式电源并网中电能质量相关规范探讨.电力设备.2007,8(1):57-61.
    [14]陈哲照,薛媛,王涛,王云鹏.分布式电源并网系统控制策略的研究.电力电子技术,2008,42(4):41-44.
    [15]许世森,程健.燃料电池发电系统[M].北京:中国电力出版社,2005.
    [16]周德佳,赵争鸣,吴理博,等.基于仿真模型的太阳能光伏电池阵列特性分析.清华大学学报(自然科学版),2007,47(7):1109-1112.
    [17]沈海权,李庚银,周明.联网燃气轮机动态特性分析.电网技术,2004,28(16): 27-31.
    [18]韩晓平.分布式能源设计若干问题探讨.工厂动力,2004,(16):6-16.
    [19]王志群,朱守真,周双喜.分布式发电对配电网电压分布的影响.电力系统自动化,2004,28(16):56-60.
    [20]章杜锡,徐祥海,杨莉,甘德强.分布式电源对配电网过电压的影响.电力系统自动化,2007,31(12):50-54.
    [21]陈海焱,段献忠,陈金富.分布式发电对配网静态电压稳定性的影响.电网技术,2006,30(19):27-30.
    [22]陈海焱,陈金富,段献忠.含分布式电源的配电网潮流计算研究.电力系统自动化,2006,30(1):35-40.
    [23]刘杨华,吴政球,涂有庆,等.分布式发电及其并网技术综述.电网技术,2008,32(15):71-75.
    [24]陈海焱,陈金富,杨雄平.配电网中计及短路电流约束的分布式发电规划.电力系统自动化,2006,30(21):16-31.
    [25]江南,龚建荣,甘德强.考虑谐波影响的分布式电源准入功率计算.电力系统自动化,2007,31(3):19-23.
    [26]肖鑫鑫,刘东.分布式功能系统接入电网模型研究综述.华东电力,2008,36(2): 76-80.
    [27]李峰,李兴源,郝巍.不间断电力变电站中分布式电源接入系统的研究.继电器,2007,35(10):13-22.
    [28]王成山,郑海峰,谢莹华,等.计及分布式发电的配电系统随机潮流计算.电力系统自动化,2005,29(24):39-44.
    [29]理真,江文,解大,等.风电并网系统稳态运行的研究.华东电力,2007,35(3): 36-40.
    [30]王守相,江兴月,王成山.含风力发电机的配电网潮流计算.中国国际供电会议,2006.
    [31]吴晓朝,吴捷,杨金明,黄飞龙,周丹莹.风电场电能质量监测系统的研究与应用.计算机工程与设计,2006,27(19):3525-3527.
    [32]陈树勇,戴慧珠,白晓民,等.风电场的发电可靠性模型及其应用.中国电机工程学报,2000,20(3):26-29.
    [33]迟永宁,刘燕华,王伟胜,等.风电接入对电力系统的影响.电网技术,2007,31(31):77-81.
    [34]吕志鹏,罗安,荣飞,等.电网电压不平衡条件下微网PQ控制策略研究,电力电子技术,2010,44(6):71-74.
    [35]Achermann T, Garner K, Gardiner A. Embedded wind generation in weak grids-economic optimization and power quality simulation. Renewable Energy,1999,18(2):205-221.
    [36]Weiss G, Zhong Q Ch, Green T C, Liang J. Repetitive control of DC-AC converters in micro-grids. IEEE Trans on Power Electronics,2004,19 (1): 219-230.
    [37]Zhong Q Ch, Weiss G. Static Synchronous Generators for Distributed Generation and Renewable Energy,2009 IEEE PES Power Systems Conference & Exhibition. Seattle,2009.
    [38]Zhipeng Lv, An Luo, Chuanping Wu, et al. A Research of Micro-grid Energy Supply and Filtering System Based on Inverter Multiplexing. SUPERGEN 2009: 1st International Conference on Sustainable Power Generation and Supply, Nanjing,2009.
    [39]牟晓春,毕大强,任先文,等.低压微网综合控制策略设计.电力系统自动化,2010,34(19):91-96.
    [40]纪明伟,张兴,杨淑英,等.基于电压源逆变器的微电网综合控制策略.合肥工业大学学报,2009,32(11):1678-1682.
    [41]姚玮,陈敏,牟善科,等.基于改进下垂法的微电网逆变器并联控制技术.电力系统自动化,2009,33(6):77-80.
    [42]Josep M. Guerrero, Luis Garcia de Vicuna, et al. Output Impedance Design of Parallel-Connected UPS Inverters With Wireless Load-Sharing Control. IEEE Transaction on Industrial Applications,2005,52(4):1126-1135.
    [43]Katiraei, F.; Iravani, M.R., et al.Power Management Strategies for a Microgrid With Multiple Distributed Generation Units. IEEE Transaction on Power Systems,2006,21(4):1821-1831.
    [44]J M Guerrero, L Garcia de Vicuna, J Matas, et al. Wireless Control Strategy for Parallel Operation of Distributed Generation Inverters. IEEE Trans. Ind. Electron.2006,53(5):1461-1470.
    [45]Prodanovic, M.; Green, T.C, et al.High-Quality Power Generation Through Distributed Control of a Power Park Microgrid. IEEE Transaction on Industrial Electronics,,2006,53(5):1471-1482.
    [46]J M Guerrero, L Garcia de Vicuna, J Matas, et al. A wireless controller to enhance dynamic performance of parallel inverters in distributed generation systems. IEEE Trans. Power Electron,2004,19(5):1205-1213.
    [47]J M Guerrero, L Garcia de Vicuna, J Matas, et al. A wireless controller to enhance dynamic performance of parallel inverters in distributed generation systems. IEEE Trans. Power Electron.,2004,19(5):1205-1213.
    [48]A Tuladhar, H Jin, T Unger, et al. Control of parallel inverters in distributed ac power systems with consideration of line impedance. IEEE Trans. Ind. Applicat.,2000,36(1):131-138.
    [49]周德佳,赵争鸣,袁立强,等.具有改进最大功率跟踪算法的光伏并网控制系统及其实现.中国电机工程学报2008,28(31):94-100.
    [50]刘飞,查晓明,周彦,等.基于极点配置与重复控制相结合的三相光伏发电系统的并网策略.电工技术学报2008,23(12):130-1 36.
    [51]张波,李萍,齐群等.DC-DC变换器分又和混沌现象的建模和分析方法.中国电机工程学报2002 22(11):81-86.
    [52]王志群,朱守真,周双喜.逆变器分布式电源控制系统的设计.电力系统自动化,2004,28(24):61-66.
    [53]GUERRERO J M, DE VICNA L G.MATAS J, et. Output impedance design of parane connected UPS inverters with wireless load-sharing control. IEEE Trans on Industrial Electronics,2005,52(4):1126-1135
    [54]Zhong, Q-C. Robust Droop Controller for Accurate Proportional Load Sharing among Inverters Operated in Parallel, IEEE Transactions on Industrial Electronics, Vol.PP, no.99, pp:1,2011.
    [55]39Gueon N, Lee D J, Kim B T, et al. Novel concept of PV power generation system adding the function of shunt active filter[A]. Proc. of IEEE Power Engineering Society Transmission and Distribution Conference. Asia Pacific, 2002,1658-1663.
    [56]Tsai-Fu Wu, Hung-Shou Nien, Chi-Lung Shen. A Single-Phase Inverter System for PV Power Injection and Active Power Filtering With Nonlinear Inductor Consideration. IEEE Transactions on industry applications.2005,41(4): 1075-1081.
    [57]汪海宁,苏建徽,丁明,张国荣.光伏并网功率调节系统.中国电机工程学报,2007,27(2):76-79.
    [58]Li Y W, Vilathgamuwa D M, Loh P C. A grid interfacing power quality compensator for three phase three wire micro-grid applications [C], IEEE Annual Power Electronics Specialists Conference. Aachen, Germany,2004.
    [59]Yunwei Li, Vilathgamuwa DM, Poh Chiang Loh. Micro-grid power quality enhancement using a three-phase four-wire grid-interfacing compensator industry applications, IEEE Transactions on,2005,41(6).1707-1719.
    [60]Prodanovic M, Green TC. Control of power quality in inverter-based distributed generation. IECON 02 Industrial Electronics Society[C]. IEEE 2002 28th Annual Conference,2002,5-8,1185-1189.
    [61]Qing-Chang Zhong; Weiss, G. Static synchronous generators for distributed generation and renewable energy, Power Systems Conference and Exposition, 2009,1-6.
    [62]姜桂宾,裴云庆,杨旭,等.SPWM逆变电源的无互联信号线并联控制技术.中国电机工程学报,2003,23(12):94-98.
    [63]Li Jian, Kang Yong, Chen Jian. A hybrid fuzzy-repetitive control scheme for 400Hz CVCF inverters. Proceedings of the CSEE,2005,25(9):54-61.
    [64]谢孟,蔡昆,胜晓松,等.400Hz中频单相电压源逆变器的输出控制及其并联运行控制.中国电机工程学报,2006,26(6):78-82.
    [65]王成山,肖朝霞,王守相.微网中分布式电源逆变器的多环反馈控制策略.电工技术学报,2009,24(2):100-107.
    [66]鞠洪新,丁明,杜燕.逆变电源无线并联系统稳态频率无差的仿真实现.合肥工业大学学报(自然科学版),2006,29(5):513-516.
    [67]方天治,阮新波,肖岚,等.一种改进的分布式逆变器并联控制策略.中国电机工程学报,2008,28(33):30-36.
    [68]Lasseter R. Dynamic models for micro-turbines and fuel cells. Power Engineering Society Summer Meeting, Canada,2001.
    [69]Naka S, Genji T, Fukuyama Y. Practical equipment models for fast distribution power flow considering interconnection of distributed generators. IEEE Power Engineering Society Summer Meeting, Vancouver, Canada,2001.
    [70]Murakamia A, Yokoyama A, Tada Y. Basic study on battery capacity evaluation for load frequency control(LFC) in power system with a large penetration of wind power generation. IEEJ Trans on. Power and Energy,2006,126(2): 236-241
    [71]IEC 61400-21, Measurement and assessment of power quality characteristics of grid connected wind turbines,2001.
    [72]Spera A D. Wind turbine technology. New York. ASME Press.1995.
    [73]Thiringer T, Dahlberg J. Periodic pulsations from a three-bladed wind turbine. IEEE Transactions on Energy Conversion.2001,16(2):128-133.
    [74]Thiringer T. Power quality measurements performed on a low-voltage grid equipped with two wind turbines. IEEE Transactions on Energy Conversion.1996.11(3).601-606.
    [75]Gredes G, Santjer F. Power quality of wind turbines and their interaction with the gri. Proceedings of 1994 European Wind Energy Conference, Thessaloniki, Greece,1994,1112-1115.
    [76]Georgakis D, Papathanassiou S, Hatziargyriod N, et al. Operation of a prototype micro-grid system based on micro-sources equipped with fast acting power electronics interfaces,2004 Annual IEEE Power Electronics Specialists Conference,35th. Aachen, Germany,2004.
    [77]Katiraei F, Iravani M R, Lehn P W. Microgrid autonomous operation during and subsequent to islanding process. IEEE Trans On Power Delivery,2005,20(1): 248-257.
    [78]杨占刚,王成山,车延博.可实现运行模式灵活切换的小型微网实验系统.电力系统自动化,2009,33(14):89-92.
    [79]郭力,王成山.含多种分布式电源的微网动态仿真.电力系统自动化,2009,33(2): 82-86.
    [80]C.Rodriguez, A.J.Amaratunga, Dynamic stability of grid-connected PV Systems, IEEE Power Engineering Society General Meeting, June 10,2004.
    [81]H.C.Seo, C.H.Kim, Y.M.Yoon, C.S.Jung, Dynamics of Grid-connected PV system at fault conditions, IEEE T&D Asia 2009.
    [82]Zoltan Weitzl, Istvan Varjasi, Fault Ride-Through versus Anti-Islanding in Distributed Generation.14th International Power Electronics and Motion Control Conference, EPE-PEMC 2010.
    [83]Christian H. Benz, W.-Toke Franke, Friedrich W. Fuchs.—Low Voltage Ride Through Capability of a 5 kW Grid-Tied Solar Inverter 14th International Power Electronics and Motion Control Conference, EPE-PEMC 2010.
    [84]European Standard-Voltage characteristics in Public Distribution Systems, EN 50160, European Committee for Electronical Standardization (EN), Brussels, April 2008.
    [85]P.Rodriguez, A.Timbus, R.Teodorescu, M.Liserre, and F.Blaabjerg, —Flexible active power control of distributed power generation systems during grid faults, Industrial Electronics, IEEE Transactions, vol.54, no.5,2583-2592, October 2007.
    [86]F.Magueed, A.Sannino, and J.Svensson, —Transient performance of voltage source converter under unbalanced voltage dips, Power Electronics Specialists Conference,2004.
    [87]Zoka Y, Sasaki H, YoMo N, et al. An interaction problem of distributed generators installed in a micro-grid.2004 IEEE International Conference on Electric Utility Deregulation, Rest rupturing and Power Technologies, HongKong, China,2004.
    [88]Askari S A, Ranade S J, Mitra J. Optimal allocation of shunt capacitors placed in a micro-grid operating in the islanded mode. Proceedings of the 37th Annual North American power symposium, Ames, USA,2005.
    [89]Laaksonen H, Saari P, Komulainen R. Voltage and Frequency Control of Inverter Based Weak LV Network Micro-grid. Future Power Systems.2005.16-18.
    [90]Ackermann T, Knyazkin V. Interaction between distributed generation and the distribution network; operation aspects. Proc of IEEE Power Engineering Society Transmission and Distribution Conference, Asia Pacific,2002, 1357-1362.
    [91]Dolezal J, Santarius P, Thesry J, et al. The effect of distributed generation on power quality in distributed system. Quality and Security of Electric Power Delivery Systems, SIGRE/IEEE PES International Symposium,2003,204-207.
    [92]Prodanovic M, Green TC. High-Quality Power Generation Through Distributed Control of a Power Park Microgrid. Industrial Electronics. IEEE Transactions on,2006,53(5):1471-1482.
    [93]Muller H, Rudolf A, Aumayr G. Studies of Distributed Energy Supply Systems Using an Innovanve Energy Management System. Proceedings of 2001 IEEE Power Engineering Society Meeting. Sydney,2001.
    [94]Dimeas A, Hatziargyriou N. Amulti-Agent system for microgrid operation. Power Engineering Society General Meeting. Denver, USA,2004.
    [95]Dimeas A, Hatziargyriou N. Operation of a multiagent system for Microgrid control. IEEE trans on Power Systems,2005,20(3):1447-1455.
    [96]Hiyama T, Dunding Z, Funabashi T. Multi-agent based automatic generation control of isolated stand alone power system. Proceedings od International Conference on Power System Tecnology, October 13-17,2002, Kunming, China.
    [97]Guerrero J, GarciadeVicuna L, Matas J, et al. Output impedance design of parallel-connected UPS inverters with wireless load-sharing control. IEEE Transactions on Industrial Electronics,2005,52(4):1126-1135,
    [98]Guerrero J, Matas J, de Vicuna L G., et al, Decentralized control for parallel operation of distributed generation inverters using resistive output impedance. IEEE Transactions on Industrial Electronics,2007,54(2):994-1004.
    [99]Barklund E, Pogaku N, Prodanovic M, et al. Energy management in autonomous microgrid using stability constrained droop control of inverters. IEEE Trans. Power Electronics,2008,23(5):2346-2352.
    [100]Mohamed Y, El-Saadany E. Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids. IEEE Trans. Power Electronics,2008,23(6):2806-2816,.
    [101]Guerrero J M, Vasquez J C, Matas J, et al. Hierarchical control of droop-controlled AC and DC microgrids-a general approach towards standardization. IEEE Trans. Industrial Electronics,2011,58(1):158-172.
    [102]Guerrero J, de Vicuna L, Miret J, et al, Output impedance performance for parallel operation of UPS inverters using wireless and average current-sharing controllers//IEEE 35th Annual Power Electronics Specialists Conference. Aachen, Germany:IEEE,2004:2482-2488.
    [103]Tuladhar A, Jin H, Unger T, et al. Control of parallel inverters in distributed ac power systems with consideration of line impedance effect. IEEE Transactions on Industry Applications,2000,36(1):131-138.
    [104]Tuladhar A, Jin H, Unger T, et al. Parallel operation of single phase inverter modules with no control interconnections//IEEE APEC. Atlanta, GA, USA: IEEE,1997:94-100.
    [105]Tuladhar A, Jin H, Unger T, et al. Control of parallel inverters in distributed AC power systems with consideration of line impedance effect. IEEE Trans. on Industry Applications,2000,36(1):131-138.
    [106]Guerrero J M, de Vicuna L G, Matas J, et al. Output impedance design of parallel-connected UPS inverters with wireless load-sharing control. IEEE Trans. on Industrial Electronics,2005,52(4):1126-1135.
    [107]Guerrero J M, de Vicuna L G, Matas J, et al. A wireless load sharing controller to improve dynamic performance of parallel-connected UPS inverters//IEEE PESC. German:IEEE,2003:1408-1413.
    [108]Chiang S J, Yen CY, Chang K T. A multimodule parallelable series-connected PWM voltage regulators. IEEE Trans. on Industry Electronics,2001,48(3): 506-516.
    [109]Guerrero J M, Matas J, de Vicuna L G, et al. Wireless-control strategy for parallel operation of distributed-generation inverters. IEEE Trans. on Industry Electronics,2006,53(5):1461-1470.
    [110]Guerrero J M, Matas J, de Vicuna L G, et al. Decentralized control for parallel operation of distributed generation inverters using resistive output impedance. IEEE Trans. on Industry Electronics,2007,54(2):994-1004.
    [111]Guerrero J M, de Vicuna L G, Matas J, et al. A wireless controller to enhance dynamic performance of parallel inverters in distributed generation systems. IEEE Trans. on Power Electron,2004,9(5):1205-1213.
    [112]Wu T F, WuYE, Hsieh H M, et al. Current weighting distribution control strategy for multi-inverter systems to achieve current sharing. IEEE Trans. on Power Electronics,2007,22(1):160-168.
    [113]姚玮,高明智,陈敏,等.可调阻抗无互联线并联逆变器的控制方法.电力电子技术,2007,41(9):21-23.
    [114]Luo An, Shuai Zhikang, Shen Zheng. Design considerations for maintaining DC-side voltage of hybrid active power filter with injection circuit. IEEE Trans Power Electronics,2009,24(1):75-84.
    [115]Luo An, Shuai Zhikang, et al. Combined system for harmonic suppression and reactive power compensation. IEEE Trans Ind Electron,2009,56(2): 418-428.
    [116]Luo An, Shuai Zhikang, et al. Development of Hybrid Active Power Filter Based on the Adaptive Fuzzy Dividing Frequency-Control Method. IEEE Trans Power Delivery,2009,24(1):424-432.
    [117]Wu Tsaifu, Nie Hungshou, Shen Chilung. A Single-Phase Inverter System for PV Power Injection and Active Power Filtering With Nonlinear Inductor Consideration. IEEE Transactions on, Industry applications,2005,41(4): 1075-1081.
    [118]PRODANOVIC M, GREEN TC. High-Quality Power Generation Through Distributed Control of a Power Park Micro-grid. Industrial Electronics, IEEE Transactions on,2006,53(5):1471-1482.
    [119]邓占锋,朱东起,姜新建.三相四线制下中线谐波电流治理的新方法.电力系统自动化设备,2002,26(8):15-19.
    [120]刘秀翀,张化光,,陈宏志.四桥臂逆变器中第四桥臂的控制策略.中国电机工程学报,2007,27(33):87-92.
    [121]陈宏志,刘秀翀.四桥臂三相逆变器的解耦控制.中国电机工程学报,2007,27(19):74-79.
    [122]张方华,丁勇,王慧贞,等.四桥臂三相逆变器的特定谐波消除控制.中国电机工程学报,2007,27(7):82-87.
    [123]张晓,李新宇,周睿.三相四桥臂并联型APF无差拍控制策略的研究.电 力系统保护与控制,2011,39(20):78-83.
    [124]林金燕,王正仕,陈辉明,等.一种高性能三相四桥臂逆变器控制器的设计.中国电机工程学报,2007,27(22):101-105.
    [125]乐健,姜齐荣,韩英铎.一种新型的四桥臂三电平并联有源电力滤波器的空间矢量控制策略.中国电机工程学报,2006,26(14):59-65.
    [126]陈阿莲,何湘宁.一种具有中点电位平衡功能的混合箝位型多电平逆变器.中国电机工程学报,2005,25(1):18-22.
    [127]宋文祥,陈国呈,武慧,等.一种具有中点电位平衡功能的三电平空间矢量调制方法及其实现.中国电机工程学报,2006,26(12):95-100.
    [128]宋文祥,陈国呈,束满堂,等.中点箝位式三电平逆变器空间矢量调制及其中点控制研究.中国电机工程学报,2006,26(5):105-109.
    [129]姜卫东,杜少武,史晓锋,等.中点箝位型三电平逆变器空间矢量与虚拟空间矢量的混合调制方法.中国电机工程学报,2009,29(18):47-53.
    [130]姜卫东,王群京,史晓锋,等.中点箝位型三电平逆变器在空间矢量调制时中点电位的低频振荡.中国电机工程学报,2009,29(3):49-55.
    [131]易映萍,姚为正,刘普,等.基于可再生能源三电平并网变流器的研制.电力电子技术,2010,44(6):93-94.
    [132]周丽霞,尹忠东,郑立,等.用H°°控制的可控电抗器抑制电压波动和闪变.高电压技术,2007,33(12):124-129.
    [133]周克敏.鲁棒与最优控制.北京:国防工业出版社,2002:161-164.
    [134]C K Sao, P W Lehn. Autonomous load sharing of voltage source converters. IEEE Transactions Power Delivery,2005,20(2):1009-1016.
    [135]K D Brabandere, B Bolsens, J V Keybus, et al. A voltage and frequency droop control method for parallel inverters. IEEE Transactions on Power Electronics,2007,22(4):1107-1115.
    [136]魏巍,李兴源,廖萍,等.含分布式的电源的电力系统多Agent故障恢复新方法.电力系统自动化,2009,33(3):89-93.
    [137]杨旭升,盛万兴,王孙安.多Agent电网运行决策支持系统体系结构研究.电力系统自动化,2002,26(18):45-50.
    [138]刘红进,袁斌,戴宏伟.多Agent系统及其在电力系统中的应用.电力系统自动化,2001,25(19):45-52.
    [139]王洪涛,刘玉田,邱汐兆,等.基于多agent的电力系统主从递阶恢复决策.电力系统自动化,2006,30(15):5-9.
    [140]WANG H F. Multi-agent co-ordination for the secondary voltage control in power-system contingencies. IEE Proceedings:Generation, Transmission and Distribution,2001,148(1):61-66.
    [141]NAGATA T, SASAKI H. A multi-agent approach to power system restoration. IEEE Trans on Power Systems,2002,17(2); 457-462.
    [142]王成山,余旭阳.基于Multi-Agent系统的分布式协调紧急控制.电网技术,2004,28(3):1-5.
    [143]Dimeas A, Hatziargyriou N. Operation of a multi-agent system for micro-grid control. IEEE Trans. on Power Systems,2005,20(3):1447-1455.
    [144]Georgakisl D, Papathanassion S, Hatzizrgyriou N, et al. Operation of a prototype micro-grid system based on micro-sources equipped with fast-acting power electronics interfaces. Proceedings of IEEE 35th Annual Power Electronics Specialists Conference, Aachen, Germany,2004:2521-2526.
    [145]Katiraei F, Iravani M R, Lehn P W. Micro-grid autonomous operation during and subsequent to islanding process. IEEE Trans on Power Delivery,2005, 20(1):248-257.
    [146]Barasli S, Ceraolo M, Pelacchi P. Control techniques of dispersed generators to improve the continuity of electricity supply. Proceeding of Power Engineering Society Winter Meeting:Vol2, Jan 27-31,2002, New York, NY, US A:789-794.
    [147]刘文华,宋强,张东汀,等.50 MVA静止同步补偿器链节的等价试验.中国电机工程学报,2006,26(12):73-78.
    [148]张彦魁,张焰,卢国良.基于PWM控制及相角控制的静止同步补偿器潮流模型及应用.中国电机工程学报,2005,25(17):42-47.
    [149]袁佳歆,陈柏超,万黎,等.利用配电网静止无功补偿器改善配电网电能质量的方法.电网技术,2004,28(19):81-84.
    [150]梁旭,刘文华,姜齐荣,等.电力系统故障时静止无功发生器的运行分析.清华大学学报:自然科学版,2000,40(1):1-3.
    [151]张力,陈建业,王仲鸿,等.系统电压不对称条件下ASVG的仿真分析.清华大学学报:自然科学版,1 997,37(7):55-58.
    [152]鲁宗相,刘文华,王仲鸿.基于k/n(G)模型的STATCOM装置可靠性分析.中国电机工程学报,2007,27(13):12-17.
    [153]Blaabjerg F, Chen Z, Kjaeer S. Power electronics as efficient interface in dispersed power generation systems. IEEE Trans. on Power Electronics,2004, 19(5):1184-1194.
    [154]Dimeas A, Hatziargyriou N. Operation of a multiagent system for microgrid control. IEEE Trans. on Power Systems,2005,20(3):1447-1455.
    [155]Hiyama T, Dunding Z, Funabashi T. Multi-agent based automatic generation control of isolated stand alone power system. International Conference on Power System Tecnology, Kunming, China,2002.
    [156]王兆安,杨军,刘进军.谐波抑制和无功功率补偿.北京:机械工业出版社,1998.
    [157]肖湘宁,徐永海,刘昊.混合型有源电力补偿技术与实验研究.电力系统自动化,2002,26(3):39-44.
    [158]邓文浪,杨欣荣,朱建林,等.改进矩阵变换器在输入电压非正常情况下的调制策略.控制与决策,2006,21(8):908-912.
    [159]王广柱.并联型有源电力滤波器电流控制的等效原理.中国电机工程学报,2006,26(15):40-45.
    [160]唐杰,罗安,范瑞祥,等.无功补偿和混合滤波综合补偿系统及其应用.中国电机工程学报,2007,27(1):88-92.
    [161]吕志鹏,罗安,荣飞,等.有滤波功能的微网光伏发电系统设计.湖南大学学报(自然科学版),2010,37(4):123-128.
    [162]罗安.电网谐波治理和无功补偿技术及装备.北京:中国电力出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700