用户名: 密码: 验证码:
边坡微型抗滑桩群空间分析理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微型桩具有结构轻型、施工快捷、安全灵活等诸多相对于传统抗滑桩的独特优点,已广泛运用于边坡或滑坡治理工程中,并取得了良好的工程效果。然而,就其目前的设计理论来说,均是从平面问题出发考虑结构的设计计算分析,而忽略了结构与滑体之间的桩土空间相互作用。为此,本文以工程中常见的“3×3型”型顶板连接式微型抗滑桩组合结构为研究对象,考虑其三维结构特征,建立计算分析方法。本文的主要研究工作如下:
     1)考虑实际顶板连接式微型抗滑桩组合结构的三维特征,提出了一种新的力学分析计算模型,即在滑面以上的部分视为空间刚架结构,在滑面以下的部分视为弹性地基梁。
     2)考虑结构的空间效应,将滑面以上空间刚架结构受力分解成平面外及平面内两步进行分析计算。通过理论分析,得出平面外推力的分配系数公式,并利用数值模拟方法验证了理论公式的合理性。讨论了平面外推力分配系数受各因素影响的规律,得出顺滑坡走向的中间桩体承担的荷载相对于边桩更大,中桩的分配系数随着组合结构内部平面外方向桩间距的增大而减小,且其变化区间为(1/3,1)。
     3)通过数值模拟方法,分析了空间刚架结构受滑坡推力作用在平面内的二次分配,得出在矩形和三角形滑坡推力分布模式下,平面内各桩体受力分配系数拟合公式,并进行了各因素敏感性分析。
     4)通过结构力学分析方法对滑面以上的结构进行分析,推导出了空间刚架结构中桩身任意截面的内力及变位计算公式。
     5)分别运用容许应力及极限状态设计计算方法对组合结构进行分析,得出了桩身截面的内力极值所在位置的计算公式并反算出组合抗滑结构的极限抗滑承载力,结合工程实例,揭示了单元内部平面外间距α、桩径d、受荷段桩长L、土体弹性模量Es这四个主要影响因素对结构抗滑极限抗滑承载力的影响规律。
     本文从实际顶板连接式微型抗滑桩组合结构的三维特征出发,建立了考虑滑坡推力在空间分配和传递的微型桩群组合抗滑结构的计算分析方法,可为微型抗滑桩组合结构的实际设计计算提供理论指导和参考。
Micropile has been widely used in landslide treatment because of a lot of merits such as its light structure, easy and quick construction as well as its safety and flexibility with comparison with the traditional stabilizing support structure, and some favorable results have been achieved in project practice. However, the present analysis theories are mostly based on the plane strain hypothesis to analyze the design and calculation of the structure, while they neglect the interaction of the pile-soil between the structure and the slide body. In light of this, based on the common3×3stabilizing micropiles with roof plate composite structure, the analytical calculation method is derived by considering the features of the three-dimensional structure. The main contents and research results are as follows:
     1) On the basis of the three-dimensional features of stabilizing micropiles with roof plate composite structure, a new analytical calculation model is proposed, that is to say, the part above the slip surface is regarded as spatial frame and the part below the slip surface is elastic foundation beam.
     2) With the consideration of the spatial effect of composite structure, mechanical analysis of spatial frame above the slip surface is divided into in-plane calculation and out-of-plane calculation. Calculation formula for distribution coefficients of out-of-plane landslide thrust is derived through the theoretical analysis and its rationality is validated by the numeric simulation method. Then, some influencing factors of the distribution coefficients of out-of-plane landslide thrust have been discussed. The results show that load bore by the middle column along the landslide trend is larger than that of the fringe column, and the distribution coefficients of the middle column, whose interval is from the1/3to1, decrease with the increase of the out-of-plane internal spacing of composite structure.
     3) The in-plane distribution of the spatial frame affected by landslide thrust is researched by the numeric simulation method. Under the triangle and rectangle distribution modes of the slide thrust, the fitting formula of force distribution coefficients of the in-plane micropiles is given and sensitivity of every factor has been analyzed at the same time.
     4) The calculation formula of internal force and deformation at any section of spatial frame has been deduced by analyzing the structure above the slide surface through the analytical method of structural mechanics.
     5) The allowable stress method and limit state method are respectively used for the composite structure analysis. And the calculation formula of extreme point of internal force along the pile has been derived and the ultimate bearing capacity of the composite structure is back calculated. Taking the engineering practice as the example, this paper concludes a rule that four main factors:out-of-plane internal spacing a, micropile diameter d, soil modulus Es and pile length of loading segment L have influences on ultimate bearing capacity of the composite structure.
     In brief, on the basis of the three-dimensional features of stabilizing micropiles with roof plate composite structure, this paper deduces the calculation analysis method of stabilizing micropile groups with the consideration of the landslide thrust spatial distribution and transmission. The research results are helpful for the actual design of stabilizing micropiles composite structure and can provide theoretical guidance and references for practical projects.
引文
[1]中华人民共和国国土资源部.全国地质灾害通报[EB/OL]. http://www.cgp.gov.cn/ReadNews.asp? NewsID=48859,2011-4-22/2011-10-25.
    [2]文育高,李家财.滑坡治理方法及其应用[J].西部探矿工程,2010(5):19-21.
    [3]史佩栋,何开胜.小桩的起源、应用与发展[J].岩土工程界,2005,8(9):15-18.
    [4]Armour T.,Groneck P.,Keeley J.,et al. Micropile design and construction guidelines implementation manual priority technologies (PTP) project[R].USA:publication NO.FHWA-SA-97-070.2000.
    [5]周磊,王唤龙.微型桩结构在红层堆积体边坡中得应用[J].路基工程,2010(5):179-181.
    [6]谢晓华,刘吉福,庞奇思.微型桩在某滑坡处治工程中得应用[J].西部探矿工程,2011(2):110-111.
    [7]丁光文,王新.微型桩复合结构在滑坡整治中的应用[J].岩土工程技术,2004,18(1):47-50.
    [8]吕凡任,陈云敏,梅英宝.小桩研究现状和展望[J].工业建筑,2003,33(4):56-59.
    [9]孙书伟.微型桩结构加固边坡受力机制和设计计算理论研究[D].北京:中国铁道科学研究院,2009.
    [10]叶书麟,韩杰.第三届地基处理学术讨论会论文集:托换技术综述[C].杭州:浙江大学出版社,1992.
    [11]庞烈鑫.树根桩在黄土隧道基底加固中的应用研究[D].成都:西南交通大学,2006.
    [12]Cadden A.,Gomez J.,Bruce D.,Armour T.Mircopiles:Recent advances and future trends[J].Deep Foundation,2004:140.
    [13]Wayne GJensen.Anchored Geo-Support systems for landslide stablization[D].Laramie:Doctor Dissertation of University of Wyoming,2001.
    [14]Andrew Z.Boeekmann.Load transfer in micropiles for slope stabilization from tests of large-scale phsical model [D].USA:Faculty of the Graduate School University of Missouri-Columbia,2006.
    [15]JAMP.Design and execution manual for seismic retrofitting of existing pile foundation with high capacity micropiles[R].Japan:Foundation Engineering Research Team,Structures Research Group, Public Works Research Institute,2002.
    [16]丁光文.微型桩处理滑坡的设计方法[J].西部探矿工程,2001(71):15—17.
    [17]Helmut S.,Klaus D.,Horst K.,et al.Special use of micropiles and permanent anchors[C].Proceedings of Sessions of the Geosupport Conference:Innovation and Cooperation in Geo. Reston:Geotechnical Special Publication,ASCE,2004.
    [18]Paul R M.,Donald B.,William Z.,etal.Casehistory:Micropile use for temporary exeavation support[C].Proceedings of Sessions of the Geosupport Confenrenee:Innovation and Cooperation in Geo.Reston:Geotechnical Special Publication,ASCE,2004.
    [19]Bruce J.,Ruel M.,Ansari N.Design and construction of a micropile wall to stabilize a railway embankment[C].Deep Foundations Institute Annual Conference on Deep Foundations:Emerging Technologies.Vancouver:[s.n.],2004.
    [20]Kartofilis D.,O'Gara B.,Tarquinio F.,et al.Titus power plant micropile retaining wall[J].Foundation Drilling,2006,32:10-13.
    [21]Cargill K.,Dimino S.,Surti N.,et al.Tied-back micropile walls in landslide repair[C].Deep Foundations Institute Annual Conference on Deep Foundations.Washington DC:[s.n.],2006.
    [22]邹越强,李彬.树根桩防治滑坡的研究[J].合肥工业大学学报(自然科学版),1994,17(1):120-124.
    [23]胡纯清.福建龙岩某滑坡的治理设计与施工[J].土工基础,2001,15(3):34-37.
    [24]郝卫国.树根桩配合土钉墙在边坡加固中的应用[J].科技情报开发与经济,2003,23(6):252-253.
    [25]吴顺川,高永涛,金爱兵.失稳高陡路堑边坡桩锚加固方案分析[J].岩石力学与工程学报,2005,24(21):3954-3958.
    [26]祁志强,谭建国,曹继军,等.微型桩在三峡库区黄土坡滑坡区塌岸防治工程中的应用[J].探矿工程,2005(增):187-190.
    [27]朱宝龙,胡厚田,张玉芳,等.钢管压力注浆型抗滑挡墙在京珠高速公路K108滑坡治理中的应用[J].岩石力学与工程学报,2006,25(2):399-406.
    [28]林春秀,张泳雄,刘容识.堑顶微型桩在软岩边坡加固中的应用[J].土工基础,2006,20(5):11-12.
    [29]姜春林,吴顺川,吴承霞,等.复活古滑坡治理及微型抗滑桩承载机理[J].北京科技大学学报,2007,29(10):975-979.
    [30]刘卫民,赵冬,蔡庆娥,等.微型桩挡墙在滑坡治理工程中的应用[J].岩土工程界,2007,10(2):54-56.
    [31]王斌,周良春,陈小勇.微型桩在隧道洞口边坡处治中的应用[J].西南公路,2009(4):118-121.
    [32]Brown D A.,Morrison C,Reese L C.Lateral load behavior of pile group in sand[J].Joural of Geotechnical Engineering,1988,114(14):1261-1276.
    [33]Mokwa and Duncan.Laterally loaded pile Group effects and p-y Multipliers.ASCE,Joural of Geotechnical Special publication,2001,No.113:728-742.
    [34]Richards J R.,Thomas D.,Rothbauer Mark J.Lateral loads on piles(micropiles)[C].Proceedings of Sessions of the Geosupport Conference:Innovation and Cooperation in Geo.Reston:Geotechnical Special Publication,ASCE,2004.
    [35]ThomPson M.,White D..Design of Slope Reinforcement with Small-Diameter Piles.ASCE,Joural of Advances in Earth Structure,2006:67-73.
    [36]Cantoni R,Collotta T,Ghionna V N.,et al.A design method for reticulated micropiles structure in sliding slopes[J]. Ground Engineering,1989,22(1):41-47.
    [37]Juran I,Benslimane A,Hanna S. Engineering analysis of the dynamic behavior of micropile systems.Transportation research record no.1772,2001.Soil mechanics;2001.p.91-106.
    [38]Shahrour I,Juran I.Seismic behaviour of micropile systems[J]. Ground Improve,2004;8(3):109-20.
    [39]Marwan S,Shahrour I.Three-dimensional finite element analysis of the seismic behavior of inclined micropiles[J].Soil Dynamics and Earthquake Engineering,ASCE,24 (2004):473-485
    [40]Sung June Lee.Behavior of A Single Micro-Pile in Sand Under Cyclic Loads[D].Doctor Dissertation of University of Illinois.Urbana.2004:3.
    [41]陈喜昌,石胜伟.小口径钻孔组合桩的理论研究与应用前景[J].中国地质灾害与防治学报,2002,13(3):82-85.
    [42]龚建,陈仁鹏,陈云敏,等.微型桩原型水平荷载试验研究[J].岩石力学与工程学报,2004,23(20):3541-3546.
    [43]冯君,周德培,江南,等.微型桩体系加固顺层岩质边坡的内力计算模式[J].岩石力学与工程学报,2006,25(2):284—288.
    [44]沈龙运,余云燕.独立微型桩加固边坡的内力计算[J].兰州交通大学学报,2007,26(4):81—83.
    [45]吴文平.抗滑微型桩组合结构的计算理论研究[D].成都:西南交通大学,2008.
    [46]肖维民.微型桩结构体系抗滑机理研究[D].成都:西南交通大学,2008.
    [47]户巧梅.微型桩加固边坡的内力计算[D].西安:长安大学,2009.
    [48]周德培,王唤龙,孙宏伟.微型桩组合抗滑结构及其设计理论[J].岩石力学与工程学报,2009,28(7):1353-1362.
    [49]孙书伟,朱本珍,郑静.基于极限抗力分析的微型桩群加固土质边坡设计方法[J].岩土工程学报,2010,32(11):1671-1677.
    [50]吴文平,周德培,王唤龙.微型桩结构加固边坡的模型试验与计算讨论[J].路基工程,2009(3):139-140.
    [51]闫金凯.滑坡微型桩防治技术大型物理模型试验研究[D].西安:长安大学,2008.
    [52]肖世国,鲜飞,王唤龙.一种微型桩组合抗滑结构内力分析方法[J].岩土力学,2010,31(8):2553-2564.
    [53]孙书伟,朱本珍,马惠民.框架微型桩结构抗滑特性的模型试验研究[J].岩石力学与工程学报,2010,29(增1):3039-3044.
    [54]王唤龙,周德培.边坡工程中受压微型桩的屈曲分析[J].中国铁道科学,2010,31(6):21-25.
    [55]孙宏伟.刚性帽梁微型桩组合结构内力分析[D].成都:西南交通大学,2010.
    [56]鲜飞.微型桩组合结构模型试验研究[D].成都:西南交通大学,2010.
    [57]王树丰,殷跃平,门玉明.黄土滑坡微型桩抗滑作用现场试验与数值模拟[J].水文地质工程地质,2010,37(6):22-26.
    [58]朱本珍,孙书伟,郑静.微型桩群加固堆积层滑坡原位试验研究[J].岩土力学与工程学报,2011,30(增1):2858-2864.
    [59]李海光.新型支挡结构设计与工程实例[M].北京,人民交通出版社,2004.
    [60]朱伯钦,周竞欧,许哲明.结构力学下(下册)[M].上海,同济大学出版社,1994.
    [61]龚晓南.对岩土工程数值分析的几点思考[J].岩土力学,2011,32(2):321-325.
    [62]孔德森,栾茂田.岩土力学数值分析方法研究[J].岩土工程技术,2005,19(5):249-253.
    [63]陈育民,徐鼎平.FLAC\FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2009.
    [64]FLAC3D(fast Lagrangian analysis of continua in 3 dimensions)user's guide,Version 3.0[K].Itasca Consulting Group, Minneapolis,USA:2000.
    [65]吴怀忠,王汝恒,张桂富等.土与结构接触面的本构关系与数值模拟[J].四川建筑科学研究,2007,33(5):88-90.
    [66]WongKS,TehCI.Negative skin friction on piles in layered deposits[J].Journal of Geotechnical Engineering,ASCE,1995,121(6):457-465.
    [67]GoodmanRE,TaylorRLandBerkkeTL.A model for The mechanics of jointed rock[J].ASCE,1968,94(SM3):637-659.
    [68]周德培,肖世国,夏雄等.边坡工程中抗滑桩合理桩间距的探讨[J].岩土工程学报,2004,26(1):132-135.
    [69]张建华,谢强,张照秀等.抗滑桩结构的土拱效应及其数值模拟[J].岩石力学与工程学报,2004,23(4):699-703.
    [70]宋保强.抗滑桩支护结构中桩后土拱效应研究与应用[D].成都理工大学,2007.
    [71]吕涛,齐美苗,彭良泉等.抗滑桩的土拱效应及数值模拟[J].人民长江,2007,38(1):42-45.
    [72]贾海莉,王成华,李江洪等.关于土拱效应的几个问题[J].西南交通大学学报,2003,38(4):398-402.
    [73]铁道部第二勘测设计院.抗滑桩设计与计算[M].北京:中国铁道出版社,1983.
    [74]高策,薛吉岗.铁路桥梁结构设计规范由容许应力法转换为极限状态法的思考[J].铁道标准设计,2012,(2):41-45.
    [75]周诗广,张玉玲.我国铁路工程结构设计方法转轨的认识与思考[J].铁道经济研究,2011,(3):27-32.
    [76]沈其明,邓和平.结构设计中的容许应力法和概率极限状态法[J].重庆交通学院学报,1985(2):12-16.
    [77]J127-2001铁路路基支挡结构设计规范[s].北京:人民交通出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700