用户名: 密码: 验证码:
饮用水中三种致癌无机酸根的去除
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恶性肿瘤是当前严重影响人类健康、威胁人类生命的主要疾病之一。癌症与心脑血管疾病、意外事故一起,构成了当今世界的三大死亡原因。因此,世界卫生组织(WHO)把攻克癌症列为一项首要任务。我国卫生部近日公布的2005年城市居民死亡原因的第一位正是恶性肿瘤。近30年来,国内恶性肿瘤的发病率、死亡率呈明显上升趋势。预计在未来20-30年中,我国恶性肿瘤的发病率、死亡率都将呈现持续上升的趋势。越来越多的研究表明:大部分的癌症是由环境中的化学致癌因子造成的,而这些因子又广泛存在于地表水、地下水和经过处理的饮用水中。针对已经污染的水,我们必须进行治理。但是随着污染的加重,水中污染物种类和数量都在快速增加。面对越来越多的污染物,常规的水处理方法已经不能满足要求,因此需要我们提出新的方法,制备新的材料来应对新的挑战。
     我们选择了饮用水中常见的三种致癌无机酸根(硝酸根、溴酸根、砷酸根)做为研究对象,制备了新的材料、应用了新的方法对水中的这三种致癌无机酸根进行去除,取得了很好的效果。1.我们通过共沉淀法和氢气还原的方法成功制备Pd/Fe3O4催化剂,催化剂由四氧化三铁的纳米晶粒和负载于其表面的2nm的钯颗粒组成。运用TPR, XRD和XPS等手段证明了Pd/Fe3O4催化剂满足催化还原硝酸根的三个基本条件:具有可以激活H2的贵金属Pd;具有一个氧化还原电对Fe2+/Fe3+:Pd和氧化还原电对之间有比较强的相互作用。
     测试了催化剂还原硝酸根的能力,我们发现硝酸根的还原效率和催化剂中Pd的含量成正比,Pd含量越高催化活性越好。同时催化剂对亚硝酸根的催化活性要强于对硝酸根的活性。通过对反应后的Pd/Fe3O4催化剂的XRD和XPS表征,证明了Pd/Fe3O4在催化反应中确实起到了催化剂的作用。
     对不同条件下的反应进行了对比,并和文献报道中的双金属催化剂进行了比较,探讨了Pd/Fe3O4催化还原硝酸根的机理:硝酸根在Pd/Fe3O4催化剂和双金属对催化剂上的还原机理不同,在Pd/Fe3O4催化剂上,硝酸根首先在四氧化三铁的表面被还原为亚硝酸根:接着亚硝酸根在两个位置上被还原为铵根离子,一个是四氧化三铁表面,另一个是金属钯表面。反应机理的不同导致了反应产物的不同。
     通过催化剂的循环使用,确定了催化剂在使用过程中有失活现象的发生。催化剂的失活主要有两方面造成,第一是在催化剂使用过程中催化剂表面的二价铁离子被氧化成三价铁离子,这种失活现象可以通过氢气的还原恢复;另一个原因是在催化反应过程中催化剂中的钯和四氧化三铁之间的相互作用减弱,这种失活作用则不能恢复。
     2.通过溶剂热和液相还原的方法制备了单分散的Pd/Fe3O4催化剂,该催化剂由单分散的四氧化三铁和负载于四氧化三铁上面的钯颗粒组成。催化剂的粒径在300~500nm之间,具有超顺磁性,饱和磁化强度可达70emu/go高的磁化强度使催化剂具有易从水中分离的优点,而超顺磁性可以保证外磁场撤出后不团聚,催化剂容易再分散到水中的优点。催化剂的单分散性使催化剂能很好的分散于水中,有效的减少了外传质对催化反应的影响:而Pd在催化剂表面的富集使得内传质的影响可以被忽略;这两点相互结合使得催化剂中的有效成分Pd得到了充分的利用,和其他商业催化剂相比具有更好的催化活性。
     通过对催化反应的测试,我们发现单分散Pd/Fe3O4催化剂具有很好的催化还原溴酸根的能力;水溶液中常见的阴离子如SO42-,Cl-以及NO3-离子对催化反应的影响不大,而碳酸氢根离子对反应的影响非常大。这是因为碳酸氢根在反应过程中被还原成甲酸,甲酸分解产生的一氧化碳使催化剂中毒所致。通过增加负载量可以从一定程度上解决碳酸氢根使催化剂失活的现象,Pd负载量增加到1wt%,催化剂受到碳酸氢根的影响减小。
     催化剂的循环试验表明单分散Pd/Fe3O4催化剂具有很好的循环利用性能,对于50ppb的溴酸根水溶液,Pd(1)/Fe3O4催化剂的循环利用次数可达100次以上,经过100次的循环仍然能在5min之内将50ppb的溴酸根降到0。高达100次循环利用次数使催化剂的成本大大降低,为该催化剂在实际生产中的应用奠定了基础。
     3.采用溶胶凝胶和相分离的方法制备了具有双孔结构的二氧化硅块体材料,这种结构的特点是具有贯穿整个材料的大孔和位于氧化硅骨架上的中孔。贯穿的大孔可以提供水流的通道,减小传值的影响;介孔可以提供活性位,有利于纳米材料的负载和砷的吸附。通过改变反应温度和PEO的含量可在微米级范围内改变大孔的孔径,实验中我们发现:温度越高,大孔孔径越小:PEO含量越高,大孔孔径越大。通过改变溶剂置换过程中氨水的浓度、水热的温度及时问,可以在纳米范围内改变中孔的大小(6-23nm),氨水浓度越高,水热温度越高,时间越长,中孔的孔径越大。随着中孔孔径的增加,二氧化硅的比表面积下降。
     通过对负载方法的选择,我们选择了浸渍法负载氧化铈,浸渍法得到的吸附剂一次负载量可达到69wt%。当负载量增加到67wt%时出现大孔孔道阻塞的情况。当负载量小于67wt%时,氧化铈均匀负载于氧化硅的介孔孔道内。
     砷吸附动力学测试结果显示,三价砷的吸附速率比五价砷快,在低浓度时吸附剂吸附三价能力强于五价砷:在平衡浓度相同时,三价砷的饱和吸附量约为五价砷的两倍;pH对五价砷的吸附影响较大。流动实验表明本文中制备的双孔结构的吸附剂可以很好的去除水中的砷,当EBCT为4min时,三价砷和五价砷的穿透点分别为18000bv和12000bv,阳宗海水的穿透点为20000bv。双孔吸附剂脱附后的吸附剂性能有所下降,但是仍然保持了很好的砷吸附性能
Malignant tumor has a devastating effect on human health and is one of the majorrisks to life. Nowadays, cancer, cardiovascular diseases and accidents are thethree leading causes of human death. For this reason, the World Health Organization hasmadecuring cancer as one of the prime tasks. Cancer wasalso found by the China's Health Ministry as the number one cause of Chinese deathsin2005. Incidences of cancer and death rates from cancer have been increasing in the last30years in our country. In the coming twenty or thirty years, cancer incidenceand mortality will continue to show an upward tendency. A growing body of evidence from scientific and medical researchsuggests that most cancer cases are caused by the carcinogenicchemical speciesin the environment, which currently exist in the surface water, ground water and treated drinking water. Thus, the water contaminated with carcinogens must be purified to meet the health requirements. However, the types and amounts of contaminants in water are increasing with the ever-worsening water pollution, and the conventional water treatment techniqueshave lost efficacyin treating these increasingly complex pollutants. Therefore, novel methodsand new materialsfor removing carcinogens from water are needed to meet the future challenge. In the current study, new catalytic and adsorptive materials were developed and found to be highly effective inremoving3major carcinogenicanions from water, namely, nitrate, bromate and arsenite/arsenate.
     1.A magnetite supported monometallic Pd catalyst was synthesized by a co-precipitation process followed with the reduction in pure hydrogen at453K. The catalyst was composed of ultrafine Pd nanoparticles (-2nm) highly dispersed on the surface of superparamagnetic Fe3O4nanoparticles. The XRD, XPS and TPR measurementsconfirmed thatthe Pd/Fe3O4catalyst meets the three requirementsof denitrification:noble metal, capable of chemisorbing and activating hydrogen, a redox couple, and strong interaction between the noble metal and redox couple.
     The activity of Pd/Fe3O4catalyst for the reduction of nitrate and nitrite were examinedin lab water spiked with the contaminants. The denitrification activity was found toincrease with increasing Pd content. Inthe denitrification process,nitrite reduction was faster than the reduction of nitrate. XRD and TPR characterization supported the assertion that Pd/Fe3O4acted as thecatalyst in the denitrification process.
     Aside from its roles as the catalyst support and the magnetic separation medium, Fe3O4was found to be a good promoter for the nitrate reduction, where nitrate was firstly reduced to nitrite by the Fe(Ⅱ)/Fe(Ⅲ) redox couple, and subsequently reduced to nitrogen and ammonium. Further mechanisticstudies demonstrated that besides the Pd sites, active sites for the nitrite reduction also exist on the surface of Fe3O4. Part of the nitrite reduction occurred on the surface of Fe3O4, which may also be attributed to the Fe(Ⅱ)/Fe(Ⅲ) redox couple.
     Catalyst deactivation was investigated in the recycle experiment. Oxidation of Fe(Ⅱ) on the surface and weaker interaction between Pd and redox couple after catalytic reaction accounted for the catalyst deactivation. Catalyst deactivation induced by oxidation of Fe(Ⅱ) on the surface can be activated by H2reduction at180℃, but the weaker interaction between Pd and redox couple couldnot be recovered.
     2.A novel quasi-monodispersedsuperparamagneticPd/Fe3O4catalyst was synthesized by solvothermal and aqueous reduction method. The catalyst was made by dispersing nanoparticles of Pd (weight percent up to1%) on the surface of superparamagnetic Fe3O4microspheres with300nm~500nm in diameter and10-20nm in grain size. The existence of Pd nanoparticleson Pd(x)/Fe3O4catalyst surface reduced the mass transport limitation and subsequently facilitated the catalytic reduction of bromate.
     Most coexisting anions in water except for HCO3-, such as SO422-, NO3-, and Cl-, had only moderate effect on the catalytic reduction ofbromate by the Pd/Fe3O4catalyst. The poisoning effect from HCO3-could be minimized by increasing the Pd nanoparticle size on its surface. The catalyst could be easily recycled and reused, after100time's recycle, complete catalytic50ppb bromate reduction could occur within only in5min.
     3.Silica monolith with dual-pore structure was prepared by a sol-gel method. In the monolith,the interconnected macroporesare desirable for liquid transport and the mesopores could serve as the sites for various functions, such as selective adsorption and catalytic active surfaces. The lager pore structure was changed by adjusting temperature and PEO content, whilethe mesopore structure was controlled by the ammonium concentration and solvent thermal conditions.
     Cerium oxide (CeO2) nanoparticles were integrated onto the silica monolith by a simple impregnation process to create a novel composite arsenic adsorbent (SCO). The SCO has interconnected macropores with high pore volume, large surface area, and CeO2loading up to69wt%after only oneimpregnation. When the cerium CeO2loading amount exceeded67wt%, CeO2nanoparticles precipitated on the surface of the silica skeleton and blockedmacropores.
     The SCOs served as the adsorption media in continuous column flow tests and demonstrated an exceptional arsenic removal performance. A high breakthrough bed volume of20000bv was achieved at a fast EBCT of4min for the treatment of arsenic-contaminated natural water of~80μg/L to meet the MCL at10μg/L for drinking water. The composite adsorbents required only a simple desorption/regeneration process and demonstrated agood adsorption performance after regeneration,making them attractive for industrial applications in the treatment of arsenic-contaminated water.
引文
中国水资源公报2011.
    中国水资源现况[M].2010.第五届西部大开发塑料论坛暨中国塑料加工工业协会常务理事扩大会议论文集.
    农田面源污染灌排综合调控技术[J].2011.中国科技成果,(2):19
    SEULY.2005.美国拉夫运河事件
    丁莞歆.2007.中国水污染事件纪实[J].环境保护,(07B):83-85
    丁坚平,王中美,毛健全,等.2003.岩溶地下水渗漏污染研究[J].贵州工业大学学报(自然科学版),32(4):98-102..
    丁爱中,杨双喜,张宏达.2007.地下水砷污染分析[J].吉林大学学报(地球科学版),37(2):319-325.
    万莉萍.2011.癌症村之路—盐城市阜宁县杨集镇东兴村调查[J].魅力中国,(7):222-223.
    王大明,张红梅,王桂芳,等.2008.砷去除技术综述[M],2008年全国金属矿山采矿专题、选矿专题学术研讨与技术交流会论文集.
    王小文,张晓健,陈超,等.2006.芳香类有机物生成氯化消毒副产物特性及其与化学结构的关系[J].环境科学,27(8):1603-1607.
    王文彬.2006.关注渔业污染重寻蓝天碧水[J].畜牧兽医科技信息,(8)89-90.
    王宇,高宝玉,岳文文,等.2007.改性玉米秸秆对水溶液中硝酸根的吸附动力学研究[J].环境科学学报,27(9):1458-1462.
    王利.2012.从监管机制入手遏制重金属污染事件[J].环境保护,(12):50-51.
    王明祥,谷永香,李翼斌,等.2006.独山县砷冶炼厂废渣废水污染情况调查[J].黔南民族医专学报,19(4):222-223.
    王德东.2011.浅议几种常用工业污水处理方法[J].黑龙江科技信息,(8):57-57.
    仝重臣,员建,苑宏英,等.2012.饮用水处理中氯化消毒副产物三卤甲烷和卤代乙酸研究进展[J].净水技术,31(2):6-11.
    吉曹翔2011.砷污染水稻高光谱特征及水稻籽粒产量光谱预估研究[D]:[硕士].南京:南京信息工程大学.
    朱琦2008.饮用水处理中臭氧氧化效能与溴酸盐生成及控制研究[D]:[硕士].哈尔滨:哈尔滨工业大学.
    江曙光.2010.中国水污染现状及防治对策[J].现代农业科技,(7):313-315.
    余嘉玲,张世秋2009.中国癌症村现象及折射出的环境污染健康相关问题分析[M],中国环境科学学会2009年学术年会论文集.
    余闪闪,杜丹.2012.如何合理进行田间灌溉[J].科技致富向导,(33):40-40.
    宋宏,钟赛贤,余淑苑,等.2004.饮用水中肠贾第鞭毛虫和隐孢子虫卫生标准的研究[J].环境与健康杂志,21(6):417-419.
    李心亮.2007.中国水污染之患—访中华环境保护基金会理事长曲格平[J].环境保护,(07B):10-11.
    李冰玲.2011.化工厂工业污水综合处理应用[J].中国石油和化工标准与质量,(11):263-264.
    李圭白,杨艳玲.2007.超滤-第三代城市饮用水净化工艺的核心技术[J].供水技术,(1);1-3.
    李复兴2008.水与癌(M),2008年世界水日.中国饮用水高层论坛论文集.
    李复兴,赵飞虹2007.氯化消毒技术与人体健康关系的探讨[M],全国给水深度处理研究会二〇〇七年年会论文汇编.
    李莉,王业耀,孟凡生.2008.饮用水中砷去除技术综述[J].四川环境,27(1):87-90.
    李新伟.2006.臭氧生物活性炭技术处理自来水的致突变性研究[D]:[硕士].杭州:浙江省医学科学院.
    李瑾,柴立元,向仁军,等.2011厌氧-好氧活性污泥法(A/O)-体化装置处理生活污水的中试研究[J].中南大学学报(自然科学版),42(10):2935-2940.
    李锦秀,廖文根,陈敏建,等.2003.我国水污染经济损失估算[J].中国水利,(21):63-66.
    李风新2008.PEG和F127为致孔剂制备硅胶整体柱及其色谱评价[D]:[硕士].保定:河北大学.
    杜祥.2007.一起由生活污水污染高层二次供水事件的调查[J].环境与健康杂志,24(2):65-65.
    沈耀良,束琴霞,孙立柱,等.2004.负荷及金属离子对ABR颗粒污泥及运行特性的影响[J].苏州科技学院学报(工程技术版),17(4):1-5.
    肖天存,苏继新,王海涛,等.1999.炼油催化剂废渣污染及其防治的研究[J].化工环保,19(3);131-134.
    肖振林,曲蛟,丛俏.2010.锦州铁合金厂区周边蔬菜地土壤和蔬菜中重金属污染状况评价[J].山东农业科学,(12):64-66.
    周超,高乃云,黎雷,等.2011.饮用水氯化消毒副产物对氯苯酚的研究进展[J].水处理技术,37(9):1-5.
    周爱萍.2009.我国农村水污染现状及防治措施[J].安徽农业科学,37(9):4345-4346.
    岳文文.2007.改性农用秸秆对水中硝酸根、磷酸根吸附效果的研究[D]:[硕士].济南:山东大学.
    林辉,刘建平.2001.饮水氯化消毒及其副产物的研究进展及展望[J].中国公共卫生,17(11):1042-1043.
    邱贵江,朱俊,李霞.2008.内江市城区地下水硝酸盐污染研究[J].内江师范学院学报,23(2);104-106.
    金国华.2005.农业非点源污染环境影响评价及防治对策研究[D]:[硕士].长春:东北师范大学.
    金赞芳,工飞儿,陈英旭,等.2004.城市地下水硝酸盐污染及其成因分析[J].土壤学报,23(2):104-106.
    姜月华,李云峰,周权平,等.2008.癌症村地下水和土壤的污染状况和思考[M],2008年全国地下水污染学术研讨会论文集.
    柯强,李文红,陈英旭.2003.紫外线杀菌效能的研究[J].环境污染与防治,25(3);136-138.
    美国中文网.2012www.yp.sinovision.net/news.
    胡国成.2006.白洋淀污染事件反思[J].中国水产,(5):9-10.
    唐丽.2007.氧化锰-粘土矿物复合物的表面特性及其对As(Ⅲ)的氧化[D]:[硕士].武汉:华中农业大学.
    徐智,黄可龙.2009.砷的代谢及其毒性机制的相关性研究[J].中国药业,18(12):19-21.
    浮海梅,王宏华.2009.浅谈地下水的硝酸盐污染[J].洛阳理工学院学报(自然科学版),19(2):13-16.
    翁蓁洲.2012.福建古田水库渔业污染事故调查分析[J].福建水产,34(3);220-224.
    高阳俊,张乃明.2003.滇池流域地下水硝酸盐污染现状分析[J].云南地理环境研究,2003,15(4):39-42.
    项斯芬.1995.氮、磷、砷分族[M].北京:科学出版社
    彭汝运.2009.养殖鱼类大面积死亡的原因分析与控制[J].海洋与渔业,(11):41-42.
    曾薇,王向东,张立东,等.2012.MUCT工艺处理实际生活污水实现亚硝酸型硝化[J].化工学报,63(4):1195-1203.
    程海2009.上业污水臭气治理项目可行性研究[D]:[硕士].北京:北京化工大学.
    程鹏立,唐争翠.2010.环境污染与癌症关系的确定—基于社会学的经验研究[M],2010.第五届环境与职业医学国际学术研讨会论文集.
    童桂华.2008.去除地下水硝酸盐PRB介质试验研究—离子交换树脂的选择与电再生[D]:[硕士].青岛:中国海洋大学.
    楚泽涵,封锡强,李艳丽.2000.水资源问题应引起关注[J].古地理学报,2(4):84-90.
    董刚,王文举.2006.淮河流域水体污染对工业经济的影响评估[J].治淮,(10):3-4.
    虞子婧.2009.农业生态系统地下水氮面源污染数值模拟研究[D]:[硕士].北京:中国科学院.
    訾健康.2012.简述农村水污染防治对策[J].现代化农业,(8):41-43.
    蔡庆华.2007.中国水污染综合治理的生态学思考[J].环境保护,(07B):46-48.
    蔡艳荣,黄宏志.2010锦州铁合金厂区周围土壤金属污染状况调查分析[J].科学技术与工程,(3):831-834.
    操利超.2010.利用胶体晶体和F127为模板制备有序孔结构的硅胶整体柱[D]:[硕士].天津: 天津大学.
    操佩娟,王定勇.2005.饮用水中致癌物的致癌作用及防治对策[J].重庆交通学院学报,24(6);160-163.
    储茵.2001.合肥市地下水硝酸盐氮污染程度及其防治对策的研究[J].安徽农业大学学报,28(1):98-101.
    冯广达,毕银丽,曲东.2008.矿区废弃物不同工艺处理对淋溶水的影响[J].科技导报,26(5);70-73.
    刘志强,苗群,邵长飞,等.2003.滇池流域村镇生活污水污染及处理技术[J].青岛建筑工程学院学报,24(1):13-17.
    刘俊廷.2009.浅谈水污染[J].城市建设与商业网点,(18):158-158.
    刘春.2011.浅论我国的淡水资源.华章.
    刘相梅,葛小雷,陈明.2010.邳苍分洪道第一次砷超标事件解析[J].城市与减灾.(4)
    刘英华,张世熔,张素兰,等.2005.成都平原地下水硝酸盐含量空间变异研究[J].长江流域资源与环境,14(1):114-118.
    刘淑云,刘妍妍.2012.农药化肥施用对农村饮用水源地污染情况浅析[J].科技与企业,(2):79-81.
    刘锐平,曲久辉.2011.饮用水砷污染风险控制技术与工程应用[M],第六届全国环境化学学术大会论文集.
    吕振军.2008.烧结车间工业污水改造[M],2008年全国炼铁技术交流会论文集.
    吴克宏,邓正栋,谢思桃.2001.医院污水处理技术综述[J].工业用水与废水,32(1):40-42.
    吴雨华.2011.国内外地下水硝酸盐污染及其防治差异分析[J].安徽农业科学,39(4):2183-2184.
    吴德勇.2012.农村水污染问题及其防治对策[J].安徽农业科学,40(11):6738-6739.
    孙月飞.中国癌症村的地理分布研究[D]:[硕士].武汉:华中师范大学.
    孙德栋,张启修.2004.UF处理生活污水过程中的膜污染和膜清洗研究[J].膜科学与技术,24(3):32-35.
    张建,黄霞,魏杰,等.2002.地下渗滤污水处理系统的氮磷去除机理[J].中国环境科学,22(5:438-441.
    张思聪,吕贤弼,黄永刚.1999.灌溉施肥条件下氮素在土壤中迁移转化的研究[J].水利水电技术,30(5):6-8.
    张敏,向全永,胡晓抒.2010.砷暴露与肺癌[J].中国地方病学杂志,(1):116-118.
    张斌,李学建.2011.对加强水资源管理的几点认识[J].水利天地,(10):40-42.
    张爱华.2008.砷与健康[J]国外医学:医学地理分册.25(2):72-74.
    张维理,田哲旭,张宁,等.1995.我国北方农用氮肥造成地下水硝酸盐污染的调查[J].植物 营养与肥料学报,1(2):80-87.
    杨晓丹.2012.浅析河流水体自净能力[J].中国化工贸易,4(9):197-197.
    杨静.2004.硅胶整体柱的制备及其色谱性能的研究[D]:[博士].保定:河北大学.
    毕舸.2004.“癌症村”的困惑[J].环境,(1):37.
    毕晶晶,彭昌盛,胥慧真.2010.地下水硝酸盐污染与治理研究进展综述[J].地下水,(1):97-10232:6.
    许慧慧,李洁斐.2007.氯化消毒副产物的生殖发育毒性[J].环境与职业医学,24(5):550-554.
    赵同科,张成军,杜连凤,等.2007.环渤海七省(市)地下水硝酸盐含量调查[J].农业环境科学学报,26(2):779-783.
    赵新锋,陈法锦,陈建耀,等.2008.城市地下水硝酸盐污染及其成因分析—以珠海香洲区为例[J].水文地质工程地质,35(3):87-92.
    赵伟丽,褚学伟,董毓,等.2011.岩溶含水层渗漏污染弥散类型分析—以贵州废渣堆场污染为例[J].地下水33(2):6-7.
    卢楚雍,钟小辉.2009.中国癌症村分布的时空规律分析[J].现代农业科学,(7):243-244.
    邓小红,郭洁.2008.二氧化氯消毒剂治理医院污水的研究[J].现代预防医学,35(21):4137-4139.
    钱正英,陈家琦,冯杰.2010.中国水利的战略转变[J].城市发展研究,(14):119-1211.
    钱朝海,许云生,涂世英.2010.浅谈砷污染的危害及砷制剂的正确使用[J].云南畜牧兽医,(3):16-171.
    陈志莉,叶茂平.2003.医院污水处理技术[J].环境科学与技术,26(6):49-50.
    韩闽毅,陈健,吴志军,等.2005.医院污水的紫外线消毒研究[J].中国给水排水,21(2):37-39.
    马文成,韩洪军.2008.混合耐冷菌群的优化筛选及应用研究[J].环境工程学报,2(7):891-895.
    马刚.2011.生活污水处理工程工艺设计及废气排放方案[J].城市建设理论研究(电子版),2011(23).
    黄忠学.2007.节约用水与合理用水[J].科技资讯,(6):87.
    Dittmeyer, R.& Emig, G. (2008). Simultaneous Heat and Mass Transfer and Chemical Reaction. In:Handbook of Heterogeneous Catalysis[M],.ed, Weinheim:,Wiley-VCH.
    Guidelines for Drinking-water Quality. Third edition, volume 1, World Health Organization. 2008.
    Hironori Nakajima.2011. Mass Transfer-Advanced Aspects[M], InTech,pp 667-675[J]. Barret SC, Massalski, BT. Structure of Metals[M], ed. New York, McGraw-Hill.
    Balaji T, Yokoyama T, Matsunaga H.2005. Adsorption and removal of As(Ⅴ) and As(Ⅲ) using Zr-loaded lysine diacetic acid chelating resin[J]. Chemosphere,59:1169-1174.
    Bao-yu G, Yu W, Qin-yan Y, et al.2011. Adsorption kinetics of nitrate from aqueous solutions onto modified corn residue[J]. International Journal Of Environment and Pollution,45:58-68.
    Barrabes N, Sa J.2011. Catalytic nitrate removal from water, past, present and future perspectives[J]. Applied Catalysis B:Environmental,104:1-5.
    Barrabes N, Dafinov A, Medina F, et al.2010. Catalytic reduction of nitrates using Pt/CeO2 catalysts in a continuous reactor[J]. Catalysis Today,149:341-347.
    Baykal A, Karaoglu E, Sozeri H, et al.2012. Synthesis and Characterization of High Catalytic Activity Magnetic Fe3O4 Supported Pd Nanocatalyst[J]. Journal of Superconductivity and Novel Magnetism,26:165-171.
    Benedetti A, Fagherazzi G, Pinna F, et al.1991. The influence of a second metal component (Cu, Sn, Fe) on Pd/SiO2 activity in the hydrogenation of 2,4-dinitrotoluene[J]. Catalysis Letters,10: 215-223.
    Bhatnagar A, Choi Y, Yoon Y, et al.2009. Bromate removal from water by granular ferric hydroxide (GFH)[J]. Journal Of Hazardous Materials,170:134-140.
    Bhatnagar A, Sillanpaa M.2011. A review of emerging adsorbents for nitrate removal from water[J]. Chemical Engineering Journal,168:493-504.
    Bruningfann CS, Kaneene JB.1993. The effects of nitrate, nitrite and n-nitroso compounds on human health-a review[J]. Veterinary and Human Toxicology,35:521-538.
    Butler R, Godley A, Lytton L, et al.2005. Bromate environmental contamination:Review of impact and possible treatment[J]. Critical Reviews In Environmental Science and Technology, 35:193-217.
    Chen H, Xu Z, Wan H, et al.2010. Aqueous bromate reduction by catalytic hydrogenation over Pd/Al2O3 catalysts[J]. Applied Catalysis B:Environmental,96:307-313.
    Chinthaginjala JK, Lefferts L.2010. Support effect on selectivity of nitrite reduction in water[J]. Applied Catalysis B:Environmental,101:144-149.
    Chitrakar R, Mizobuchi K, Sonoda A, et al.2010. Uptake of Bromate Ion on Amorphous Aluminum Hydroxide[J]. Industrial & Engineering Chemistry Research,49:8726-8732.
    Choi J-H, Shin WS, Choi SJ, et al.2009. Reductive denitrification using zero-valent iron and bimetallic iron[J]. Environmental Technology,30:939-946.
    Choong TS, Chuah T, Robiah Y, et al.2007. Arsenic toxicity, health hazards and removal techniques from water:an overview[J]. Desalination,217:139-166.
    Cui H, Li Q, Gao S, et al.2012. Strong adsorption of arsenic species by amorphous zirconium oxide nanoparticles[J]. Journal Of Industrial and Engineering Chemistry,18:1418-1427.
    Daarino M.2004. Nitrate and nitrite hydrogenation with Pd and Pt/SnO2 catalysts: the effect of the support porosity and the role of carbon dioxide in the control of selectivity[J]. Applied Catalysis B:Environmental,53:161-168.
    Deganello F, Liotta LF, Macaluso A, et al.2000. Catalytic reduction of nitrates and nitrites in water solution on pumice-supported Pd-Cu catalysts[J]. Applied Catalysis B-environmental, 24:265-273.
    Dianova EV, Voroshilova AA.1952. Mechanism of the development of saprophytic bacteria in the process of self-purification of polluted rivers[J]. Mikrobiologiia,21:311-320.
    Dominguez L, Yue Z, Economy J, et al.2002. Design of polyvinyl alcohol mercaptyl fibers for arsenite chelation[J]. Reactive and Functional Polymers,53:205-215.
    Ebbesen SD, Mojet BL, Lefferts L.2010. Effect of pH on the Nitrite Hydrogenation Mechanism over Pd/Al2O3 and Pt/Al2O3:Details Obtained with ATR-IR Spectroscopy(?)[J]. The Journal of Physical Chemistry C,115:1186-1194.
    Enthaler S, von Langermann J, Schmidt T.2010. Carbon dioxide and formic acid-the couple for environmental-friendly hydrogen storage?[J]. Energy & Environmental Science,3:1207-1217.
    Epron F.2001. Catalytic Reduction of Nitrate and Nitrite on Pt-Cu/Al2O3 Catalysts in Aqueous Solution:Role of the Interaction between Copper and Platinum in the Reaction[J]. Journal Of Catalysis,198:309-318.
    Fanning JC.2000. The chemical reduction of nitrate in aqueous solution[J]. Coordination Chemistry Reviews,199:159-179.
    Fihri A, Bouhrara M, Nekoueishahraki B, et al.2011. Nanocatalysts for Suzuki cross-coupling reactions[J]. Chemical Society Reviews,40:5181.
    Flu PC.1923. On the bacteriophage and the self purification of water[J]. Proceedings of the Koninklijke Akademie Van Wetenschappen Te Amsterdam,26:116-121.
    Fraser P, Chilvers C.1981. HEALTH-ASPECTS OF NITRATE IN DRINKING-WATER[J]. Science Of The Total Environment,18:103-116.
    Fujiki H, Suganuma M.2011. Tumor Promoters-Microcystin-LR, Nodularin and TNF-alpha and Human Cancer Development[J]. Anti-Cancer Agents in Medicinal Chemistry,11:4-18.
    Garron A, Epron F.2005. Use of formic acid as reducing agent for application in catalytic reduction of nitrate in water[J]. Water Research,39:3073-3081.
    Gary L. Amy MSS. Strategies to Control Bromate and Bromide[M], USA.
    Gauthard F.2003. Palladium and platinum-based catalysts in the catalytic reduction of nitrate in water:effect of copper, silver, or gold addition[J]. Journal Of Catalysis,220:182-191.
    Ge J, Hu Y, Biasini M, et al.2007. Superparamagnetic Magnetite Colloidal Nanocrystal Clusters[J]. Angewandte Chemie,119:4420-4423.
    Grimm J, Bessarabov D, Sanderson R.1998. Review of electro-assisted methods for water purification[J]. Desalination,115:285-294.
    Guo H, Li Y, Zhao K, et al.2011. Removal of arsenite from water by synthetic siderite: Behaviors and mechanisms[J]. Journal Of Hazardous Materials,186:1847-1854.
    Guo X, Chen F.2005. Removal of Arsenic by Bead Cellulose Loaded with Iron Oxyhydroxide from Groundwater[J]. Environmental Science & Technology,39:6808-6818.
    Guy KA, Xu H, Yang JC, et al.2009. Catalytic Nitrate and Nitrite Reduction with Pd-Cu/PVP Colloids in Water:Composition, Structure, and Reactivity Correlations[J]. The Journal of Physical Chemistry C,113:8177-8185.
    Hang C, Li Q, Gao S, et al.2011. As(Ⅲ) and As(Ⅴ) Adsorption by Hydrous Zirconium Oxide Nanoparticles Synthesized by a Hydrothermal Process Followed with Heat Treatment[J]. Industrial & Engineering Chemistry Research,51:353-361.
    Hell F, Lahnsteiner J, Frischherz H, et al.1998. Experience with full-scale electrodialysis for nitrate and hardness removal[J]. Desalination,117:173-180.
    Hildebrand H, Mackenzie K, Kopinke F-D.2009. Pd/Fe3O4 nano-catalysts for selective dehalogenation in wastewater treatment processes-Influence of water constituents[J]. Applied Catalysis B:Environmental,91:389-396.
    Hiscock KM, Lloyd JW, Lerner DN.1991. Review of natural and artificial denitrification of groundwater[J]. Water Research,25:1099-1111.
    Hoke JB, Gramiccioni GA, Balko EN.1992. CATALYTIC HYDRODECHLORINATION OF CHLOROPHENOLS[J]. Applied Catalysis B-environmental,1:285-296.
    Hosni K, Srasra E.2008. Nitrate adsorption from aqueous solution by M-Ⅱ-AI-CO3 layered double hydroxide[J]. Inorganic Materials,44:742-749.
    Huang C, Tang Z, Zhang Z.2001. Differences between Zirconium Hydroxide (Zr (OH) 4-nH2O) and Hydrous Zirconia (ZrO2-nH2O)[J]. Journal Of The American Ceramic Society,84: 1637-1638.
    Hurley KD, Shapley JR.2007. Efficient Heterogeneous Catalytic Reduction of Perchlorate in Water[J]. Environmental Science & Technology,41:2044-2049.
    Ianshina MS.1946. Ozonization of water[J]. Gigiena i sanitariia,11:4-8.
    Ilinich O.2003. Water denitrification over catalytic membranes:hydrogen spillover and catalytic activity of macroporous membranes loaded with Pd and Cu*1[J]. Catalysis Today,82:49-56.
    Ilinitch OM, Cuperus FP, Nosova LV, et al.2000. Catalytic membrane in reduction of aqueous nitrates:operational principles and catalytic performance[J]. Catalysis Today,56:137-145.
    Irigaray P, Newby JA, Clapp R, et al.2007. Lifestyle-related factors and environmental agents causing cancer:An overview[J]. Biomedicine & Pharmacotherapy,61:640-658.
    Kaji H, Nakanishi K, Soga N.1993. Polymerization-induced phase separation in silica sol-gel systems containing formamide[J]. Journal Of Sol-gel Science and Technology,1:35-46.
    Katal R, Baei MS, Rahmati HT, et al.2012. Kinetic, isotherm and thermodynamic study of nitrate adsorption from aqueous solution using modified rice husk[J]. Journal Of Industrial and Engineering Chemistry,18:295-302.
    Keane MA.1997. A kinetic treatment of heterogeneous enantioselective catalysis[J]. Journal of the Chemical Society, Faraday Transactions,93:2001-2007.
    Keane MA.2005. A review of catalytic approaches to waste minimization:case study liquid-phase catalytic treatment of chlorophenols[J]. Journal Of Chemical Technology and Biotechnology,80:1211-1222.
    Knobeloch L, Salna B, Hogan A, et al.2000. Blue babies and nitrate-contaminated well water[J]. Environmental Health Perspectives,108:675-678.
    Korngold E.1973. Removal of nitrates from potable water by ion exchange[J], Water, Air,& Soil Pollution,2:15-22.
    Kramer H, Levy M, Warshawsky A.1995. Hydrogen storage by the bicarbonate/formate reaction. Studies on the activity of Pd catalysts[J]. International Journal Of Hydrogen Energy,20: 229-233.
    Kudo A, Domen K, Maruya K-I, et al.1992. Reduction of nitrate ions into nitrite and ammonia over some photocatalysts[J]. Journal Name:Journal of Catalysis; (United States); Journal Volume:135:1:Medium:X; Size:Pages:300-303.
    Kudo A, Domen K, Maruya K, et al.1987. PHOTOCATALYTIC REDUCTION OF NO3-TO FORM NH3 OVER PT-TIO2[J]. Chemistry Letters:1019-1022.
    Lamblin M, Nassar-Hardy L, Hierso J-C, et al.2010. Recyclable Heterogeneous Palladium Catalysts in Pure Water:Sustainable Developments in Suzuki, Heck, Sonogashira and Tsuji-Trost Reactions[J]. Advanced Synthesis & Catalysis,352:33-79.
    Li R, Li Q, Gao S, et al.2012. Exceptional arsenic adsorption performance of hydrous cerium oxide nanoparticles:Part A. Adsorption capacity and mechanism[J]. Chemical Engineering Journal,185:127-135.
    Liang M, Kang W, Xie K.2009. Comparison of reduction behavior of Fe2O3, ZnO and ZnFe2O4 by TPR technique[J]. Journal of Natural Gas Chemistry,18:110-113.
    Liu J, Sun B, Hu J, et al.2010. Aqueous-phase reforming of ethylene glycol to hydrogen on Pd/Fe3O4 catalyst prepared by co-precipitation:Metal-support interaction and excellent intrinsic activity[J]. Journal Of Catalysis,274:287-295.
    Lu A-H, Salabas EL, Schuth F.2007. Magnetic Nanoparticles:Synthesis, Protection, Functionalization, and Application[J]. Angewandte Chemie International Edition,46: 1222-1244.
    Maity D, Kale SN, Kaul-Ghanekar R, et al.2009. Studies of magnetite nanoparticles synthesized by thermal decomposition of iron (Ⅲ) acetylacetonate in tri(ethylene glycol)[J]. Journal Of Magnetism and Magnetic Materials,321:3093-3098.
    Marchesini FA, Gutierrez LB, Querini CA, et al.2010. Pt,In and Pd,In catalysts for the hydrogenation of nitrates and nitrites in water. FTIR characterization and reaction studies[J]. Chemical Engineering Journal,159:203-211.
    Masschelein WJ.1985. BELGIAN EXPERIENCES IN THE OZONIZATION OF WATER[J]. Ozone-science & Engineering,7:327-350.
    Matatov-Meytal U, Sheintuch M.2005. Activated carbon cloth-supported Pd-Cu catalyst: Application for continuous water denitrification[J]. Catalysis Today,102-103:121-127.
    Mateju V, Cizinska S, Krejci J, et al.1992. BIOLOGICAL WATER DENITRIFICATION-A REVIEW[J]. Enzyme and Microbial Technology,14:170-183.
    Mendow G, Marchesini FA, Miro EE, et al.2011. Evaluation of Pd-In Supported Catalysts for Water Nitrate Abatement in a Fixed-Bed Continuous Reactor[J]. Industrial & Engineering Chemistry Research,50:1911-1920.
    Meng X, Korfiatis GP, Christodoulatos C, et al.2001. Treatment of arsenic in Bangladesh well water using a household co-precipitation and filtration system[J]. Water Research,35: 2805-2810.
    Mills A, Meadows G.1995. HETEROGENEOUS REDOX CATALYSIS-A NOVEL ROUTE FOR REMOVING BROMATE IONS FROM WATER[J]. Water Research,29:2181-2185.
    Mohan D, Pittmanjr C 2007. Arsenic removal from water/wastewater using adsorbents—A critical review[J]. Journal Of Hazardous Materials,142:1-53.
    Munakata N, Roberts PV, Rinhard M, et al.1998. Catalytic dechlorination of halogenated hydrocarbon compounds using supported palladium:a preliminary assessment of matrix effects [M]//M. K. K. HERBERT, Groundwater Quality:Remediation and Protection: 491-496.
    Nakamura K, Yoshida Y, Mikami I, et al.2006. Selective hydrogenation of nitrate in water over Cu-Pd/mordenite[J]. Applied Catalysis B-environmental,65:31-36.
    Nakamura N, Takahashi R, Sato S, et al.2000. Ni/SiO2 catalyst with hierarchical pore structure prepared by phase separation in sol-gel process[J]. Physical Chemistry Chemical Physics,2: 4983-4990.
    Nakanishi K, Soga N.1991. Phase-separation in gelling silica organic polymer-solution- systems containing poly(sodium styrenesulfonate)[J]. Journal Of The American Ceramic Society,74:2518-2530.
    Nakanishi K, Takahashi R, Nagakane T, et al.2000. Formation of Hierarchical Pore Structure in Silica Gel[J]. Journal Of Sol-gel Science and Technology,17:191-210.
    Ngwenya N, Ncube EJ, Parsons J.2013. Recent advances in drinking water disinfection: successes and challenges[J]. Reviews Of Environmental Contamination and Toxicology,222: 111-170.
    Organization WH.2004. Nitrates and nitrites in drinking-water[J].
    Orlemann EF, Kolthoff IM.1942. The Reduction of Iodate and Bromate in Acid Medium at the Dropping Mercury Electrode 1[J]. Journal Of The American Chemical Society,64:1044-1052.
    Ostroumov S.2000. An aquatic ecosystem:a large-scale diversified bioreactor with a water self-purification function.-Doklady Biological Sciences,2000. Vol.374, P.514-516 [C]//; City. 514-516.
    Palomares AE, Franch C, Corma A.2010. Nitrates removal from polluted aquifers using (Sn or Cu)/Pd catalysts in a continuous reactor[J]. Catalysis Today,149:348-351.
    Palomares AE, Prato JG, Marquez F, et al.2003. Denitrification of natural water on supported Pd/Cu catalysts[J]. Applied Catalysis B:Environmental,41:3-13.
    Pintar A.2003. Catalytic processes for the purification of drinking water and industrial effluents[J]. Catalysis Today,77:451-465.
    Pintar A, Batista J.1999. Catalytic hydrogenation of aqueous nitrate solutions in fixed-bed reactors[J]. Catalysis Today,53:35-50.
    Pintar A, Batista J.2007. Catalytic stepwise nitrate hydrogenation in batch-recycle fixed-bed reactors[J]. Journal Of Hazardous Materials,149:387-398.
    Pintar A, Batista J, Levec J.2001. Catalytic denitrification: direct and indirect removal of nitrates from potable water[J]. Catalysis Today,66:503-510.
    Pintar A, vetinc M, Levec J.1998. Hardness and Salt Effects on Catalytic Hydrogenation of Aqueous Nitrate Solutions[J], Journal Of Catalysis,174:72-87.
    Priisse U, Hahnlein M, Daum J, et al.2000. Improving the catalytic nitrate reduction[J]. Catalysis Today,55:79-90.
    Priisse U, Vorlop K-D.2001. Supported bimetallic palladium catalysts for water-phase nitrate reduction[J]. Journal of Molecular Catalysis A:Chemical,173:313-328.
    Prati L, Richards.QB.1971. WATER POLLUTION AND SELF-PURIFICATION STUDY ON PO RIVER BELOW FERRARA[J]. Water Research,5:203-&.
    Qiao B, Liu L, Zhang J, et al.2009. Preparation of highly effective ferric hydroxide supported noble metal catalysts for CO oxidations:From gold to palladium[J]. Journal Of Catalysis,261: 241-244.
    Qu J, Fan M.2010. The Current State of Water Quality and Technology Development for Water Pollution Control in China[J]. Critical Reviews In Environmental Science and Technology,40: 519-560.
    Ramavandi B, Mortazavi SB, Moussavi G, et al.2011. Experimental investigation of the chemical reduction of nitrate ion in aqueous solution by Mg/Cu bimetallic particles[J]. Reaction Kinetics Mechanisms and Catalysis,102:313-329.
    Ranjit KT, Krishnamoorthy R, Viswanathan B.1994. PHOTOCATALYTIC REDUCTION OF NITRITE AND NITRATE ON ZNS[J]. Journal Of Photochemistry and Photobiology A-chemistry,81:55-58.
    Richardson SD, Plewa MJ, Wagner ED, et al.2007. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water:A review and roadmap for research[J]. Mutation Research-reviews In Mutation Research,636: 178-242.
    Rodriguez-Maroto JM, Garcia-Herruzo F, Garcia-Rubio A, et al.2009. Kinetics of the chemical reduction of nitrate by zero-valent iron[J]. Chemosphere,74:804-809.
    Rook JJ.1974. Formation of haloforms during chlorination of natural waters[J]. Wat. Treat. Exam.1974.23, Pt.2,234-243:234-243.
    Ryker S 2001. Mapping arsenic in groundwater[J]. Geotimes,46:34-36.
    Sa J, Vinek H.2005. Catalytic hydrogenation of nitrates in water over a bimetallic catalyst[J]. Applied Catalysis B:Environmental,57:247-256.
    Sa J, Berger T, Fottinger K, et al.2005. Can TiO2 promote the reduction of nitrates in water?[J]. Journal Of Catalysis,234:282-291.
    Sakamoto Y, Kamiya Y, Okuhara T.2006. Selective hydrogenation of nitrate to nitrite in water over Cu-Pd bimetallic clusters supported on active carbon[J]. Journal of Molecular Catalysis A: Chemical,250:80-86.
    Sakamoto Y, Kanno M, Okuhara T, et al.2008. Highly Selective Hydrogenation of Nitrate to Harmless Compounds in Water Over Copper-Palladium Bimetallic Clusters Supported on Active Carbon[J]. Catalysis Letters,125:392-395.
    Salnikow K, Zhitkovich A.2008. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis:Nickel, arsenic, and chromium[J]. Chemical Research In Toxicology,21: 28-44.
    Sankpal UT, Pius H, Khan M, et al.2012. Environmental factors in causing human cancers: emphasis on tumorigenesis[J]. Tumor Biology,33:1265-1274.
    Schoeman JJ 2009. Nitrate-nitrogen removal with small-scale reverse osmosis, electrodialysis and ion-exchange units in rural areas[J]. Water Sa,35:721-728.
    Shuai D, Choe JK, Shapley JR, et al.2012. Enhanced activity and selectivity of carbon nanofiber supported pd catalysts for nitrite reduction[J]. Environmental Science & Technology,46: 2847-2855.
    Siddiqui MS, Amy GL, Cooper WJ, et al.1996. Bromate ion removal by HEEB irradiation[J]. American Water Works Association Journal,88:90-101.
    Siddiqui MS, Amy GL, McCollum LJ.1996. Bromate destruction by UV irradiation and electric arc discharge[J]. Ozone-science & Engineering,18:271-290.
    Soares OSGP, Orfao JJM, Pereira MFR.2008. Activated Carbon Supported Metal Catalysts for Nitrate and Nitrite Reduction in Water[J]. Catalysis Letters,126:253-260.
    Sohn K, Kang SW, Ahn S, et al.2006. Fe(0) Nanoparticles for Nitrate Reduction:Stability, Reactivity, and Transformation[J]. Environmental Science & Technology,40:5514-5519.
    Stalder CJ, Chao S, Summers DP, et al.1983. Supported palladium catalysts for the reduction of sodium bicarbonate to sodium formate in aqueous solution at room temperature and one atmosphere of hydrogen[J]. Journal Of The American Chemical Society,105:6318-6320.
    Strukul G, Pinna F, Marella M, et al.1996. Sol-gel palladium catalysts for nitrate and nitrite removal from drinking water[J]. Catalysis Today,27:209-214.
    Sun G 2004. Arsenic contamination and arsenicosis in China[J]. Toxicology and Applied Pharmacology,198:268-271.
    Takahashi R, Sato S, Sodesawa T, et al.2007. Bending strength of silica gel with bimodal pores: Ⅱ. Effect of variations in morphology and porosity[J]. Materials Research Bulletin,42: 523-531.
    Thakur DB, Tiggelaar RM, Weber Y, et al.2011. Ruthenium catalyst on carbon nanofiber support layers for use in silicon-based structured microreactors. Part Ⅱ:Catalytic reduction of bromate contaminants in aqueous phase[J]. Applied Catalysis B:Environmental,102:243-250.
    Vakhler BL.1963. Effectiveness of ozonization of water of the northern Donets-Donbass canal for drinking purposes[J]. Gigiena i sanitariia,28:8-14.
    Vorlop K-D, Tacke T.1989. Erste Schritte auf dem Weg zur edelmetallkatalysierten Nitrat-und Nitrit-Entfernung aus Trinkwasser[J]. Chemie Ingenieur Technik,61:836-837.
    Vrijenhoek EM, Waypa JJ.2000. Arsenic removal from drinking water by a "loose" nanofiltration membrane[J]. Desalination,130:265-277.
    Wan D, Liu H, Liu R, et al.2012. Adsorption of nitrate and nitrite from aqueous solution onto calcined (Mg-Al) hydrotalcite of different Mg/Al ratio[J]. Chemical Engineering Journal,195: 241-247.
    Wang G, Liu T, Xie X, et al.2011. Structure and electrochemical performance of Fe3O4/graphene nanocomposite as anode material for lithium-ion batteries[J]. Materials Chemistry and Physics,128:336-340.
    Wenshu T, Qi L, Caifu L, et al.2011. Ultrafine alpha-Fe 2O 3 nanoparticles grown in confinement of in situ self-formed Idquocagerdquo and their superior adsorption performance on arsenic(III)[J]. Journal of Nanoparticle Research,13:2641-2651.
    World Health Organization.1996. Guidelines for drinking water quality[M]. World Health Organization,Geneva.
    Wu JS, Li XG, Du W, et al.2007. Preparation and characterization of bimodal porous alumina-silica and its application to removal of basic nitrogen compounds from light oil[J]. Journal Of Materials Chemistry,17:2233-2240.
    Wu L, Yang H-w, Yang S-x, et al.2011. Study on Bromate Formation of Catalytic Ozonation Process[J]. Huanjing Kexue,32:2279-2283.
    Xiao L, Li J, Brougham DF, et al.2011. Water-Soluble Superparamagnetic Magnetite Nanoparticles with Biocompatible Coating for Enhanced Magnetic Resonance Imaging[J]. ACS Nano,5:6315-6324.
    Xu Z, Chen L, Shao Y, et al.2009. Catalytic Hydrogenation of Aqueous Nitrate over Pd-Cu/ZrO2 Catalysts[J]. Industrial & Engineering Chemistry Research,48:8356-8363.
    Xu Z, Li Q, Gao S, et al.2010. As(III) removal by hydrous titanium dioxide prepared from one-step hydrolysis of aqueous TiC14 solution[J]. Water Research,44:5713-5721.
    Yang M.2011. A Current Global View of Environmental and Occupational Cancers[J]. Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews,29:223-249.
    Yang T, Brown R, Kempel L, et al.2008. Magneto-dielectric properties of polymer-Fe304Fe304 nanocomposites[J]. Journal Of Magnetism and Magnetic Materials, 320:2714-2720.
    Young GK, Bungay HR, Brown LM, et al.1964. CHEMICAL REDUCTION OF NITRATE IN WATER[J]. Journal Water Pollution Control Federation,36:395-398.
    Yuan G, Keane MA.2003. Liquid phase catalytic hydrodechlorination of chlorophenols at 273 K[J]. Catalysis Communications,4:195-201.
    Zhao X, Lv L, Pan B, et al.2011. Polymer-supported nanocomposites for environmental application:A review[J]. Chemical Engineering Journal,170:381-394.
    Zheng M, Zhao T, Xu W, et al.2006. Preparation and characterization of CuO/SiO2 and NiO/SiO2 with bimodal pore structure by sol-gel method[J]. Journal Of Sol-gel Science and Technology,39:151-157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700