用户名: 密码: 验证码:
黑豆蛋白酶解产物的生物活性研究与结构表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酶法水解开发生物活性肽是大豆蛋白精深加工研究的一个重要方向,国内外大豆肽的研究均以普通大豆蛋白为主,而有关黑豆蛋白肽的研究文献报道较少且不够系统和深入。黑豆蛋白质亚基结构和氨基酸组成与普通大豆蛋白基本一致,且蛋白质含量较高,氨基酸组成总体优于黄豆,是一种优质蛋白资源。本研究在黑豆蛋白单酶水解试验的基础上,探讨多酶分阶段水解黑豆蛋白的最佳酶解组合,通过超滤与大孔树脂吸附分离初步筛选出体外抗氧化与降胆固醇效果各自最优的黑豆肽组分,进行抗氧化、缓解体力疲劳和辅助降血脂动物实验。采用高速逆流、凝胶过滤和反相高效液相等色谱分离技术,获得高纯度的黑豆功能肽。采用Edman降解N-端测序的方法,对黑豆肽的氨基酸序列进行鉴定,旨在为酶法制备功能肽的分离纯化与结构表征提供理论与技术依据。
     通过SDS-PAGE凝胶电泳图谱和光密度分析表明,两个供试黑豆品种分离蛋白和两种商品大豆分离蛋白的各亚基电泳条带数量一致,但黑豆蛋白的β亚基和Basic亚基带较宽且染色深,黑豆分离蛋白的11S组分(Acid+Basic)与7S(++β)组分的比值明显高于商品大豆分离蛋白,且晚熟黑豆蛋白的11S球蛋白含量高于早熟黑豆蛋白。氨基酸组成分析表明,黑豆蛋白的氨基酸组成与普通大豆蛋白基本一致,且总必需氨基酸和疏水性氨基酸含量均明显高于普通大豆分离蛋白。
     不同蛋白酶有不同的水解特异性,Alcalase酶水解黑豆蛋白产物的DPPH·与O-2·清除率和胆固醇胶束溶解度抑制率最高,Neutrase酶次之,Flavourzyme酶较差。多酶组合分阶段水解采用以Alcalase和Neutrase酶为主、辅以Flavourzyme酶短时间水解的黑豆蛋白水解物的DPPH·与O-2·的清除率和胆固醇胶束溶解度抑制率均高于单酶水解物,且水解时间从单酶水解的3h缩短为2h,说明通过合理的多酶组合水解方式可以提高酶解速度并改善水解液的抗氧化与降胆固醇活性。由于晚熟黑豆蛋白疏水性氨基酸含量较高,水解后释放出的疏水性氨基酸侧链活性基团较多,晚熟黑豆蛋白酶水解产物的的抗氧化和降胆固醇活性均高于相同酶解方式的早熟黑豆。
     采用超滤与大孔树脂吸附分离技术,对酶法水解试验确定的抗氧化和降胆固醇活性最强的晚熟黑豆蛋白多酶组合水解产物分别进行分离纯化,相对分子质量<3000、75%乙醇洗脱的OABSP-MR-Ⅲ抗氧化组分和DCBSP-MR-Ⅲ降胆固醇组分的活性最强。对OABSP-MR-Ⅲ组分进行抗氧化与缓解体力疲劳动物实验,灌胃黑豆肽500mg·kg-1·d-1中剂量组和1000mg·kg-1·d-1高剂量组小鼠血清和肝脏组织中MDA含量降低实验结果阳性,且小鼠血清GSH-Px和小鼠肝脏组织中SOD、GSH-Px活性提高实验结果阳性,提示黑豆蛋白肽能够抑制细胞脂质过氧化损伤,提高机体内源性抗氧化酶活性,具有抗氧化的生物学功能;黑豆蛋白肽中、高剂量组小鼠负重游泳、血乳酸和肝糖原二项生化指标实验结果皆为阳性,判定黑豆蛋白肽具有缓解体力疲劳功能的作用。对DCBSP-MR-Ⅲ组分进行辅助降血脂动物实验,黑豆蛋白肽高剂量组小鼠血清总胆固醇TC和低密度脂蛋白胆固醇LDL-C水平与高脂饲料模型组具有极显著差异(P<0.01),同时血清高密度脂蛋白胆固醇HDL-C不显著低于模型对照组,判定该受试样品具有辅助降低胆固醇的作用;且小鼠血清甘油三酯TG与模型对照组差异显著,提示黑豆蛋白肽具有辅助降血脂作用。
     以氧自由基清除能力ORAC值为评价指标,对抗氧化AOBSP-MR-Ⅲ黑豆肽组分通过HSCCC和Sephadex G-25凝胶色谱分离得到1个抗氧化较强的G-25-P4峰组分,再经RP-HPLC分离得到2个抗氧化较强的RP-HPLC-P2和P4峰组分,最终采用SEC排阻色谱分离获得RP-HPLC-P4组分SEC-P3肽段和RP-HPLC-P2组分SEC-P2肽段2个高纯度的抗氧化黑豆肽,通过Edman降解后蛋白测序仪测定,其氨基酸序列结构分别为Trp-Asn-Pro和Tyr-Asn-Ile,均是肽链长度为3个氨基酸的小肽。以胆固醇胶束溶解度抑制率为评价指标,对降胆固醇DCBSP-MR-Ⅲ黑豆肽组分进行HSCCC、Sephadex G-25、RP-HPLC和SEC色谱分离纯化,获得RP-HPLC-P5组分SEC-P2肽段和RP-HPLC-P7组分SEC-P5肽段2个高纯度的降胆固醇黑豆肽,其序列结构分别为Ala-Phe-Pro-Lys-Asp和Ile-Leu-Ser-Tyr-Ala-Met-Asp-Gly,是肽链长度分别为5个和8个氨基酸的短肽。
Preparation of bioactive peptides from soybean protein by enzymatic hydrolysis plays animportant role in deep processing of soybean. Up to now, numerous researches about soybeanpeptides at home and abroad were reported, which were used ordinary soy protein as rawmaterials, but the papers about black soybean peptides (BSP) were rare and not systematicand thorough. Black soybean protein is a good plant protein resource, the subunit structureand amino acid compositions were basically similar to ordinary soy protein. In this paper,black soybean protein were hydrolyzed with different combinations and steps of three kindsof commercial proteases (the Alcalase protease, Neutrase and Flavourzyme protease) on thebasis of the single enzyme hydrolysis experiments, and the BSP fractions, which displayedbest antioxidant activity and hypocholestermic effect were separated and purified byultrafiltration (UF) and macroporous adsorption resin (MAR), and their antioxidant activity,relieviing physical fatigue and hypolipidemic effect in mice were investigated. In order topreparated highly purified targeted BSP fractons, high-speed countercurrent chromatography(HSCCC), gel filtration and reverse-phase HPLC were used, and the amino acid sequences ofBSPs were analyzed by N-terminal amino acid sequence analysis as well.
     The SDS-PAGE and photodnsitometry were used to analyzed black soybean proteinisolate and commercial soybean protein isolate, the results showed that all samples had thesame subunit electrophoresis band number, compared with the commercial soybean proteinisolate, the bands of-subunit and Basic-subunit of black soybean protein were wider and haddeeper color, the value of11S/7S of black soybean protein was higher. Moreover, the contentof11S globulin of late-maturing black soybean protein was higher than early-maturing cultivar.Amino acid composition analyed showed that the amino acid compositions of black soybeanprotein were basically similar to ordinary soy protein, but the contents of total essential aminoacids and hydrophobic amino acids were higher than ordinary soy protein.
     To clear the hydrolysis properties of different protease, black soybean protein werehydrolyzed by using single enzyme. The results showed that the Alcalase protease enzymatic hydrolysates possessed the highest DPPH·, O2-· scavenging capability and inhibitory rates ofcholesterol micelle solubility (CMSIR), that by Neutrase took the second place, and that ofFlavourzyme was the lowest. On the basis of single enzyme hydrolysis expriments, thedifferent combinations and steps of multienzyme hydrolysis processing were investigated, theresults showed that the BSPs hydrolyzed by multienzyme (the Alcalase protease, Neutraseand Flavourzyme protease) for2h had better DPPH·, O2-·scavenging capability and CMSIRthan BSPs hydrolyzed by single enzyme for3h, it indicated that the hydrolysates produced byreasonable combinations with different enzymes had better antioxidant activity andhypocholesterolemic effect, and it can also save hydrolysis time. Compared with theearly-maturing cultivar, the late-maturing BSPs had better antioxidant activity andhypocholesterolemic effect using the same hydrolysis processing, which may be that thelate-maturing black soybean protein had greater contents of hydrophobic amino acids, and theactive groups on side chains of hydrophobic amino acids would expose when hydrolysed byenzymes.
     The UF and MARs were used to separation and purification of targeted enzymatichydrolysates, the results showed that the OABSP-MR-Ⅲ and DCBSP-MR-Ⅲ fractions withMr<3000eluted by75%ethanol displayed strongest antioxidant activity andhypocholesterolemic effect, respectively. The antioxidant activity and relieving physicalfatigue effect were carried out with OABSP-MR-Ⅲ fractions in mice, the results showed thatthe contents of MDA,GSH-Px in serum and hepar in mice were positive, and the content ofSOD in hepar in mice were positive as well, when oral administrated500mg·kg-1·d-1(middledosage) and1000mg·kg-1·d-1(high dosage) BSPs, this impled that the BSPs can inhibitlipid peroxidative injury and impove the activity of endogenous antioxidant enzymes in vivo.Compared with the control group, the middle and high dose group can significantly (P<0.01)prolong loaded-swimming time, blood lactic acid (BLA) can be reduced notable (P<0.01),and improving hepatic glycogen (HG) storage status greatly (P<0.01), it indicated that oraladministration of the BSP can relieve physical fatigue in mice. Furthermore, Mice withhyperlipidemia were made by feeding high fat feed in order to evaluate the effect of theDCBSP-MR-Ⅲ fraction in regulating serum cholesterol. Results showed that compared withthe model control group, high dosage group of DCBSP-MR-Ⅲ could notable(P<0.01)reduce the levels of TC,TG and LDL-C in serum, it hinted that the DCBSP-MR-Ⅲ hadhypolipidemic effect in mice.
     The antioxidant capacities of BSPs were evaluated by oxyen radical absorbance capacity(ORAC), the fraction, AOBSP-MR-Ⅲ, exhibited the highest antioxidative activity in vitio andin vivo was further purified using consecutive methods on HSCCC, Sephadex G-25column, reversed phase high-performance liquid chromatography (RH-HPLC) and size exclusionchromatography (SEC), then the highly purified antioxidant peptides named SEC-P3andSEC-P2were obtained, and the sequences were Trp-Asn-Pro and Tyr-Asn-Ile,respectively. In addition, the CMSIR was chosen as an index to isolate highly purifitedhypocholesterolemic peptides from the DCBSP-MR-III fraction, which demonstrated goodhyocholesterolemic effect in mice, the methods of HSCCC, Sephadex G-25column,RH-HPLC and SEC were applied, and then the highly purifited hypocholesterolemic peptidesnamed SEC-P2and SEC-P5were got, which isolated from RP-HPLC-P5and RP-HPLC-P7fractions, respectively. Moreover, the sequences of SEC-P2and SEC-P5were Ala-Phe-Pro-Lys-Asp and Ile-Leu-Ser-Tyr-Ala-Met-Asp-Gly, respectively.
引文
安毅,张君文.2004.大豆蛋白活性肽在功能性食品中的应用及发展前景.大豆通报,(4):27-29
    安毅.2004.酒用大豆蛋白多肽的生产工艺研究.酿酒,31(5):32
    白利峰.2008.扇贝边多肽抗氧化作用及降血脂作用初步研究.[硕士学位论文]:上海海洋大学
    包媛媛,林奇,谢启军,李山云,唐卿燕.2006.大豆多肽的生理功能及在食品工业中应用前景探讨.食品研究与开发,27(2):141-144
    曹海信,赵启权.2006.生物自由基与运动性疲劳的研究进展.四川体育科学,12(4):33-35
    曹亚兰,赵谋明,郑赛晶,任娇艳.2011.以ORAC法为评价指标优化制备大豆抗氧化肽.食品与发酵工业,37(10):73-77
    常汝镇.1998.中国黑豆资源及其营养和药用价值.中国食物与营养,(5):38-39
    沉瑗,周玫.1991.自由基医学.北京:人民军医出版社
    陈成,刘文玉,杨青.2004.大豆蛋白活性肽的生物学功能及其应用.黑龙江农业科学,(03):40-42
    陈栋梁,刘莉,黄刚,王阿敬,殷腊生.2003.紫苏油及人豆肽合剂对大鼠血脂的调节作用.临床心血管杂志,19(1):30-32.
    陈贵堂,赵立艳,丛涛,赵霖,鲍善芬.2007.花生多肽的制备及其对氧化损伤模型小鼠抗氧化作用的研究.食品科学,28(3):324-327
    陈瑾欲,唐聪明.2004.氧自由基的研究进展.海南医学院学报,10(3):206-208
    陈均辉编.2003.生物化学实验(第三版).北京:科学出版社
    陈美珍,余杰,郭慧敏.2002.大豆分离蛋白酶解物清除羟自由基作用的研究.食品科学,23(1):43-47
    陈奇.1993.中药药理研究方法学.北京:人民卫生出版社
    陈勤.1996.抗衰老研究实验方法.北京:中国医药科技出版社
    陈颖,徐巍.2008.黑豆主要营养成分分析.安徽农业科学,36(34):14928-14929
    陈园园.2008.大豆肽的酶解制备与抗疲劳、抗氧化功能研究.[硕士学位论文]:无锡:江南大学
    陈振家,郝利平.2007.山西不同品种大豆贮藏蛋白提取及亚基分析.山西农业大学学报,27(1):75-78
    丛建民.2008.黑豆的营养成分分析研究.食品工业科技,29(4):262-264
    崔凌飞,王遂.2002.蛋白质及其水解物的分析应用.哈尔滨商业大学学报,18(1):117-120
    戴德舜,王义明,罗国安.2001.高速逆流色谱研究进展.分析化学,29(5):586-59
    邓勇.1999.大豆多肽研究与开发:现状,问题、建议.中国农业大学学报,4(4):89-93
    豆康宁,董彬,王银满.2007.大豆蛋白活性肽的生物功能与应用前景.粮食加工,32(2):52-54
    方富永,苗艳丽,程诚,马孝甜,陈木连,宋文东.2012.翡翠贻贝肉复合酶解物的抗疲劳作用.中国食品学报,12(11):20-23
    方俊,卢向阳,莫瑾,蒋红梅,马美湖,李宗军.2006.猪血蛋白多肽对小鼠抗氧化功能的影响.营养学报,28:534-535
    房新平,夏文水,生庆海,王玉良.2006.多级色谱纯化牛胎盘免疫调节多肽及性质测定.北京化工大学学报,33(6):42-45
    冯杰龙,林炜铁,徐晓飞,姚汝华.2002.生物活性肽及其蛋白酶水解法制备探索.广州食品工业科技,18(3):36-38
    高福成.1998.食品分离重组工程技术.北京:中国轻工业出版社
    高福成.1999.食品加工过程模拟优化控制.北京:中国轻工业出版社
    高荫榆,魏强,范青生,陈秀霞.2008.高速逆流色谱分离提取天然产物技术研究进展.食品科学,(02):461-465
    龚树立,文剑,吴逸民,杨玉铮,杨则宜,周丽丽,高红,徐葆华,李肃反.2003.豆多肽运动饮料的研制.食品与发酵工业,29(4):86-87
    龚树立.2004.大豆多肽研究概况及其在运动饮料中的应用.食品与发酵工业,30(6):112-117
    管斌,林洪,王广策编著.2005.食品蛋白质化学.北京:化学工业出版社
    管军军,裘爱泳,刘晓亚.2010.微波合成大豆蛋白-糖接枝物结构表征.食品科技,35(2):120-125
    郭红莲.2005.大豆蛋白生物降解及大豆肽的研究进展.粮油加工与食品机械,(4):50-52
    郭健.2012.大豆蛋白热聚集行为控制及其结构表征的研究.[博士学位论文]:广东华南理工大学
    郭玉华,李钰金,吴新颖.2010.大豆多肽的应用进展及前景.粮食加工,35(5)60-63
    国明明,华欲飞.2007.人豆肽免疫调节作用的研究.食品科技,(7):242-244
    郝利平,郝林.2002.黑大豆与扁豆活性蛋白质提取工艺的研究.农业工程学报,18(3):117-119
    何洪英,李华钧,杨坚.2001.调节血脂保健食品的研究进展.食品与机械,(1):4-5
    洪迪清,王世清.2008.黑豆的研究进展.中国药业,17(10):80
    胡文琴,王恬,周岩民,林桂娟.2005.酪蛋白酶解物对小鼠抗氧化酶活性的影响.营养学报,27:55-57
    胡文琴.2004.大豆蛋白与酪蛋白酶解物抗氧化作用比较研究.[硕士学位论文]:江苏南京农业大学
    黄骊虹.1999.大豆多肽的生理功能及应用.食品科技,(3):50-51
    黄文,谢笔钧,王益,杨尔宁,罗锐.2004.白果蛋白质的分离、纯化、理化特性及其抗氧化活性研究.中国农业科学,37(10):1537-1543
    黄友如,华欲飞.2002.大豆分离蛋白改性研究.粮食与油脂,30(8):5-6
    贾韦韬,陆豪杰,贠栋,杨芃原.2007.含有28个氨基酸的复杂多肽的串级质谱全序列分析研究.化学学报,65(3):177-183
    江连洲,赵谋明,陈复生,侯俊财.2012.大豆精深加工关键技术创新与应用.中国食品学报,12(6):1-8
    江连洲.2000.大豆加工利用现状及其发展趋势.食品与机械,(1):7-10
    姜晓光,宋博,迟春萍,王志武.2006.生物活性肽的生理功能及研究进展.微生物学杂志,26(5):82-85
    姜振峰,陈庆山,杨庆凯,李文滨.2006.大豆种质资源贮藏蛋白亚基研究.东北农业大学学报,37(5):596-603
    蒋涛,杨文钰,刘卫国,王凤.2012.套作大豆贮藏蛋白、氨基酸组成分析及营养评价.食品科学,33(21):275-279
    蒋文强,孙显慧.2004.大豆多肽的功能特性及其开发应用.粮食加工与食品机械,(7):39-42
    黎观红,晏向华编.2010.食物蛋白源生物活性肽:基础与应用.北京:化学工业出版社
    李华,李佩洪,王晓宇,李勇.2008.抗氧化检测方法的相关性研究.食品与生物技术学报,27(4):6-11
    李绩.2003.大豆多肽的功能特性和应用.山东食品发酵.(3):42-44
    李磊,陈均志.2002.中性蛋白酶与酸性蛋白酸双酶法水解大豆蛋白的研究.西北轻工业学院学报,20(1):35-38
    李里特,王海.2002.功能性大豆食品.北京:中国轻工出版社
    李里特.2006.中国传统大豆食品与我国大豆产业的战略选择.中国食物与营养,(9):6-8
    李茂辉,叶丽杰,卢桂华,赵卓夫,江宁,徐立民.2006.心肌多肽抗疲劳效应的实验研究.现代预防医学,33(7):1097-1099
    李文斌.2010.黑豆营养保健功能的研究与产品开发.食品工程,(4):19-20
    李勇,黄先智,阚建全,何锦,张海娜.2012.大孔树脂吸附分离蚕蛹ACE抑制肽的研究.食品工业科技,33(16):281-284
    励建荣,封平.2004.功能肽的研究进展.食品科学,25(11):415-419
    梁美艳,陈庆森.2009.具有降低心血管疾病危险的相关生物活性肽的研究现状.食品科学,30(19):335-340
    刘晶,温志英,韩清波.2013.米渣肽抗疲劳作用及抗疲劳肽的分离鉴定.中国粮油学报,28(1):1-4
    刘通讯,朱小乔,杨晓泉.2002.多酶协同作用生产大豆多肽的研究.食品科学,23(11):29-32
    刘香英,康立宁,田志刚,张井勇,杨春明,王景会,姜媛媛,张莉.2009.东北大豆品种贮藏蛋白7S和11S组分及其亚基相对含量分析.大豆科学,28(6):985-989
    刘忆梅,陈朝晖.2004.大豆蛋白肽降血脂功能性的研究.大豆通报,(3):22
    陆恒.1997.大豆蛋白质的价值优势及其现代制品开发利用研究.食品与机械,(1):7-9
    陆恒.2003.黑豆蛋白质的营养价值优势及利用对策.中国商办工业,(2):40-42
    陆丽利.2010.黄酒中活性肽的分离纯化的研究.[硕士学位论文]:上海海洋大学
    毛兵.2008.高速逆流色谱法分离制备蜂毒肽.[硕士学位论文]:黑龙江哈尔滨工业大学
    潘思轶.2005.大豆蛋白的分子修饰及特性研究.[博士学位论文]:湖北华中农业大学
    齐誉,杨红兵,赵芳.2011.高速逆流色谱的原理及活性成份提取得进展.数理医药学杂志,24(6):721-724
    钱爱萍,颜孙安,陆鹏,林香信,涂杰峰,陈卫伟.2011.11种罗非鱼饲料原料必需氨基酸的营养评价.中国农学通报,27(29):554-558
    任海伟,王常青.2009.超滤法分离黑豆抗氧化活性肽.食品科学,21(12):123-126
    任海伟,王常青.2009.黑豆低聚肽的抗氧化活性评价及其氨基酸组成分析.食品与发酵工业,35(9):45-50
    任建东.2008.酶解鹿茸血疏水性肽的分离及活性研究.[硕士学位论文]:无锡江南大学
    任娇艳,赵谋明,崔春,肖如武,游丽君.2009.草鱼源抗氧化肽的响应面法优化制备及活性评价.食品工业科技,30(7):69-73
    任娇艳,赵谋明,崔春,游丽君,王海燕.2009.草鱼蛋白源抗氧化肽的分离及鉴定.食品科学,30(13):13-17
    荣建华,李小定,谢笔钧.2002.大豆肽抗氧化效果的研究.食品科学,23(11):118-120
    沈蓓英.1996.大豆蛋白抗氧性肽的研究.中国油脂,21(6):21-24
    沈勇根,徐明生,尹忠平,吴少福.2011.卵白蛋白抗氧化肽分离与纯化.中国食品学报,11(8):16-22
    盛国华.1993.大豆肽的功能与应用.食品工业科技,14(6):21-26
    盛清凯,姚惠源,徐华军.2004.苦瓜中植物胰岛素的分离及其氨基酸序列测定.食品与发酵工业,30(7):129-131
    施佳慧,朱加进,陈文聪,郭海英.2010.鲐鲅鱼水解产物抗疲劳作用效果研究.中国食品学报,10(6):77-80
    宋俊梅,曲静然,徐少萍.2002.大豆肽的研究进展.山东轻工业学院学报,(3):1-3
    宋立霞,王向社,吴紫云,李明芳,刘兴地,郑学勤.2008.氧自由基吸收能力测定方法的研究进展.食品研究与开发,29(12):166-170
    孙冰玉,石彦国,胡春林,林宇红.2010.反相高效液相色谱法检测大豆蛋白外啡肽的研究.食品工业科技,31(9):339-342
    汤国营,戴军,蔡木易,易维学,谷瑞增.2006.大豆低聚肽分子质量分布的测定及体外消化实验.食品与发酵工业,32(5):131-133
    唐传核.2001.几种调节血脂功能食品的开发概况.粮油食品,9(4):15-17
    陶红丽,朱志伟,江津津.2007.大豆多肽生理活性研究进展.食品与机械,23(6):133-136
    滕宇,邱芳萍,严铭铭,赵大庆.2005.人参多肽的分离纯化.长春工业大学学报,26(3):181-183.
    田琨.2010.大豆蛋白的结构表征及应用研究.[博士学位论文]:上海复旦大学
    王春艳,田金强,王强.2010.改善心血管健康的食源性生物活性肽构效关系研究进展.食品科学,31(13):307-311
    王惠欣,周兴军,张计允,李立敏,李梅彦.2006. RP-HPLC法分析人血白蛋白肽谱方法的建立.河北医药,28(8):765-766
    王镜岩,朱圣庚,徐长发.2002.生物化学.北京:高等教育出版社
    王丽侠,郭顺堂,付翠真,关荣霞,张其属,常汝镇,邱丽娟.2004.大豆种子贮藏蛋白11S与7S组份的研究.中国粮油学报,19(4):53-57
    王洛.2011.黑豆的营养价值.现代养生,(1):50
    王梅,戴军,谷文英.1998.高效凝胶过滤色谱法测定玉米蛋白酶解产物寡肽的分子量分布.食品发酵与工业,24(5):25-27
    王敏,李丹,李荣和,李晓磊,雷海容.2008.黑豆营养价值及功能特性应用的研究与进展.长春大学学报,18(1)104-107
    王启荣,李肃反,杨则宜,周丽丽,高红,许葆华,方子龙,龚树立,高剑,吴逸民,蔡木易,时伟元,葛长海.2004.补充大豆多肽对中长跑运动员训练期生化指标的影响.中国运动医学杂志,23(1):33-37
    王钦德,杨坚.2003.食品试验设计与统计分析.北京:中国农业大学
    王晓宇.2008.葡萄酒抗氧化活性及其检测方法的研究.[硕士学位论文]:陕西西北农林科技大学
    王燕平,王鹏,郭玮,赵晶,李贵全.2010.大豆贮藏蛋白11S和7S组分及其亚基相对含量的研究.中国粮油学报,25(8):15-18
    王寅,张坤,赵晋.2007.黑豆的营养价值及在食品中的开发应用.中国食品添加剂,(6):132-135
    王勇刚,朱锋荣.2007.鱼精多肽在抗氧化和抗疲劳方面的作用研究.食品科技,(7):245-248
    文镜,张静,桑婷婷,王燕伟,蒋艾.2006.用高血脂小鼠模型评价降血脂保健食品可行性的探讨.食品科学,27(11):479-482
    吴建平,丁霄霖.1998.食品蛋白质降血压肽的研制.中国粮油学报,13(5):10-14
    吴建中,赵谋明,宁正祥,杨晓泉.2003.酶法水解生产大豆多肽研究.粮油加工与食品机械,(1):45-47
    吴建中.2003.大豆蛋白的酶法水解及产物抗氧化活性的研究.[博士学位论文]:广东华南理工大学
    幸宏伟,唐春红.2003.药食两用植物降血脂功能研究进展.重庆工商大学学报(自然科学版),20(4):103-105
    徐曼,窦屾,杨春霞,赵爽,廖永红.2012.大豆活性肽的研究进展.食品工业,33(4):127-129
    徐淑云.1991.药理实验方法学.北京:人民卫生出版社
    徐鑫镁,施文忠.2000.外源性抗氧化剂与人体健康之关系.上海体育学院学报,(24):68-69,86
    许旭旭,毛政,吴斌,孙洪林,何冰芳.2011.高速逆流色谱法分离纯化内吗啡肽.化工进展,30(9):2064-2068
    颜燕,徐建华,杨非.2004.大豆多肽对辐射的保护功能.中国公共卫生,20(5):564-565
    杨国龙,赵谋明,杨晓泉,徐鑫,彭志英.2006.限制性酶水解-超滤法生产改性大豆蛋白.食品科学,27(5):163-166
    杨少玲,李来好.2006.抗疲劳肽的研究现状.湛江海洋大学学报,26(6):77-82
    杨小军.2003.灌喂大豆蛋白、面筋蛋白的胃蛋白酶酶解物对大鼠免疫功能的影响.[硕士学位论文]:江苏南京农业大学
    曾晓波,王海英,林永成.2004.食物中的生物活性肽:生物活性及研究进展.食品工业科技,25(4):151-155
    张东杰,马中苏.2010.凝胶过滤色谱分离大豆抗氧化肽活性的研究.中国酿造,(6)41-43
    张国胜,孔繁东,祖国仁,季瑛,钱芳.2004.大豆蛋白抗高血压活性肽的研究.中国乳品工业,32(8):12-14
    张君慧,张晖,王兴国,姚惠源.2008.抗氧化活性肽的研究进展.中国粮油学报,23(6):227-233
    张莉莉,王恬.2005.大豆源生物活性肽的研究进展.中国脂,30(4):33-36
    张琳静,辛岩,赵亚东,田波,杨爱超,姜瞻梅.2010.黑豆多肽制备及其功能乳饮料的研究.食品研究与开发,31(11):93-6.
    张楠.2009.黄黑豆提取物对小鼠运动及抗氧化能力影响的比较研究.[硕士学位论文]:石家庄:河北师范大学
    张瑞芬,池建伟,丘银清,魏振承,张雁,唐小俊.2006.黑大豆的营养及保健功能研究进展.广东农业科学,(11):13-16
    张天佑.1991.高速逆流色谱技术.北京:北京科学技术出版社
    张晓梅,钟芳,麻建国.2006.大豆降胆固醇活性肽的初步分离纯化.食品与机械,22(2):33-36
    张晓梅.2006.降血压与降血脂肽的分离纯化.[硕士学位论文]:无锡江南大学
    张晓楠.2005.质谱在多肽氨基酸序列分析中的应用.河北化工,(6):69-70
    张学忠.1999.大豆肽加工技术原理与应用.北京:科学技术文献出版社
    张延坤.1997.大豆肽在食品工业中的应用.食品工业,18(3):5-6
    张英,董绍华.1997.氨基酸清除活性氧自由基作用的研究.科技通报,(5):312-315
    张颖捷,杜万红.2012.国内外抗疲劳研究进展.实用预防医学,19(7):1112-1116
    张宇昊.2007.花生短肽制备及其功能活性研究.[博士学位论文]:北京中国农业科学院
    赵丽艳,张养军,钱小红.2008.蛋白质和多肽的N端测序技术研究进展.中国医药生物技术,3(3):214-216
    赵利,钱芳,许建军.2003.大孔吸附树脂及其在蛋白质、多肽和氨基酸分离纯化中的应用.四川食品与发酵,(2):39-41
    赵新淮,冯志彪.1994.蛋白质水解物水解度的测定.食品科学,15(11):65-67
    赵秀娟,王小雪,吴博学,宋会娟.2002.大豆活性肽粉对喂饲高脂饲料大鼠血脂的影响.中国卫生检验杂志,12(4):421-422.
    郑哲君,李晓莉,王朔.2006.抗疲劳功能食品的研究进展.食品科技,(2):4-7
    中国预防医学科学院营养与食品卫生研究所编著.1991.食物成分表.北京:人民卫生出版社
    中华人民共和国卫生部.2003.保健食品检验与评价技术规范.北京
    钟芳,张晓梅,麻建国.2006.大豆肽的离子交换色谱分离及其活性评价.食品与机械,22(5):16-19
    钟芳,张晓梅.2006.大豆肽的大孔吸附树脂以及凝胶过滤色谱分离.食品与机械,22(4):25-28
    周瑞宝,周兵.1998.大豆7S和11S球蛋白的结构和功能性质.中国粮油学报,13(6):39-42
    周婷婷.2009.抗氧化大豆多肽制备和纯化的研究.[硕士学位论文]:上海海洋大学
    周文才.2007.中国大豆育成品种(1923-2005)中苏、鲁、豫和晋优异种质的遗传贡献和遗传多样性研究.[硕士学位论文]:江西南昌大学
    Ahsberg E.2000.Dimensions of fatigue in different working populations. Scandinavian Journal ofPsychology,41(3):231-241
    Amarowicz R, Shahidi F.1997. Antioxidant Activity of peptide fractions of capelin protein hydrolysates.Food Chemistry,58(4):355-359
    Amici, A., Levine, R. L., Tsai, L.,&Stadtman, E. R.1989. Conversion of amino acid residues in proteinsand amino acid homopolymers to carbonyl derivatives by metal-catalyzed oxidation reactions. TheJournal of Biological Chemistry,264:3341-3346
    AWANO, S. N. T., NAGATA, N., MASAOKA, M.,&HoR, G.1997. Serum cholesterol reduction andcholesterol absorption inhibition in Caco-2cells by a soy protein peptic hydrolysate. Bioscience,Biotechnology, and Biochemistry,61:354-356
    Backwell, F. R., Hipolito-Reis, M., Wilson, D., Bruce, L. A., Buchan, V.,&MacRae, J. C.1997.Quantification of circulating peptides assessment of peptide uptake across the gastrointestinal tract ofsheep. J Anim Sci,75(12):3315-3322
    Cai Tian-de, Chang Kow-ching.1999. Processing effect on soybean storage proteins and their relationshipwith tofu quality. Journal of Agricultural and Food Chemistry,47(2):720-727.
    Chen H M, Muramoto K, Yamauchi F.1995. Structural analysis of antioxidative peptides from soybeanbeta-conglycinin. J. Agric. Food Chem,43:574-578
    Chen H M, Muramoto K, Yamauchi F.1998. Antioxidative properties of histidine-containing peptidesdesigned from peptide fragments found in the digests of a soybean protein. J. Agric. Food. Chem,46(1):49-53
    Chen Hua-ming, Muramoto K, Yamauchi F.1995. Structural analysis of antioxidative peptides fromsoybean beta-Conglycinin. Journal of Agriculture and Food Chemistry,43(3):574-578
    Chen, G. T., Zhao, L., Zhao, L. Y., Cong, T.,&Bao, S. F.2007. In vitro study on antioxidant activities ofpeanut protein hydrolysate. Journal of the Science of Food and Agriculture,87(2):357-362
    Chen, W., Yin, X.,&Yin, Y.2007. Rapid and reliable peptide de novo sequencing facilitated bymicrofluidic chip-based edman degradation. Journal of Proteome Research,7(2):766-770
    Chen, W., Yin, X., Mu, J.,&Yin, Y.2007. Subfemtomole level protein sequencing by Edman degradationcarried out in a microfluidic chip. Chemistry Communication,2488-2490
    Choisnard, L., Froidevaux, R., Nedjar‐Arroume, N., Lignot, B., Vercaigne‐Marko, D., Krier, F.,Dhulster P, Guillochon, D.2002. Kinetic study of the appearance of an anti-bacterial peptide in thecourse of bovine haemoglobin peptic hydrolysis. Biotechnology and applied biochemistry,36(3):187-194
    Das, N., Levine, R. L., Orr, W. C.,&Sohal, R. S.2001. Selectivity of protein oxidative damage duringaging in Drosophila melanogaster. Biochem J,360:209-216
    Dillard, C. J., Litov, R. E., Savin, W. M., Dumelin, E. E.,&Tappel, A. L.1978. Effect of exercise vitaminE and ozone on pulmenary function and lipid peroxidation. Journal of Applied Physiology,45(6):927-932
    Dormeyer, W., Mohammed, S., Breukelen, B. V., Krijgsveld, J.,&Heck, A. J.2007.Targeted analysis ofprotein termini. Journal of Proteome Research,6(12):4634-4645
    Dr gan, I., Stroescu, V., Stoian, I., Georgescu, E.,&Baloescu, R.1992. Studies regarding the efficiencyof suproisolated soy protein in Olympic athletes. Revue Roumaine de Physiolodie,29(3-4):63-70
    Edman P.1950. Method for the determination of amino acid sequence in peptides. Arta ChemicaScandinavica,283-293
    FAO/WHO.1973. Energy and protein requirements[M].
    Gill, I., Lopez-Fandino, R., Jorba, X., Vulfson, E. N.1996. Biologically active peptides and enzymaticapproaches to their production. Enzyme Microbial Technology,(18):162-183
    Harman D.1955.Aging: a theory based on free redical and radiation chemistry. University of CaliforniaRadiation Laboratory
    Hernández-Ledesma, B., Amigo, L., Recio, I.,&Bartolomé, B.2007. ACE-inhibitory andradical-scavenging activity of peptides derived from β-lactoglobulin f (19-25). Interactions withascorbic acid. Journal of agricultural and food chemistry,55(9):3392-3397
    Hipkiss A R.1998. Carnosine, a protective, anti-ageing peptide. The Internation Journal of Biochemistryand Cell Biology,30(8):863-868
    Huang Wen, Deng Qianchun, Xie Bijun.2010. Purification and characterization of an antioxidant proteinfrom ginkgo biloba seeds. Food Research International,43(1):86-94
    HUANG, W., XIE, B. J., WANG, Y., YANG, E. N.,&LUO, R.2004.Study on separation and purificationof protein from ginkgo seed and its antioxidant activity. Scientia Agricultura Sinica,37(10):1537-1543
    Ito Y, Ma Y.1996. pH-zone-refining countercurrent chromatography. Journal of Chromatography A,753(1):1-36
    Ito Y.2005. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-currentchromatography. Journal of Chromatography A,1065(2):145-168
    Jin H M, Wei P.2011. Anti-fatigue properties of tartary buckwheat extracts in mice. International journalof molecular sciences,12(8):4770-4780
    Kim, S. E., Kim, H. H., Kim, J. Y., Kang, Y. I., Woo, H. J.,&Lee, H. J.2000. Anticancer activity ofhydrophobic peptides from soy proteins. Biofactors,12(1-4):151-155
    Kimikazu I, Kiyoshi S and Fumio I.1986. Involvement of post-digestion hydrophobia peptides in plasmacholesterol-lowering effect of dietary plant protein. Agricultural and biological chemistry,50(5):1217-1222
    Koshiyama I.1969. Isolation of a glycopeptide from a7S protein in soybean globulins. Archives ofBiochemistry and Biophysics,130(1):370-373
    Koshiyama I.1972. Purification and physico-chemical properties of11S globulin in soybean seeds.International Journal of Peptide and Protein Research,4(3):167-176
    Kwon D Y, Oh S W, Lee J S, Yang H J,Lee J H.2002. Amino acid substitution of hypocholesterolemicpeptide originated from glycinin hydrolysate. Food Science and Biotechnology,11:55-61
    Lebogang K,王璋.2004.乙醇分级大豆肽的氨基酸组成与相对分子量分布.食品工业科技,25(11):81-85
    Makino, S., Nakashima, H., Minami, K., Moriyama, R.,&Takao, S.1988. Bile acid-binding protein fromsoybean seed: isolation, partial characterization and insulin-stimulating activity. Agricultural andbiological chemistry,52(3):803-809
    Megías, C., Pedroche, J., del Mar Yust, M., Alaiz, M., Girón-Calle, J., Millán, F.,&Vioque, J.2009.Sunflower Protein Hydrolysates Reduce Cholesterol Micellar Solubility. Plant Foods for HumanNutrition,64(2):86-93
    Meinnel T, Giglione C.2008. Tools for analyzing and predicting N-terminal protein modifications.Proteomics,8(4):626-649
    Meisel H, Bockelmann W.1999. Bioactive peptides encrypted in milk proteins: proteolytic activation andthropho-functional properties. Antonie Van Leeuwenhoek,76(1-4):207-215
    Mujoo R, Trinh D T, Ng P K W.2003. Characterization of storage proteins in different soybean varietiesand their ralationship to tofo yield and texture. Food Chemistry,82(2):265-273
    Nagaoka, S., Futamura, Y., Miwa, K., Awano, T., Yamauchi, K., Kanamaru, Y.,Tadashi K, Kuwata, T.2001. Identification of novel hypocholesterolemic peptides derived from bovine milk β-lactoglobulin.Biochemical and Biophysical Research Communications,281(1):11-17
    Nagaoka, S., Miwa, K., Eto, M., Kuzuya, Y., Hori, G.,&Yamamoto, K.1999. Soy protein peptichydrolysate with bound phospholipids decreases micellar solubility and cholesterol absorption in ratsand Caco-2cells. The Jouranl of Nutrition,129(9):1725-1730
    Neway J M, Smith M W.1960.Amino acid and peptide transport across the mammatlion small intestine.Protein Melabolism and Nutrition,64:213-219
    Nikawa, T., Ikemoto, M., Sakai, T., Kano, M., Kitano, T., Kawahara, T.,Teshima S,Rokutan K.&Kishi, K.2002. Effects of a soy protein diet on exercise-induced nlusele protein catabolism in rats. Nutrition,18(6):490-495
    Pak, V. V., Koo, M. S., Kasymova, T. D.,&Kwon, D. Y.2005. Isolation and identification of peptidesfrom soy11S-globulin with hypocholesterolemic activity. Chemistry of natural compounds,41(6):710-714
    Pouliot, Y., Wijers, M. C., Gauthier, S. F.,&Nadeau, L.1999. Fractionation of whey protein hydrolysatesusing charged UF/NF membranes. Journal of Membrane Science,158(1):105-114
    Prior R L, Wu X, Schaich K.2005. Standardized methods for the determination of antioxidant capacity andphenolics in foods and dietary supplements. Journal of agricultural and food chemistry,53(10):4290-4302
    Prior, R. L., Hoang, H., Gu, L., Wu, X., Bacchiocca, M., Howard, L., Hampsch-Woodill M, Huang DOu B,Jacob, R.2003. Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbancecapacity (ORACFL)) of plasma and other biological and food samples. Journal of Agricultural andFood Chemistry,51(11):3273-3279
    Quinn P J, Boldyrev A A, Formazuyk V E.1992.Carnosine: Its properties, functions and potentialtherapeutic applications. Molecular Aspects of Medicine,13(5):379-444
    Rajapakse, N., Mendis, E., Jung, W. K., Je, J. Y.,&Kim, S. K.2005. Purification of a radical scavengingpeptide from fermented mussel sauce and its antioxidant properties. Food Research International,38(2):175-182
    Saiga A, Tanabe S, Nishimura T.2003. Antioxidant activity of peptides obtained fromporcine myofibrillarproteins by protease treatment. Journal of Agricultural and Food Chemistry,51(12):3661-3667
    Salim-Hanna M, Lissi E, Videla LA.1991, Free radical scavenging activity of carnosine. Free RadicalResearch,14(4):263-270
    Sanchez-Moreno C, Larrauri J A, Saura-Calixto F.1999. Free radical scavenging capacity and inhibition oflipid oxidation of wines, grape juices and related polyphenolic constituents. Food Research Internation,32(6):407-412
    Schmidl M K, Taylor S L, Nordlee J A.1994. Use of hydrolasate-based products in special medical diets.Food Technology,48(10):77-85
    Stapels M D, Barofsky D F.2004. Complementary use of MALDI and ESI for the HPLC-MS/MS analysisof DNA-binding proteins. Analytical chemistry,76(18):5423-5430
    Stienen, G. J., Roosemalen, M. C., Wilson, M. G.,&Elzinga, G.1990. Depression of force by phosphate inskinned skeletal muscle fibers of the frog. American Journal of Physiology-Cell Physiology,259(2):C349-C357
    Sugano M and Koba K.1993. Dietary protein and lipid metabolism: a multifunctional effecta. Annals ofthe New York Academy of Scienses,676(1):215-222
    Sugano, M., Goto, S., Yamada, Y., Yoshida, K., Hashimoto, Y., Matsuo, T.,&Kimoto, M.1990.Cholesterol-lowering activity of vrious undigested fractions of soybean protein in rats. The Jouranl ofNutrition,120(9):977-985
    Takenaka Y, Utsumi S, Yoshikawa M.2000. Introduction of enterostatin (VPDPR) and a related sequenceinto soybean proglycinin A1aB1bsubunit by site-directed mutagenesis. Bioscience, Biotechnology, andBiochemistry,64(12):2731-2733
    Teraishi, M., Takahashi, M., Hajika, M., Matsunaga, R., Uematsu, Y.,&Ishimoto, M.2001. Suppressionof Soybean β-conglycinin genes by a Dominant Gene, Scg-1. Theoretical and Applied Genetics,103(8):1266-1272
    Tsuruki, T., Kishi, K., Takahashi, M., Tanaka, M., Matsukawa, T.,&Yoshikawa, M.2003. Soymetide, animmunostimulating peptide derived from soybean β-conglycinin, is an fMLP agonist. Federation ofEuropean Biochemical Societies Letters,540(1-3):206-210
    Vin a, J., Gomez‐Cabrera, M. C., Lloret, A., Marquez, R., Mi ana, J. B., Pallardó, F. V.,&Sastre, J.2000. Free radicals in exhaustive physical exercise: mechanism of production, and protection byantioxidants. International Union of Biochemistry and Molecular Biology,50(4-5):271-277
    Wilkins, M. R., Gasteiger, E., Tonella, L., Ou, K., Tyler, M., Sanchez, J. C.,Walsh BJ,Bairoch A,AppeiRD,Williams KL,Hochstrasser, D. F.1998. Protein identification with N and C-terminal sequence tagsin proteome projects. J Molecular Biology,278(3):599-608
    XU, L., LI, H. M., HUANG, Y. B., WANG, H., NIE, G. J.,&ZHANG, X. Z.2006. A Study onAnti-oxidative Activity of Soybean Peptides with Linoleic Acid Peroxidation Systems. ChemicalResearch in Chinese Universities,22(2):205-208
    Yamamoto N, Ejiri M, Mizuno S.2003. Biogenic peptides and their potential use. Current PharmaceuticalDesign,9(16):1345-1355
    Yamauchi F, Suetsuna k.1993. Immunological effects of dietary peptide derived from soybean protein.Journal of Nutritional Biochemistry.4(8):450-457
    Yoshikawa, M., Fujita, H., Matoba, N., Takenaka, Y., Yamamoto, T., Yamauchi, R., Tsuruki H, Takahata,K.2000. Bioactive peptides derived from food proteins preventing lifestyle-related diseases.Biofactors,12(1):143-146
    Zambonino J, Infante J, Cahu C, Peres, A.1997. Partial substitution of di-and tripeptides for nativeproteins in sea bass diets improves Dicentrarchus labrax larval development. The Journal of Nutrition,127(4):608-614
    Zhou R B, Zhou B.1998.Characterization of structure and function of7S and11S globulin. Journal of theChinese Cereals and Oils Association,13(6):39-42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700