用户名: 密码: 验证码:
用于介质阻挡放电的串联谐振电源的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用介质阻挡放电的方法在大气压下产生低温等离子体,是当前等离子体学科研究的热点,因此用于介质阻挡放电的高频高压脉冲电源成为研究的重点。
     本课题以串联谐振型高频脉冲电源为研究对象,采用容性移相PWM控制和频率跟踪技术,设计出适合于介质阻挡放电负载的高频高压电源,解决了电源在高频率下功率因数低、开关应力大的问题。利用电源专用的数字信号控制芯片dsPIC30F2020实现了数字化控制系统的设计,并对影响介质阻挡放电的因素进行了试验研究。本文的主要工作内容为:
     1.通过对介质阻挡放电负载特性分析的基础上,选择串联谐振电路作为主电路,采用移相PWM和频率跟踪的控制方案。重点比较了基于电流频率跟踪的移相PWM控制下的三种工作方式即感性、容性和谐振状态下电路的负载特性和换流过程,得到容性移相PWM控制适合于使用IGBT为开关器件的串联谐振电路,易于实现软开关技术。在频率跟踪环节选择上,对比传统的模拟锁相环技术,提出采用数字化的频率跟踪技术,并设计了基于数字控制芯片的频率跟踪方案。
     2.在理论分析的基础上,设计了介质阻挡供电电源的主电路参数,重点研究了容性移相PWM控制策略和电流频率跟踪的数字化实现,并设计了基于dsPIC30F2020的电流频率跟踪的容性移相PWM控制的数字化控制系统,包括电压电流采样电路、电流过零采样电路、发生器端电压PID控制等环节。通过对电流的频率跟踪,结合发生器端电压的PID闭环控制,实现了容性移相PWM控制策略和功率调节。
     3.在实验室组建了介质阻挡放电实验系统,研究了施加电压幅值、气隙距离、阻挡介质的厚度和介电常数、添加筛网、电极的结构等因素对DBD放电特性的影响,结果表明,DBD的放电功率随施加电压幅值和介质的介电常数的增加而增加,随气隙距离和介质厚度的增加而减小。在阻挡介质与电极间添加金属筛网能使放电更均匀,针-板电极比板-板电极在同样条件下能使放电更稳定。
How to use dielectric barrier discharge (DBD) to come out low-temperature plasma under atmospheric pressure has become hotspot in this research field. Hence, to develop discharge power supply used in DBD is the main question.
     This paper studies on the capacitive phase-shift PWM control series resonant load full Inverter DBD type power supply. Frequency Tracing Technology is used in DBD load circuit. The experiment results show that the proposed method has the virtues of high power factor and low switch stress. The control system of power supply based on dsPIC30F2020 controller has been designed. The main achievements obtained by this dissertation are:
     Firstly, by analyzing dielectric barrier discharge series resonant load Inverter and its power regulation method, according to frequency tracing technology of the load current, capacitive phase shifting PWM control full bridge inversion series resonant load circuit is applied to DBD type power supply. The paper mainly analyzes operating process under different operation modes of the inverter. Compared with inductive phase-shift PWM and phase-shift resonant PWM, the capacitive phase-shift PWM has a small frequency fluctuating and fit the inverter that consists of IGBTs. The paper discusses the frequency tracking technology and gives the phase locked loop based on digital electronic circuit.
     Secondly, the parameter of main circuit is designed in the paper. One kind of digital control system of power supply based on microchip dsPIC30F2020 has been designed, which realize the digitization. According to the frequency tracing technology of the load current, and the generator voltage which is controlled by PID closed-loop, capacitive phase shifting PWM control strategy and the power regulation have been realized.
     Thirdly, DBD equipment is set up in laboratory. By a series DBD experiment, the influences of the applied voltage, the gas gap distance, and the thickness and dielectric permittivity of the barrier on the discharge characteristics are studied, The results show that the value of power dissipated increases with the increasing of applied voltage and dielectric permittivity of the barrier, and decrease with the increasing of gas gap distance and the thickness of barrier.
引文
[1]孔杏凡.等离子体及其应用[M].高等教育出版社,1982
    [2]金佑民.低温等离子体物理基础[M].清华大学出版社,1983
    [3]徐学基,诸定昌.气体物理放电[M].复旦大学出版社,1996
    [4]任兆杏,丁振峰.低温等离子体技术[J].自然杂志,1996,18(04):201-208
    [5]Roth J R.Industrial plasma engineering[M].Tennessee,USA:IOP Publishing Ltd,1995,286-317
    [6]白希尧,张芝涛,白敏冬,韩慧.高气压强电离放电等离子体学科的形成及应用展望[J].自然杂志,2000,22(03):156-160
    [7]张近.低温等离子体技术在表面改性中的应用进展[J].材料保护,1999,32(08):36-38
    [8]夏彦水,杨建忠,卫建峰.低温等离子体对纺织品的表面改性研究[J].广西纺织科技,2005,34(2):24-26
    [9]侯健,刘先年,侯惠奇.低温等离子体技术及其治理工业废气的应用[J]上海环境科学,1999,18(04):151-153
    [10]张少军,侯立安,王佑君.应用低温等离子体技术治理空气污染研究进展[J].环境科学与管理,2006,31(05):33-37
    [11]Ulrich Kongelschatz.Dielectric-barrier Discharges:Their History,Discharge Physics,and Industrial Applications[J].Plasma Chemistry and Plasma Processing,2003,23(1):1-46
    [12]徐学基,揭亚雄.介质阻挡放电击穿过程研究[J].复旦学报(自然科学版),1997,36(3):268-273
    [13]江南,凌一鸣,徐建军.低气压介质阻挡放电暂态过程的理论研究[J].真空科学与技术,1999,19(A10):143-146.
    [14]翁明,徐伟军等.介质阻挡放电过程的计算.西安交通大学学报[J].2001,35(8):799-803
    [15]储金宇,许小红,张波.介质阻挡型臭氧发生器电极负载特性的分析[J].高电压技术,2004,32(09):62-64
    [16]邵建设,严萍.高频高压交流电源应用于介质阻挡放电特性的研究[J].高电压技术,2006,32(03):78-80
    [17]黄玉水,王立乔,林平,张仲超.介质阻挡放电型臭氧发生器负载特性研究[J].浙江大学学报(工学版),2005,39(05):696-700
    [18]刘钟阳,吴彦,王宁会.DBD型中高频臭氧发生器的动态负载特性[J].中国电机工程学报,2002,22(05):61-65
    [19]孙岩洲,邱毓昌,姜惟,赵军良.介质阻挡电晕放电特性的测量与仿真[J].高电压技术,2005,32(06)76-79
    [20]章程,方志,胡建杭,赵龙章.介质阻挡放电电气参数与反应器参数的测量[J].绝缘材料,2007,32(04):65-68
    [21]唐雄民.介质阻挡放电电路供电电源的研究[D].湖南大学,2004,35-36.
    [22]孙岩洲,邱毓昌,丁卫东.电源频率对介质阻挡放电的影响[J].高电压技术,2002,28(11):43-53
    [23]孟志强.大功率介质阻挡放电臭氧发生器电源的关键技术研究与实现[D].湖南大学,2005,6
    [24]庄洪春,孙鹤鸿,彭燕昌.介质阻挡放电产生等离子体技术研究[J].高电压技术,2002,28(12):57-58
    [25]Eliasson B,Kogelschatz U.Nonequilibrium volume plasma chemical procession[J],IEEE Transactions on Plasma Science,1991,19(6):1063-1077
    [26]Dmowski A,Bugyi R,Szewezyk P.A novel series-resonant dc/dc converter with full control of output voltage at no-load condition-computer simulation based design aspects[C].IEEE/IAS Dearborn,MI,Annual Meeting,1992,924-928
    [27]Roy PP.Analysis of the series resonant converter using a frequency domain model[C].Proc.IEEE PESC.Cambridge,1991,1164-1169
    [28]Akagi H,Nabae A.A voltage-source inverter using IGBT for a 50kHz 10Kv corona surface treater[C].IEEE/IAS Annual Meeting.Pittsburgh,PA,1989.1164-1169
    [29]J.Marcos Alonso,Jorge Garcia,Antonio J.Analysis design and experimentation of a high-voltage power supply for ozone generation based on current-fed parallel-resonant push-pull inverter[J].IEEE transactions on industry application.2005,41(5):1364-1371
    [30]彭燕昌,严萍,舒立等.介质阻挡放电用大功率高频电源的研究[J].高电压技术,2002,28(120):35-58.
    [31]黄玉水.DBD型臭氧发生器负载特性及高频供电电源的研究[D].浙江大学,2004,19-43
    [32]王兆安,黄俊.电力电子技术[M].机械工业出版社,2004
    [33]潘天明,张殿敏,朱常喜.100kW超音频感应加热电源[J].电力电子技术,1996,5(4):10-13
    [34]田健,王华民,郭会军等.串联谐振感应加热电源频率跟踪控制的研究[J].工业加热,2000,3(2):4-7
    [35]沈锦飞,颜文旭,惠晶.串联谐振式高频感应焊接逆变电源[J].焊接学报,2003,24(5):77-81
    [36]毛鸿,吴兆麟,侯振程.串联型IGBT超音频感应加热电源.工业加热,1998,7(2):25-28
    [37]熊腊森,全亚杰.高频感应加热逆变电源的研究[J].电焊机,1999,29(12):18-23
    [38]戚宗刚,柳鹏.感应加热电源调功方式的探讨[J].金属热处理,2003,28(7):54-57
    [39]袁俊国,于非.移相式高频感应加热装置的研究[J].电力电子技术,1999,12(6):13-15
    [40]沈刚.高频感应加热电源频率跟踪控制电路的研究[D].西安:西安理工大学,2004
    [41]黄玉水,吕宏,王立乔,张仲超.臭氧发生器电源中容性控制的研究[J].高电压技术,2002,28(10):41-42
    [42]王跃球,唐杰.频率跟踪移相PWM控制下串联谐振式逆变器运行模式分析[J].船电技术,2006,(3):15-18
    [43]吕宏,黄玉水,张仲超.串联谐振单相全桥逆变器常用控制方法的研究[J].电源技术应用,2002,5(5):216-218
    [44]1Akbari,Zahedzadeh,Shirmohammadzadeh.Efficient ozone generator using full-bridge inverter and its performance valuations[C].The Fifth International Conference on Power Electronics and Drive Systems.Singapore,2003(2):1182-1187
    [45]宋吉江,牛轶霞.锁相环技术及CD4046的结构和应用[J].半导体技术,2000 25(03):60-63
    [46]李彦锋,陶海敏,黄玉水,张仲超.介质阻挡放电负载电路中的频率跟踪技术[J].高电压技术,2002,28(07):13-14
    [47]毛鸿,候振程.一种新型感应加热电源调功方式的研究[J].电工技术,1998,(1)34-36
    [48]车保川,屈百达.基于74HC4046新型频率跟踪电路的研究[J].现代电子技术,2008,(3):188-190
    [49]段海雁,张光先.感应加热电源中的频率跟踪技术[J].电焊机,2007,37(2):44-47
    [50]dsPIC30F2020数据手册,Micmchip Technology Inc2006
    [51]dsPIC30F Reference handbook,Microchip Technology Inc 2006
    [52]dsPIC Publicize Hand book,Microchip Technology Inc 2006
    [53]M57959,Data sheet
    [54]章程,方志,胡建杭,赵龙章.高频介质阻挡放电传输电荷影响因素的研究[J].绝缘材料,2008,(01):132-136
    [55]罗毅,方志,邱毓昌,王辉.介质阻挡放电影响因素分析[J].高压电器,2004,(02):58-62
    [56]Pons J,Moreau E,Touchard G.Asymmetric surface dielectric barrier discharge in air atmospheric pressure:electrical properties and induced airflow charaeteristics[J].J Phys D:Appl Phys,2005(38):3635-3642
    [57]Msssines F,Rabehi A,Decomps P.Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by a dielectric barrier[J].J Appl Phys,1998(83):2950-2957
    [58]Friman A,Chirokow A,Gutsol A.Non-thermal atmospheric pressure discharge[J].J Appl Phys,2005(38):R1-R24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700