用户名: 密码: 验证码:
几种阔叶树节区结构及输水功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以北京林业大学校园内生长的主要树种一年生枝条的节为研究对象,采用生理学和解剖学相结合的方法,研究手段涉及树木解剖学、物理学、化学、生物物理学等多个学科,在不同层面上探讨了一些阔叶树节区的电阻、栓塞程度、解剖结构、接触角及综纤维素、木质素的含量等问题,旨在阐明节区作为“安全区”对植物体水分输导系统的完整性和安全性等方面具有的意义。
     电阻测试表明,去节处理和留节处理进行对比可以发现,去节处理的节上部位(节间)随水分胁迫时间的延长电阻值逐渐增大以致于有些苗木的电阻无法显示;留节处理的节下部位(节间)随水分胁迫时间的延长电阻仍可以正常显示,通过对比可以发现,正是因为去掉了节,使得栓塞修复进程缓慢以致于无法修复;而留节处理,由于有节的保护,使得节下区域即使发生了栓塞也能进行修复。无论是去节处理还是留节处理,节下区域均能进行修复。以上结论充分说明了节的保护和修复作用,节为其下的节间区域营造了一个可以进行栓塞修复的环境,而去节以后的节上区域由于直接与大气相通,整个节间区域处在大气压下,无法进行修复。电阻的变化可以反映出木质部内的水流和栓塞状况,电阻小表明栓塞程度轻,水流较为畅通,相反,电阻大表明栓塞加重,水流受到一定程度的阻碍。电阻的变化可能与木质部的解剖结构、接触角的大小以及木质部的化学物质有关。树木从节间按形态学方向过渡到节,木质部的解剖结构出现了空间上的差异,节间导管较为均一,管径较粗,节区细胞分化程度存在差异,中等大小的导管和小导管的数量和比例有所增加,由于窄导管能承受的张力更大,所以节区的PLC值小于节间的PLC值,即节区不易栓塞。当水分向上过渡到节以后,由于节区亲水性的综纤维素相对较少,接触角变大,流速减慢,再加上导管迂回盘绕,水分在其中运输会消耗较多的时间和能量,在一定程度上“限制”了水分的流动,所以节区水分不易散失,说明栓塞修复能力强。树木可能就是通过枝条上一系列栓塞修复能力强的“限速区”来阻止气体栓塞的扩散以保证水分运输系统的畅通及安全。
The paper studied some nodes of one year old twigs of trees grown well in the Beijing Forestry University. Nodal electrical resistance, PLC, anatomical function, contact angles and holocellulose and lignin content of some broad-leaved tree were studied with the means of physiology and anatomy, which aimed to elucidate nodes’effect on fight with drought, the safety of hydraulic system.
     The electrical resistance measurement showed that with the water stress got more and more serious, embolism extent and electrical resistance increased in the above internode when cut node. The difference of embolism repair existed in different segments and treatment showed clearly. Because the above node of being cut node can’t repair embolism, then got into brownness and died, what’s more, electrical resistance can’t showed, which indicated it was cut node that made it difficult for embolism repair. Especially when water waned serious embolism repair can’t process. Although the internodes of reserved node embolized serious, it had definite function of repair, which indicated reserved node made repair easy. The change of electrical resistance reflected the condition of water flowing and embolism. That was to say, the electrical resistance being less indicated embolism not serious and water flowing more smoothly, and the reverse is also true. The change of electrical resistance was related to anatomical structure, contact angles, chemical substances and so on.
     It has the space difference of xylem anatomical structure between internodes and nodes in morphology direction. The vessels of internodes were more homogeneous and internal diameter wider, whereas the differentiation of nodal cells was different. In nodes, the middle and smaller vessels increased. The PLC value of nodes was less than internodes’. Because the content of cellulose were less and contact angles bigger, water flowing velocity get slow. The narrower the vessels, the slower water flowed, and there were many coiled vessels in nodes, which resulted in wasting more time, restricting water flowing. So, water in nodes didn’t lost easily, and the change of electrical resistance slower.
     The difference of hydraulic architecture between nodes and internodes resulted in their different meaning .Internodes were responsible for watering transporting mainly. Because of conducting efficiently, trees’every parts get water. But inter-diameter of their vessels were wider, embolism happened easily. Node was“constrain zones”which xylem was complex, and it wasted more time when water flowed through nodes. A series of“constrain zones”of shoots prevented gas embolism and microorganism diffusing, ensuring smooth and safety of hydraulic system.
引文
[1] 北京造纸研究所.造纸工业化学分析[M].北京:航空工业出版社,1975.
    [2]杜甫佑,张晓立,王洪勋.木质纤维素的定量测定及降解规律的初步研究[J].生物技术,2004,14(5):46~473.
    [3]付伟等.植物体内的木质素[J],生物学通报,2004,39(2):12~14.
    [4]胡日生,孙涣良,郭清泉等.苎麻胶质的基因型差异及育种中利用的研究 Ⅱ . 苎麻胶质及其组分含量时空变化的品种间差异[J].湖南农业大学学报,2000,26(6):422~425.
    [5]胡新生,韩一凡,邱德有.树木木质素含量的遗传变异研究进展[J].1999,12(6):563~571.
    [6]李吉跃,翟洪波.木本植物水力结构与抗旱性[J].应用生态学报,2000,11(2):301~305.
    [7]娄成后.植物的感应性及其在生物与环境统一中的作用[J].科学通报,1955,12:26~33.
    [8]娄成后.植物感应性与植物的运动[J].生理学通报,1960,1:1~7.
    [9]卢善发.植物组织电阻及其应用[J].生物学杂志,1994,(5):4~6.
    [10]秦特夫.“I-214”心材,边材木质素的红外光谱,质子和碳-13 核磁共振波谱特性研究.2001,14(4):375~382.
    [11]沈繁宜等.木本植物木质部栓塞修复机制的探讨[J].北京林业大学学报,2007,29(5):94~98.
    [12]沈繁宜等.液体在不均匀毛细管内状态的研究[J].北京林业大学学报,1997,19(4):34~38.
    [13]王华田,马履一.利用热扩散式边材液流探针(TDP)测定树木整株蒸腾耗水量的研究[J].植物生态学报,2002,26(6):661~667.
    [14]许凤等.木素在黄柳纤维细胞壁中的分布[J].华南理工大学学报,2006,34(12):59~62.
    [15]殷亚芳,姜笑梅,翟超.人工林毛白杨次生木质部细胞分化过程中木质素沉积的动态变化[J].电子显微学报,2004,3(6):663~669.
    [16] 杨 敏 生 , 裴 保 华 , 朱 之 悌 . 白 杨 双 交 杂 种 无 性 系 抗 旱 性 鉴 定 指 标 分 析 [J]. 林 业 科学,2002,38(6):36~42.
    [17]翟洪波.中国北方主要造林树种水力结构研究.[博士学位论文][D].北京:北京林业大学图书馆.2002.
    [18]张沛生,韩学孟.苹果枝条交流电阻变化率与抗旱性关系的研究[J].山西农业科学,1993,21(3):66~70.
    [19]张德舜,刘红权,陈玉梅.八种常绿阔叶树种抗寒性的研究[J].园艺学报,1994,21(3):283~287.
    [20]张硕新,申卫军,张远迎.几个耐旱树种木质部栓塞脆弱性的研究[J].西北林学院学报,1997,12(2):1~6.
    [21]Andre J P. Organisation vasculaire des angiosperms: une vision nouvelle. Paris: Institut Nationale de Ia Recherche Agronomique(INRA),2002.
    [22] A. C. Franco et al. . Leaf functional traits of Neotropical savanna trees in relation to seasonal water deficit[J]. Trees, 2005,19(3):326~335
    [23]Burdon Sanderson. Note on the electrical phenomena which accompany stimulation of the leaf of Dionaea muscipula[J]. Proc Roy Soc London,1873,21:495~496
    [24]Chuah H T, Lee K Y, Lau T W. Microwave dielectric properties of rubber and oil Palm leaf samples: measurement and modeling[J]. International Journal of RemoteSensing.1997,8(12):2623~2639
    [25] Chun-Wang Xiao. Interactive effects of elevated CO2 and drought stress on leaf water potential and growth in Caragana intermedia [J]. Trees, 2005,19(6):712~721
    [26]David S. Chatelet, Mark A. Matthews, Thomasl Rost. Xylem Structure and Connectivity in Grapevine (Vitis vinifera) Shoots Provides a Passive Mechanism for the Spread of Bacteria in Grape Plants[J]. Annals of Botany, 2006,98: 483~494
    [27]Davies E. Action potentials as multifunctional signals in plants: a unifying hypothesis to explain apparently disparate wound responses[J].Plant Cell and Environment,1987,10:623~631
    [28]Davies E, Schuster A. Intercellular communication in plants: Evidence for a rapidly generated, bidirectionally transmitted wound signal[C].Proceedings of the National Academy of Science, USA, 1981,78: 2442~2426
    [29]Donaldson L A. Abnormal lignin distribution in wood from severely drought stressed Pinus radiate trees [J]. I A Journal.2002, 23(2):161~178.
    [30]Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis [J]. Ann Rev Plant Physiol., 1982,33: 317~345
    [31]Gradmann D, Mummert H. Plant action potentials[M].Plant Membtane Transport: Current Conceptual Issues. Elsevir/North-Holland Biomedical Press,1980.333~347
    [32]Hope A B, Walker N A. Action potentials in charophyte cells[A].The physiology of Giant Algal Cells[C].Cambridge University Press,1975.111~119
    [33]Harvey H P et al. Nutrition, xylem cavitation and drought resistance in hybrid poplar[J].Tree physiology, 1997,17:647~654
    [34] Isebrands J G, Larson P R. Vascular anatomy of the nodal regions in Populus deltoids Bartr.[J]. American Journal of Botany, 1977,64: 1066~1077
    [35] Rensing K H, Samuels A L. Cellular changes associated with rest and quiescence in winter-dormant vascular cambium of Pinus contorta [J]. Trees, 2004,18(4):373~380
    [36]Kishimoto U. Repetitive action potentials in Nitella internodes[J].Plant and Cell Phyiol,1966,7:547~558
    [37] Larson P R, Isebrands J G, Functional significance of the nodal constricted zone in Populus deltoids [J].Can.J.Bot.1978, 56:801~804
    [38]Milburn J A. Cavitation, A review: past, present and future. In:Borghetti M, Raschi A.Grace J, (eds). Water transport in plants under climatic stress. Cambridge University Press, Cambridge UK,1993,14~26
    [39] Milburn and Johnson, R.P.C., The conduction of sap. II.Detection of vibrations produced by sap cavitation in Ricinus stem[J]. Ibid.1996, 69:43~52
    [40]Marsden, Margery P F, Balley I W. Fourth type of nodal anatomy in Dicotyledons, illustrated by Clerodendron trichotomum Thunb[J]. Jour.Arnold Arb. 1955, 36:1~51.
    [41] Lo Gullo M A , Castro Noval L, Salleo S, Nardini A. Hydraulic architecture of plants of Helianthus annuus L. cv. Margot: evidence for plant segmentation in herbs[J]. Journal of Experimental Botany, 2004, 55:1549~1556
    [42] Oertli J J. Effect of cavitation on the status of water in plants.In: Borghetti M, Raschi A.Grace J, eds. Water transport in plants under climatic stress. Cambridge University Press .1993, 27~40
    [43] Okushima L, Sase S, Ohtani T, Shimojyo M, Higo Y. Plant measurement by acoustic emission sensor. Acta Horticulturea,1998,421: 241~248
    [44] Peirce Grace J. The state of water inducts and tracheids [J].Plant Physiol,1936,11: 623~628
    [45] Pallardy S H. Hydraulic architecture and conductivity: an overview. In Kreeb K h,Richter H and Hinckly T M(eds.),Structural and Functional Responses to Environment Stresses.[M].SPB Academic Publishing bv, The Hague, The Netherlands,1989,3~19
    [46]Pickard B G. Action potential in higher plants[J].Bot Rev,1973,39:172~201
    [47]Paszewski A, Zawadzki T. Action potentials in Lupinus angustifoli us shoots.3.Determination of the refractory periods[J].J Exp Bot,1976,27:369~374
    [48]Paszewski A, Zawadzki T. Action potentials in Lupinus angustifoli us shoots[J].J Exp Bot,1973,24:804~809
    [49]Pickard B G. Action potentials resulting from mechanical stimulation of pea epicotyles[J].Planta,1971,97:106~115
    [50]Pickard W F. The ascent of sap in plants[J].Prog Biophys Mel Biol,1981,37:181-229.
    [51] Ritman K T, Milburn J A. Acoustic emissions from plants: ultrasonic and audible compared[J]. J Exp Bot, 1988, 39(206):1237~1248
    [52] Rodriguez A, Jimenez A, Guillen R,et al. Postharvest changes in white asparagus cell wall during refrigerated storage [J]. J agric food chem.,1999,47(9):3551~3557.
    [53]Roblin G. Analysis of t he variation potential induced by wounding in plants[J].Plant Cell Phsiol,1985,26:455~461
    [54]Roblin G. Propogation in Vicia faba stem of a potential variation induced by wounding[J].Plant Cell Phsiol,1985,26:1273~1283
    [55]Roblin G. Mimosa pudica: a model for the study of thexcitability in plants[J].Biol Rev,1979,54:135~153
    [56] Teskey R O , McGuire M A. . CO2 transported in xylem sap affects CO2 efflux from Liquidambar styraciflua and Platanus occidentalis stems, and contributes to observed wound respiration phenomena [J]. Trees,2005,19(4):357~362
    [57]Stolarek J J, ablonska B, Pazurbiewicz Kocot K. Light induced action potentials in Phaseolus Vulgaris[M].Plant membrane Transport: Current conceptual Issues. Elsevier Noth Holl: Biomedical Press,1980
    [58]Sakamoto M, Sumiya K. The bioelectrical potentials for young woody plants[J].Wood research,1984,70:42~46
    [59] Sinnott E W. Investigation on the phylogeny of the Angiosperms.I. The anatomy of the node as an aid in the classification of Angiosperms[J].Amer.Jour.Bot. 1914,1:303~322.
    [60] Sinnott E W, Balley I W. Investigation on the phylogeny of the Angiosperms.3.Nodal anatomy and the morphology of stipules[J]. Amer.Jour.Bot. 1914,1: 441~453.
    [61] Salleo S, Rosso R , Lo Gullo M A., Hydraulic architecture of Vitis vinifera L. and Populus deltoids Bartr. 1-year old twigs: I. Hydraulic conductivity (LSC) and water potential gradients[J]. Giornale Botanico Italiano,1982a, 116:15~27
    [62] Salleo S, Rosso R, Lo Gullo M A. Hydraulic architecture of Vitis vinifera L. and Populus deltoids Bartr. 1-year old twigs: II. The nodal regions as “constriction zones” of the xylem system [J]. Ibid. 1982b, 116:29~40.
    [63] Salleo S, Lo Gullo M A. Water transport pathways in nodes and internodes of 1-year-old twigs of Olea europaea L. [J]. Ibid, 1983,117:63~74.
    [64] Salleo S, Siracusano L. Distribution of vessel ends in stems of some diffuse- and ring-porous trees:the nodal regions as “safety zones” of the water conducting system [J]. Annals of Botany ,1984,54.543~52
    [65] Salleo S, Lo Gullo M A. Xylem cavitation in nodes and internodes of Chorisia insignis H.B. et al K. Plants subjected to water stress: relations between xylem conduit size and cavitation[J]. Annals of Botany,1986,36,298~311
    [66] Seca A M L, Cavaleiro J A S, Domingues F M J. Structural characterization of the lignin from the nodes and internodes of Arundo donax reed [J].Journal of Agricultural and Food Chemistry,2000,48(3):817~824.
    [67]F.Y.Shen et al. Possible causes for embolism repair in xylem[J].Environmental and Experimental Botany.2008,62(2):139-144
    [68] Simcha Lev-Yadun, Roni Aloni. Vascular differentiation in branch junctions of trees: circular patterns and functional significance [J]. Trees ,1990,4:49~54
    [69]Simons P J. The role of electricity in plant movements[J].New Phytologist,1981,87:11~37
    [70]Slayman C L, Long W S, Gradman D. Action potentials in New rospara crassa mycelial fangus[J].Biochimica et Biophysica Acta,1976,426:732~744
    [71] Sperry J S,Holbrook M N, Zimmermann M H, et al. Spring filling of xylem vessels in wild grapevine[J]. Plant physiology,1987,83(2):414~417.
    [72] Sperry J S., Donnelly J R, Tyree M T. A method for measuring hydraulic conductivity and embolism in xylem[J].Plant Cell Environ.1988a,11:35~40
    [73] Sperry J S, Donnelly J R, Tyree M T. Seasonal occurrence of xylem embolism in a sugar maple(Acer saccharum Marsh.) [J]. Amer.J.Bot.1988b,75(8):1212~1218
    [74] Sperry J S, Donnely J R, Tyree M T. A method for measuring hydraulic conductivity and embolism in xylem. Plant, Cell Environment, 1988, 11:35~40
    [75] Tyree M T, Alexander JD. Hydraulic conductivity of branch junctions in three temperate tree species[J]. Trees ,1993,7:156~159
    [76]Tyree, M. T., The Cohesion-Tension theory of sap ascent: current controversies. [J] Exp. Botany. 1997, 48:1753~1765
    [77] Tyree M.T, Sperry JS. Vulnerability of xylem to cavitation and embolism[M].Annu Rev Plant Phys Mol Bio,1989,40:19~38
    [78] Tyree M T, Zimmermann M H. Xylem structure and the ascent of sap [J].Berlin: Springer-Verlag, 2002: 5,127
    [79]Van Sambeek J W,Pickard B G.Mediation of rapid electrical metbolic transportation and photosynthetic changes by factor released from wounds[J].Canadian Journal of Botany,1976,54:2642~2671
    [80] Willam T. Pockman,John S.Sperry. Freezing-induced xylem cavitation and the northern limit of Larrea tridentate,[J].Oecologia,1997,109:19~27
    [81] Wiebe H H, Greer R L, Van Alfen N K. Frequency and grouping of vessel endings in alfalfa (Medicago sativa) shoot[J]. New Phytologist, 1984, 97:583~590.
    [82]Zimmermann M H. Tree-Structure and Function [M]. Springer-Verlag, Berlin and New York ,Heidelberg ,Berlin. 1971.
    [83]Zimmermann M H. Hydraulic architecture of some diffuse-porous trees[J]. Canadian Journal of Botany .1978, 56:2286~2295
    [84]Zimmermann M H. Xylem structure and the ascent of sap[M]. 1stend. New York:Springer-Verlag, Berlin, 1983.
     [85]Zawadzki T. Action potentials in Lupinus angustifolius.5.Spread of excitation in the stem[A].Leaves and root[C].J Exp Bot,1980,31:1371~1377

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700