用户名: 密码: 验证码:
OsDREB3转基因大豆品系特异性检测方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转基因食品的安全性及对生态环境的影响等问题一直是关注的焦点。目前商业化的转基因大豆主要为抗草甘膦大豆,抗逆基因的转基因大豆因地理环境及全球商业化的需求的增多,商业化的呼声也越来越高,但迄今为止我国尚未建立抗逆转基因大豆的检测技术。
     本实验以已进入环境释放或生产性试验、或获得安全证书的转基因植物环境安全评价阶段的耐低温抗逆转基因大豆新品系转基因大豆OsDREB3为研究对象,利用染色体步移技术,获得了转基因大豆OsDREB35'端和3’端旁侧序列信息。通过生物信息学分析方法明确了5’端旁侧序列344bp覆盖了转化载体及转基因大豆基因组,在大豆基因组为1号染色体,位置为49,828,108~49,836,357;3’端旁侧序列共长2189bp,属未知基因序列。
     本实验根据已得到的5’端旁侧序列信息,建立了转基因大豆OsDREB3品系特异性定性和定量检测方法。品系特异性检测定性和定量引物所扩增片段覆盖了大豆基因组及转化载体序列信息,在检测过程中随机选择了4种转基因大豆,2种转基因玉米,2种转基因水稻同时进行品系特异性定性及定量检测,结果显示除转基因大豆OsDREB3有扩增片段或扩增曲线外,其余转基因作物均没有扩增片段或扩增曲线,表明该定性及定量检测方法符合品系特异性检测要求。定性检测扩增片段大小为160bp。检测灵敏度为0.1%,比欧盟检测下限(0.9%)低,且重现性好,可用于转基因大豆OsDREB3定性检测。所设计的荧光定量PCR引物,扩增曲线检测下限可达0.01%。
     建立了转基因大豆多重PCR检测方法和转基因大豆OsDREB3巢式PCR检测方法。本实验选择了转基因大豆GTS40-3-2、转基因大豆A2704-12及转基因大豆OsDREB3DNA作为待检测基因模板,对多重PCR体系中的成分进行了多次调整,尝试了多种不同引物对的配比,扩增片段大小相差100多个碱基,范围从700bp~200bp之间,可视性好。最终确定了最佳检测方案,成功实现了3种转基因大豆、4组不同片段的同时扩增和检测,检测下限可达0.01%。巢式PCR所用引物在满足品系特异定性检测的同时,也要提高其检测的灵敏度,本实验所建立巢式PCR检测方法,检测灵敏度可达0.005%。
     本实验在原有构建有4种转基因大豆品系特异性序列的标准分子的基因上又构建了转基因大豆OsDREB3品系特异性序列,新构建的含有5种转基因大豆品系特异性序列及大豆内参基因lectin的阳性对照标准分子,本实验通过实时荧光定量PCR方法,以大豆凝集素基因(lectin)作为内源参照基因,确定了外源基因OsDREB3在转基因大豆OsDREB3基因组为单拷贝作物。
     本实验希望通过染色体步移技术得到的OsDREB3外源基因旁翼序列,建立起来的转基因大豆OsDREB3一整套灵敏高、重现性好、可信度高、特异性强的品系特异性检测体系,充分提高了转基因大豆检测工作效率,从而完善了现有转基因大豆标准分子在OsDREB3抗旱基因检测方面的不足,为我国建立转基因大豆OsDREB3标识管理制度提供参考。该方法为建立转基因大豆OsDREB3标准体系提供技术支持,并为转基因产品标识制度的规范提供有价值的参考。
Safety and impaci on the ecological environment of genetically modified foods has been the focus of attention. Most of the commercialized of genetically modified soybeans is glyphosate-resistant soybean, stress resistance genes due to the geographical environment and the global commercialization of the increase in demand for the commercialization are getting higher and higher, but so far there has not been established the detection techniques resilience gene of genetically modified soybeans in China.
     In this study, we set up the detecting techniques for specificity of transgenic soybean OsDREB3due to the51end and3'end flanking sequence information of genetically modified soybean OsDREB3, which had entered the environmental releasing or production test or got the security certification of environmental safety evaluation for genetically modified plants. The5'end flanking sequence of344bp covering the transformation vectors and transgenic soybean gene group was gained by chromosome walking technique, in the soybean genome on chromosome1, position for49,828,108-49,836,357;3' end flanking sequence of a total length2189bp, the case of unknown gene sequences.
     The experiment was based on the5' end flanking sequence information, specific qualitative and quantitative detection of genetically modified soybeans OsDREB3strains, event-specific detection of qualitative and quantitative cited material by amplified fragment covering soybean genome and the transformation of vector sequence information, in the detection process randomly select the four kinds of genetically modified soybean, were randomly selected two kinds of genetically modified com, two kinds of transgenic rice at the same time, event-specific qualitative and quantitative detection were carried out results showing that in addition to transgenic soybeans OsDREB3in the amplified fragment or outside of the amplification curve, the rest of genetically modified crops have not amplified fragments or amplification curve, indicating that the qualitative and quantitative detection methods to comply with the requirements of the event-specific detection. Qualitative detection of amplified fragment size of160bp. The detection sensitivity of0.1%than the EU detection limit (0.9%) and good reproducibility can be used to genetically modified soybeans OsDREB3qualitative detection. The design of quantitative PCR primers, amplification curve detection limit up to0.01%.
     multiplex PCR assay for genetically modified soybeans and transgenic soybean OsDREB3nested PCR method were set up. In this study, to select the transfected gene soybean GTS40-3-2, genetically modified soybean A2704-12and transgenic soybean OsDREB3DNA as to be detected gene template in multiplex PCR components were adjusted several times, a variety of different primers were tried on the ratio The amplified fragment size difference of more than100bases, ranging from700bp to200bp between good visibility. The best detection scheme is finalized, the successful implementation of three kinds of genetically modified soybeans, amplification and detection of four different fragments, The low limits of detection was0.01%. Nested PCR primers to meet the event-specific qualitative detection, but also to improve the detection sensitivity, this experiment created by the nested PCR method, and the sensitivity of the detection was0.005%.
     In this study, we constructed a standard molecular containing five kinds of transgenic soybean lines and soybean internal reference gene lection as the positive standard control. In this study, by real-time quantitative PCR, the soybean lectin gene (the lectin) as the endogenous reference gene to determine the crop exogenous gene OsDREB3in the genetically modified soybean OsDREB3genome. We found the OsDDREB3in soybean OsDreb3was only one copy.
     In this experiment, we built up a set of sensitive and high, with good reproducibility, high reliability, specificity and event-specific detection system of genetically modified soybean OsDREB3, by which we can improve detection efficiency and perfect insufficient of detection in modified soybean OsDREB3, and provide technical support for the detection of the the transgenic soybean OsDREB3, the results of this study provide a valuable reference for GMO labeling system specification.
引文
[1]ZHANG Q.Strategies for developing green super rice [J].Proceedings of the National Academy of Sciences,2007,104 (42):16402-16409.
    [2]朱再清,张献龙.我国转基因抗虫棉推广与生产优势区域变化实证分析[J].华中农业大学学报:社会科学版,2010(2):12-17.
    [3]佩汉P,弗里斯G E.转基因食品[M].北京:中国纺织出版社,2008:57-58,56.
    [4]Graham Brookes&Peter Barfoot.GM crop impact:the first ten years[R].PG Economics Ltd,UK,2006:82,56
    [5]Sivamani E, Bahieldin A, Wraith M,et al. Improved biomass productivity and water use efficiency underwater deficit conditions in transgenie wheat constitutively expressing the barley HVA1 gene[J]. Plant Sci,2000,155:1-9.
    [6]Bahieldin A, Mahfouz T, Eissa F, et al. Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance [J]. Physiol Plant,2005,123:421-427.
    [7]Chaumont F, Moshelion M, Daniels J. Regulation of plant aquapor in activity 1,J]. Biol Cell, 2005,97:749-764.
    [8]Schuurmans J, van Dongen T, Rutjens W, et al. Members of the aquaporin family in the developing pea seed coat include representatives of the PIP, TIP, and NIP subfamilies[J]. Plant Mol Biol,2003,53:633-645.
    [9]Parker R, Flowers J, Moore L, et al. An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina[J]. Exp Bot,2006,57:1109-1118.
    [10]Baker S S. Willrelrn K S. Thornashow M F. The 5'region of Arabidopsis thaliana cor 15a has cis-acting elements that confer cold, drought and ABA-regulated gene expression[J].Plant MoBiol.1994.24:701-713.
    [11]White T C,Simmonds D,Donaldson P. Regulation of BN115,a low temperature responsive gene from winter Brassica napus[J]. Plant Physiol,1994,106:917-928.
    [12]TAVERNIERS I,WINDELS P,VAITILINGOM M, et a.l Event specific plasmid standards and real-time PCR methods fortransgenicBt11,Bt176and GA21 maize and transgenicGT73 canola[J]. Journal of Agricultural Food Chemistry,2005,53:3041-3052.
    [13]Obrien M, Bertrand C, Matton P. Characterization of a fertilization-induced and developmentaly regulated plasma-membrane aquaporin expressed in reproductive tissues, in the wild potato Solanum chacoense Bitt[J]. Planta,2002,215:485-493.
    [14]Liu Q,Kaduga M,Sakuma Y,et al. Two transcription factors,DREB1 and DREB2,wit h an EREBPPAP2 DNA binding domain separate two cellular signal transduction pathways in drought and low temperature responsive gene expression in Arabidopsis[J]. Plant Cell,1998,10:1391-1406.
    [15]Nakashima K, ItoY,Yamaguchi-Shinozaki K.Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiology,2009,149:88-95.
    [16]Shou H,Bordallo P,Fan JB, et a.l Expression of an active tobacco mitogen activated protein kinase enhances freezing tolerance in transgenic maize.Proc NatlAcad of Sci USA,2004,101(9):3298-3303.
    [17]Okamuro JK,Caster B,Villarroel R.The AP2 domin of APETALA2 define alarge new family of DNA binding protein in Arabidopsis. Proc NatlAcad Sci USA,1997,94(13):7076-7081.
    [18]Chen M,Wang QY, Cheng XG, et a.l GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochemical and Biophysical Research Communications,2009,353(2):299-305.
    [19]Ohshima K, Mukai Y, Shiraki H, Suzumiya J, Tashiro K, Kiku chi M. Clonal integration and expression of human T2cell lympho tropic virus type I in carriers detected by polymerase chain reaction and inverse PCR. Am J Hematol,1997,54 (4):306--312.
    [20]Kasuga M,Miura S, Shinozaki K,Yamaguchi-Shinozaki K. Combination of the Arabidopsis DREBlAgene and stress-inducible rd29A promoter improved drought-and low-temperature stress tolerance in tobacco by gene transfer. Plant and Cell Physiology,2004,45(3):346-350.
    [21]陈乃用.实质等同性原则和转基因食品的安全性评价[J].工业微生物,2003,33(3):44-51
    [22]European Commission Regulation(EC)No.258/97 of the Europeanparliament and of the council of 27 January,1997 concerning noel foods and novel food ingredients[S].
    [23]Rosenthal A, Jones D S. Genomic walking and sequencing by oligo2cassette mediated polymerase chain reaction. Nucleic Acids Research,2002,18 (10):3095-3096.
    [24]Adam V,Baloun J,Fabrik I, et a.l Sensors,2008,8:2293-2305.
    [25]Bai SL, ZhongX,Ma L, et a.l Plant J,2007,49:354-366.
    [26]Cavrois M, Wain-Hobson S, Wattel E. Stochastic events in the amplification of HTLV2I integration sites by Iinker2mediated PCR. Res Virol,1995,146 (3):179-184.
    [27]Ohshima K, Suzumiya J, Kato A, Tashiro K, Kikuchi M. Clonal HTLV-I-infected CD4+ T-lymphocytes and non2clonal non-HTLV-I-infected giant cells in incipient ATLL with Hodgkin21ike histologic features. Intl J Cancer,1997,72 (4):592-598.
    [28]Hwang I T, Kim YJ, Kim S H, Kwak C I, Gu Y Y, Chun J Y. Annealing control primer system for improving specificity of PCR amplification. Biotechniques,2003,35 (6):1180-1184.
    ISO Guide 30. Terms and definitions used in connection with reference materials. ISO,2nd edn, Geneva. Switzerland,1992.
    [29]Sun W, et a.l Anal Bioanal Chem,2007,389:2179-2184.
    [30]YING Ge, WU Wei, HE Chao2Zu. Cloning of Xanthomonas campestris pv. campestris pathogenicity related gene sequences by TAIL2PCR. Chinese J Biotechnol,2002,18 (2):182-186.
    [31]Kim YJ, Kwak C I, Gu Y Y, Hwang I T, Chun J Y. Annealing control primer system for identification of differentially expressed genes on agarose gels. Biotechniques,2004,36 (3): 424-430.
    [32]AKIET,HIROSHIA,MITSUNORI S, et a.l Quantification of genetically modified soybeans using a combination of a capillary-type real-time PCR system and plasmid reference standard[J].Bioscience Biotechnology&Biochemistry,2006,70(4):821-827.
    [32]Berdal KG and Holst-Jensen A. Roundup Ready soybean event specific real-time quantitative PCR assay and estimation of the practical detection and quantification limits in GMO analyses [J]. European Food Research and Technology,2001,213:432-438
    [33]Terry C F and Harris N. Event specific detection of Roundup Ready soybean using two different real time PCR detection chemistries[J]. European Food Research and Technology,2001, 213:425-431.
    [34]Taverniers I, Windels P, van Bockstaele E and de Loose M.Use of cloned DNA fragments for event-specific quantification of genetically modified organisms in pure and mixed food products [J]. European Food Research and Technology,2001,213:417-424
    [12]王平荣,邓晓建,高晓玲等DREB转录因子研究进展.[J].遗传2006,28(3):369-374.
    [35]YANG LT,PAN AH,ZHANG KW, et a.l Qualitative and quantitative PCR methods for event-specific detection of genetically modified cotton MON1445 andMON531[J].Transgenic Research,2005,14:817-831.
    [36]Holck A, PCR Vartilingom M, Didierjean L and Rudi K.5'-nuclease for quantitative event specific detection of the genetically modified Mon810 Maisgard maize[J]. European Food Research and Technology,2002,214:449-454.
    [37]Hernfindez M, Pla M, Esteve T, Prat S, Puigdomenech P and Ferrando A. A specific real-time quantitative PCR detection system for event MON810 in maize Yield Gard(?)ased on the 3'-transgene integration sequence[J]. Transgenic Research,2003,12:179-189
    [38]Bartels D, Sunkar R. Drought and salt tolerance in plants. Critical Reviews in PlantSciences, 2005,24:23-58.
    [39]Yang Rong, Xu Wentao, Luo Yunbo, Guo Feng, Lu Yun and Huang Kunlun. Event-specific qualitative and quantitative polymerase chain reaction detection of roundup ready event GT73 based on the 3'-transgene integration sequence [J]. Plant Cell Renots,2007,26:1821-1831
    [40]Nielsen C R, Berdal K G and Holst-Jensen A. Characterisation of the 5'integration site and development of an event-specific real-time PCR assay for NK603 maize from a low starting copy number [J]. European Food Research and Technology,2004,219:421-427
    [41]Collonnier C, Schattner A, Berthier G, Boyer F, Coup-Philippe G, Diolez A, Duplan M N, Fernandez S, Kebdani N, Kobilinsky A, Romaniuk M, de Beuckeleer M, de Loose M, Windels P and Bertheau Y. Characterization and event specific-detection by quantitative real-time PCR of T25 maize insert[J]. Journal of AOAC International,2005,88:536-546.
    [42]Xu Wen-Tao, Huang Kun-Lun, Deng Ai-Ke, Liang Zhi-hong and Luo Yun-Bo. Variations of tissue DNA density and nuclear DNA content in soybean lines and their impacts on the GMO quantification[J]. Food Control,2007,18:1300-1306.
    [43]Ochman H, Triglia T, Peterson M G and Kemp D J. A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences[J]. Nucleic Acids Research, 1988:168-186
    [44]Zimmermann A, Liithy J and Pauli U. Event specific transgene detection in Btl 1 com by quantitative PCR at the integration site[J]. Lebensmittel-wissenschaft undtechnologie-food Science and Technology,2000,33:210-216
    [45]Liu Y G Mitsukawa N and Ossumi L.Efficient isolation and mapping of A rabi dopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR(刀.The Plant Journal,1999,58 (3):457-4631
    [46]Hembndez M, Esteve T, Prat S and Pla M. Development of real-time PCR system based on SYBR Green Ⅰ, Amplifluor and TaqMan technologies for specific quantitative detection of the transgenic maize event GA21[J]. Journal of Cereal Science,2004,39:99-107.
    [47]Yang L, Guo J, Pan A, et al. event-specific quantitative detection of nine genetically modified maizes using one novel standard reference molecule. J Agric Food Chem,2007, 55(1):15-24.
    [48]Pfeifer G P,Mueller P R and Mueller P R. Genomic sequencing and methylation analysis by ligation mediated PCR[J]Sicence,1989,246:810-812.
    [49]Rampias T N, Fragoulis E G, Sideris D C.A hybrid-specific, polymerase chain reaction-based amplification approach for chromosomal walking [J].Anal Biochem,2009,388(2):342-344
    [50]Corbisier P, Broeders S, Charels D,etal..Validation report. Certification of plasmidic DNA containing MON 810 maize DNA fragments [R/OL]. European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, EUR22948EN-2007, http://www. erm-crm.org/html/ERM-products/search/reports/AD413. pd,f 2007.
    [51]Hideo K, Yoichiro S, Takeshi M. Novel reference molecules for quantitation of genetically modified maize and soybean. Food Comp Add,2002,85(1):1077-1089.
    [52]DEBODE F,MARIENA, JANSSEN E.Design of multiplex calibrant plasmids, their use in GMO detection and the limit of their applicability for quantitative purposes owing to competition effects[J]. Analitical and Bio-analytical Chemistry,2010,396:2151-2164.
    [53]Taverniers I, Windels P, Vaitilingom M, et al. Event-specific plasmid standards and real-time PCR methods for transgenic Btl 1, Bt176, and GA21 maize and transgenic GT73 canola. J Agric Food Chem,2005,53(8):3041-3052.
    [54]Stave J W. Detection of new or modified proteins in novel foods derived from GMO future needs[J]. Food Control,1999,10:367-374
    [55]Pardigol A, Guillet S and Popping B. A simple procedure for quantification of genetically modified organisms using bybrid amplicon standards[J]. Research and Technology,2003,216: 412-420.
    [56]Toyota A, Akiyama H, Sugimura M, et al. Quantification of genetically modified soybeans using a combination of a capillary type real-time PCR system and plasmid reference standard. Biosci Biotech Biochem,2006,70(4):821-827.
    [57]Wang X, Teng D, Yang Y, Tian F, Guan Q, Wang J. Construction of a reference plasmid molecule containing eight targets for the detection ofgenetically modified crops. Appl Microbiol Biotechnol.2011 Apr;90(2):721-31. Epub 2011 Feb 20.
    [58]Huang H Y and Pan T M. Detection of genetically modified maize MON810 and NK603 by multiplex and real-time polymerase chain reaction methods (J). Journal of Agriculture and Food Chemistry,2004,52:3264-3268.
    [59]Kuribara H, Shindo Y, Matsuoka T, Takuro K, Futo S, Aoki N, Hirao T, Akiyama H, Goda Y, Toyoda M and Hino A. Novel reference molecules for quantitation of genetically modified maize and soybean(J). Journal of AOAC International,2002,85 (5):10771089
    [60]Feriotto G, Borgatti M, Mischiati C, Bianchi N and Gambari R Biosensor technology and surface plason resonance for real-time detection of genetically modified roundup ready soybean gene sequence [J]. Journal ofAgriculture and Food Chemistry.2002,50:955-962
    [61]Feriotto G, Gardenghi S, Bianchi N and Gambari R. Quantitation of Bt-176 maize genomic sequences by surface plasmon resonance-based biospecific interaction snalysis of multiplex polymerase chain reaction[J]. Journal of Agriculture and Food Chemistry.2003,51:4640-4646.
    [62]Byrdwell W C and Neff W E. Analysis of genetically modified canola varieties by atmospheric pressure chemical ionization mass spectrometric and flame ionization detection[J].Journal of Liquid Chromatography & Related Technologies,1996,19:2203-2225.
    [63]Hurburgh C R, Rippke G R, Heithoff C, Roussel S A and Hardy C L. Detection of genetically modified grains by near-infrared spectroscopy (C). Proceedings PITTCON 2000-Science for the 21st Century, New Orleans,2000,3:12-17.
    [64]芮玉奎,罗云波,黄昆仑,王为民,张录达。近红外光谱在转基因玉米检测识别中的应用。光谱学与光谱分析。第25卷,2005年10月,第10期1581-1583。
    [65]Stave J W. Protein immunoassay methods for detection of biotech crops:immunoassay methods for detection of Applications, limits, and practical considerations[J].Journal ofAOAC International,2002,85(3):780-786.
    [66]Rogan G J, Dudin Y A, Lee T C, Magin K M, Astwood J D, Bhakta N S, Leach J N, Sanders P R and Fuchs R L. Immunodiagnostic methods for detection of 5-enolpyruvylshikimate-3-phosphate synthase in Roundup Ready soybeans[J].Food Control,1999,10:407-414.
    [67]Lipp M, Anklam E, Stave J W, Lipp M, Anklam E and Stave J W. Validation of an immunoassay for detection and quantitation of a genetically modified soybean in food and food fractions using reference materials:Interlaboratory study [J]. Journal of AOAC International, 2000,83 (4):919-927.
    [68]张秀丰,苏旭东,张伟,等.五重PCR检测转基因大豆[J].中国粮油学报,2008,23(3):194-198.
    [69]王小花,傅春玲,王国卿,等Taqman实时定量PCR技术检测大豆转基因成分[J].
    [70]柳毅,张军方,张会彦,苏旭东,马晓燕,亢春雨,王雪静,张伟。改良环介导等温扩 增技术快速检测转基因大豆。大豆科学。2009年8月第28卷第4期706-710。
    [71]刘彩霞,梁成珠,徐彪,等.抗草甘膦转基因大豆及加工品LAMP检测研究[J].大豆科学,2009,28(2):305-309.
    [72]农业部第1485号公告-4,2010.中华人民共和国农业行业标准:转基因植物及其产品成分检测DNA提取和纯化.北京:中华人民共和国农业部,2010.
    [73]农业部1485号公告-6-2010.中华人民共和国农业行业标准:转基因植物及其产品成分检测耐除草剂大豆MON89788及其衍生品种定性PCR方法.北京:中华人民共和国农业部,2010.
    [74]敖金霞,高学军. 转基因大豆、玉米和水稻外源基因检测通用标准分子的构建. 中国农业大学学报,2008,13(6):19-24.
    [75]Yamaguchi-ShinozakiK, ShinozakiK.Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses.Annual Review of Plant Biology,2006,57: 781-803.
    [76]Yang L T, Xu S C, Pan A H, Yin C S, Zhang K W, Wang Z Y, Zhou Z G and Zhang D B. Event specific qualitative and quantitative polymerase chain reaction detection of genetically modified MON863 maize based on the 5'-transgene integration sequence[J]. Journal of Agriculture and Food Chemistry 2005,53 (24),9312-9318.
    [77]SHINDOU Y.KURIBARA H.MATSUOKA T, et a.l Validation of real-time PCR analyses for line-specific quantitation of genetically modified maize and soybean using new reference molecules[J]. Journal of International AOAC 2002,85:1119-1126.
    [78]邵碧英,陈文炳,杨婕等。转基因成分重组克隆质粒的获得及应用[J]。中国食品学报,2008,8(2):12-17。
    [79]Liu Y G Mitsukawa N and Ossumi L.Efficient isolation and mapping of A rabi dopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR(刀.The Plant Journal,1999,58 (3):457-4631
    [80]Wei-Xia Wang, Ting-Heng Zhu, Feng-Xiang Lai. Event-specific qualitative and quantitative detection of transgenic rice Kefeng-6 by characterization of the transgene flanking sequence. Eur Food Res Technol (2011) 232:297-305.
    [81]Zhou YX, Newton RJ, Gou J H. Plant Molecular Biology Report,1997,15:246.
    [82]李飞武,李葱葱等.转基因大豆MON89788转化体特异性定性PCR检测。安徽农业科学,2010,38(13):6679-6682.
    [83]Rong Yang, Wentao Xu, Yunbo Luo, Feng Guo.Event-specific qualitative and quantitative PCR detection of roundup ready event GT73 based on the 3'-integration junction.Plant Cell Rep (2007)26:1821-1831.
    [84]霍楠,张明辉等。转基因小麦B73-6-1品系特异性定性PCR检测方法的建立。中国生物工程杂志。2011,31(10):100-105。
    [85]Wu G.,Wu Y. H.,Xiao L. and Lu C. M. Event-specific qualitative and quantitative PCR methods for the detection of genetically modified rapeseed Oxy-235, Transgenic Research.2008, 17:851-862
    [86]王金发,李一砚,何海琼,陈中健,刘良式。水稻重复序列RRD3在转基因植物中的启动子功能。植物学报2000,42(10):1057-1061。
    [87]Askild Holck, Marc Va, Luc Didierjean, Knut Rudi.5'-Nuclease PCR for quantitative event-specific detection of the genetically modified Mon810 MaisGard maize. Eur Food Res Technol (2002) 214:449-453.
    [88]Marta Hernandez, Teresa Esteve, Salome Prat, Maria Pla. Development of real-time PCR systems based on SYBRw Green I, Amplifluore and TaqManw technologies for specific quantitative detection of the transgenic maize event GA21. Journal of Cereal Science.39 (2004) 99-107.
    [89]Anklam E, Gadani F, Heinze P, Pijnenburg H and van Den Eede G. Analytical methods for detection and determination of genetically modified organisms in agricultural crops and plant-derived food products[J].European Food Researchand Technology,2002,214:3-26.
    [90]Gachet E, Mar tin G G, Vig neau F, etal. Detection of genetically modified or ganisms (GMOs) by PCR:a brief of methodologies available [J]. Trend in Food Science and Technolog y,1999(9):380-388.
    [91]Lu IJ, Lin CH, Pan TM. Establishment of a system based on universal multiplex-PCR for screening genetically modifiedcrops. Anal Bioanal Chem.2010 Mar;396(6):2055-64. Epub 2009 Oct 24.
    [92]Tian F, Wang X,Teng D, Yang Y, Guan Q, Ao C, Wang J. Optimization of a multiplex PCR assay for detecting transgenic soybean components in feed products. Appl Biochem Biotechnol.2011 Nov; 165(5-6):1225-34. Epub 2011 Aug 26.
    [93]Zimmermann A, Liniger M, Luthy J and Pauli U. A sensitive detection method for genetically modified MaisGardTM corn using a nested PCR-system[J]. LebensmittelWissenschaftundTechnologie,1998,31:664-667.
    [94]MartoAn-SaA nchez J, Viseras J, Adroher P, et al. Nested polymerise chain reaction for detection of Thellerla annulata and comparison with conventional diagnostic techniques:its use in epidemiology studies. Parasitol Res} 1999,85:243-245.
    [95]WENG H B, PAN A H, YANG L T, etal. Estimatingnumber of transgene copies in transgenic rapeseed by realtime PCR assay with HMG I/Y as an endogenous reference gene[J]. Plant Molecular Biology Reporter,2004,22:289-300.
    [96]MASON G, PROVERO P, VAIRA A M, et al. Estimating the number of integrations in transformed plants by quantitative real-time PCR [J]. BMC Biotechnol,2002,2:20.
    [97]SONG P, CAI C, SKOKUT M, etal. Quantitative real-time PCR as a screening tool for estimating transgene copy number in WHISKERSTM-derived transgenic maize[J]. Plant Cell Reports,2002,20:948-954.
    [98]CAO Ji-juan, QIN Wen, ZHU Shui-fang, et al. Identification for genetically modified maize T14/T25 with real time fluorenscent PCR method [J].Hereditas,2004,26(5):689-694.
    [99]杨立桃,赵志辉,丁嘉羽,等.利用实时荧光定量PCR方法分析转基因水稻外源基因拷贝数[J].中国食品卫生杂志2009,34(2):264-268.
    [100]JI W, ZHOU W L, ABRUZZESE R, et al. A method fordetermining zygosity of transgenic zebrafish by TaqMan realtime PCR[J]. Analytical Biochemistry,2005,344:240-246.
    [101]MITREC" I D, HUZAK M, URLIN M, et al. An improved method for determination of gene copy numbers in transgenic mice by serial dilution curves obtained by real-time quantitative PCR assay[J]. Journal of Biochemical and Biophysical Methods,2005,64:83-98.
    [102]Ding J Y, Jia J W, Yang L T, et al. Validation of a rice specific gene, sucrose phosphate synthase, used as the endogenous reference gene for qualitative and real-time quantitative PCR detection of transgenes[J]. Journal of Agricultural and Food Chemistry,2004,52(11) 3372-3377.
    [103]Yang L T, Xu S C, Pan A H, etol. Event-specific qualitative and quantitative PCR detection of genetically modified MON863 maize based on the 5-Rmmgene integration sequence. J. Asrie Food Chem,2005,53:9312-9318.
    [104]Zhang H, Yang L, Guo J, et al. Development of one novel multiple-target plasmid for duplex quantitative PCR analysis of Roundup Ready soybean. J Agric Food Chem,2008, 56(1):5514-5520.
    [105]沈恺琳,李想,王姝,等. 四种转基因玉米新型质粒标准分子协实验验证. 中国农业科技导报,2009,11(5):2-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700