用户名: 密码: 验证码:
转人胰岛素基因银耳的表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在实验室利用农杆菌介导法转化人胰岛素BCA基因成功的基础上,根据潮霉素抗性实验和PCR检测结果选取5个银耳转基因菌株进行人胰岛素BCA基因的表达分析,并对转基因菌株的配对出耳和发酵条件进行研究。实验结果如下:
     采用qRT-PCR绝对定量法,以3-磷酸甘油醛脱氢酶基因(GPD)作为内参基因,构建外源目的基因BCA和内参基因GPD的标准质粒并绘制标准曲线。其中,内参基因GPD标准曲线为y=-3.349x+40.25,R~2=0.998,PCR扩增效率为98.89%;外源目的基因BCA标准曲线为y=-3.379x+37.75,R~2=0.995,PCR扩增效率为97.67%。根据标准曲线和各样品Ct值可计算出5个银耳转基因菌株中人胰岛素BCA基因的拷贝数:T20为非转基因菌株;T26、T56和T65的拷贝数为1;T53的拷贝数为2。
     再选取银耳转基因菌株T26分别与从不同银耳菌种分离到的单孢菌株进行可亲和配对,得到T26+T_(4(3))和T26+T_(14)这两个成功出耳的组合。经RT-PCR和ELISA检测可知,人胰岛素BCA基因在这两个组合出耳后的子实体中成功表达。
     随后,采用qRT-PCR相对定量法,对4个银耳转基因菌株中人胰岛素BCA基因在转录水平的表达量进行分析。根据外源目的基因BCA和内参基因GPD的扩增效率一致可知,实时荧光定量PCR实验结果能使用2-(Ct)法进行相对定量分析。其中,各银耳转基因菌株T53、T26、T56和T65中人胰岛素BCA基因的表达水平存在一定差异。但人胰岛素BCA基因在银耳芽孢中的表达量高于子实体。
     经以上实时荧光定量PCR和表达产物的ELISA检测结果可知人胰岛素BCA基因在银耳转基因菌株的芽孢和子实体中均已成功表达。基于银耳作为生物反应器具有既可低成本人工种植又可大规模发酵培养的特性,选取银耳转基因菌株T65为研究材料,以发酵培养液的OD值、菌体湿重及表达产物的ELISA检测结果这三个方面作为筛选指标,对银耳转化子菌株的碳源、氮源和pH这3个发酵培养条件进行初步优化。实验结果表明:碳源应选择甘露醇;氮源应选择酵母粉和牛肉浸膏;pH条件应选择pH6.0和7.0。这些将为进一步研究银耳生物反应器表达人胰岛素BCA基因奠定基础。
Since Agrobacterium tumefaciens-mediated transformation system wassuccessfully for the first time applied to transfer the human insulin BCA gene intoyeast-like conidia of Tremella fuciformis in our lab, five randomly transgenic Tremellafuciformis strains have been selected to carry out research on the fruiting bodies andoptimization of fermentation conditions of transgenic Tremella fuciformis as well asanalysis of expression of the human insulin BCA gene with Real-timefluorescence-based quantitative PCR according to the results of hygromycin Bresistance and PCR assays. The experimental conclusions were as follows:
     Before using the absolute method to estimate the human insulin BCA gene copynumbers from five transformants of transgenic Tremella fuciformis, plasmid standardsand standard curves were prepared for the transgene (BCA) and the endogenous GPDgene. The standard curves for the GPD and BCA genes, were y=-3.349x+40.25andy=-3.379x+37.75, respectively. Both curves were highly linear (R~2=0.998andR~2=0.995) in the range. From the slopes, amplification efficiencies of98.89%and97.67%were determined for the GPD and BCA genes, respectively, in theinvestigated range, indicating that our method was applicable to estimation oftransgene copy number. According to the results of standard curves and the Ct values,five transgenic Tremella fuciformis DNA samples were tested, and the resultsindicated that T26, T56and T65had single copy, T53had two copies of the transgene,while T20was a non-transgenic strain.
     Moreover, the transformant strain T26was used to do further research on theformation of fruiting bodies cultured with various non-transgenic single-spore strainsfor the production of Tremella fuciformis. The results demonstrated that T26+T_(4(3))andT26+T_(14)could form transgenic fruiting bodies of Tremella fuciformis. RT-PCR andELISA experiments verified that the human insulin BCA gene had been expressed infruiting bodies of transgenic Tremella fuciformis.
     Subsequently, the expression of the human insulin BCA gene at the level of transcription was determined by the relative method. As the absolute value of theslope was close to zero, the efficiencies of the GPD and BCA genes were similar, and2-(Ct)method calculation for the relative quantification of the human insulin BCAgene can be used. The results showed that the expression of the BCA gene had variedgreatly among the four transformants of transgenic Tremella fuciformis (T53, T26,T56and T65). However,the expression level of the human insulin gene in yeast-likeconidia was higher than in the fruiting bodies.
     Based on the results of Real-time fluorescence-based quantitative PCR andenzyme-linked immunosorbent assay (ELISA), the human insulin BCA gene wassuccessfully expressed in both yeast-like conidia and fruiting bodies of transgenicTremella fuciformis. By using the dimorphism character (yeast-like conidia andmycelium; both are edible, nontoxic, and harmless) of Tremella fuciformis, thetransgene product can be produced by both conidia fermentation and large-scaleartificial cultivation of fruiting bodies. Considering the optical density and wet weightof fermentation culture in shaking flask, as well as the results of protein products ofthe human insulin BCA gene detected by sandwich ELISA as screening markers offermentation conditions for yeast-like conidia of transgenic Tremella fuciformis(taking the transformant strain T65for example), the optimal fermentation conditionswere as follows: cultured with mannitol as carbon sources, beef extract and yeastextract as sources of nitrogen, pH6.0and7.0as the optimum pH for growth. Thesefindings will lay a good foundation for further development of Tremella fuciformisbioreactor to be a new efficient expression system for human insulin.
引文
[1]黄年来.中国银耳生产[M].北京:中国农业出版社,2000:1-187.
    [2]吕作舟.食用菌栽培学[M].北京:高等教育出版社,2006:19.
    [3]彭卫红,王勇,黄忠乾,等.我国银耳研究现状与存在问题[J].食用菌学报,2005,12(1):51-56.
    [4]徐碧如.银耳生活史的研究[J].微生物学通报,1980,7(6):241-242.
    [5]徐碧如.银耳分解木材能力的测定[J].微生物学通报,1984,11(6):257.
    [6]黄年来.银耳生活史的研究[J].食用菌,1985,(1):3-4.
    [7]杨萍,张震.银耳的功能性及发展前景[J].食品研究与开发,2009,30(7):179-180.
    [8]黄兰妹.银耳及香灰菌生物学特性观察[J].食用菌,1987,1:32-33.
    [9]黄毅.食用菌栽培学[M].北京:高等教育出版社,2006.
    [10]Lin Z, Ma J, Chai B, Guan H, Yue W. Studies on the pharmacology of Tremella fuciformis.Preliminary research on the fermented solution and polysaccharides of Tremella fuciformisspores[J]. J Tradit Chin Med,1982,2(2):95-98.
    [11] Kiho T, Tsujimura Y, Sakushima M, Usui S, Ukai S. Polysaccharides in fungi. XXXIII.Hypoglycemic activity of an acidic polysaccharide (AC) from Tremella fuciformis[J].Yakugaku Zasshi,1994,114(5):308-315.
    [12]Cheng H, Hou W, Lu M. Interactions of lipid metabolism and intestinal physiology withTremella fuciformis Berk edible mushroom in rats fed a high-cholesterol diet with or withoutNebacitin[J]. J Agric Food Chem,2002,50(25):7438-7443.
    [13]Gao Q, Jiang R, Chen H, Jensen E, Seljelid R. Characterization and cytokine stimulatingactivities of heteroglycans from Tremella fuciformis[J]. Planta Med,1996,62(4):297-302.
    [14]Wang Z, Yang S, Li L, Zhou F, Wang R. Studies on the effects of Tremella fuciformis Berkpreparation on immunity and blood formation in rhesus monkeys[J]. J Tradit Chin Med,1983,3(1):13-16.
    [15]Jing M, Zhang J, Yu M, Ge Y, Liu Y, Gao M. Study on the immunoloregulation function ofTremella fuciformis[J]. J Prev Med Inform,2002,18:94.
    [16]Ukai S, Hirose K, Kiho T, Hara C, Irikura T. Antitumor activity on sarcoma180of thepolysaccharides from Tremella fuciformis Berk[J]. Chem Pharm Bull(Tokyo),1972,20(10):2293-2294.
    [17]Dong Z, Qu M. Study on the cytotoxicity of spleenocytes activated by IL-2and Tremellapolysaccharide to tumor cells in vitro[J]. J Beihua University (Nat Sci),2004,5:506-508.
    [18]马恩龙,李艳春.银耳孢糖的抗肿瘤作用[J].沈阳药科大学学报,2007,2(7):426-428.
    [19]黄秀锦.银耳多糖的提取分离、纯化及其功能性研究[J].食品科学,2008,29(1):133-136.
    [20]侯建明,蓝进,高益槐.银耳多糖抗溃疡作用的试验研究[J].中国疗养医学,2008,17(5):316-318.
    [21]谢宝贵,饶永斌,郑金贵.银耳的超声波介导转化[J].农业生物技术学报,2005,13(1):42-45.
    [22]Zhu H, Wang TW, Sun SJ, Shen YL, Wei DZ. Chromosomal integration of the Vitreoscillahemoglobin gene and its physiological actions in Tremella fuciformis[J]. Appl MicrobiolBiotechnol,2006,72(4):770-776.
    [23]郭丽琼,刘二鲜,王杰,等.高效银耳芽孢遗传转化体系的建立[J].中国农业科学,2008,41(11):3728-3734.
    [24]Guo LQ, Liu Y, Zhao SX, et al. Highly efficient transformation of intact yeast-like conidiumcells of Tremella fuciformis by electroporation[J]. SCIENCE IN CHINA,2008,51(10):932-940.
    [25]Sun SJ, Chen DX, Xie BG, Hu FP, Zheng JG. Isolation of GPD promoter from Tremellafuciformis and driving expression of EGFP gene[J]. DNA Cell Biol,2009,28(2):65-70.
    [26]张友尚.胰岛素生产的回顾与展望[J].食品与药品,2008,10(1):1-3.
    [27]薄涛,侯建华,王翠艳.重组类胰岛素研究进展[J].天津医科大学学报,2005,11(1):150-153.
    [28]Goeddel DV, Kleid DG, Bolivar F, et al. Expression in Escherichia coli of chemicallysynthesized genes for human insulin[J]. Proc Natl Acad Sci, USA,1979,76(1):106-110.
    [29]Keen H, Glynne A, Pickup JC, et al. Human insulin produced by recombinant DNAtechnology: safety and hypoglycaemic potency in healthy men[J]. Lancet,1980,23(2):398-401.
    [30]Thim L, Hansen MT, Norris K, Hoegh I, Boel E, Forstrom J, Ammerer G, Fiil NP. Secretionand processing of insulin precursors in yeast[J]. Proc Natl Acad Sci USA,1986,83(18):6766-6770.
    [31]Ryle AP, Sanger F. Disulphide interchange reactions[J]. Biochem J,1955,60(4):535-540.
    [32]叶蕴华.浅谈胰岛素的结构与生物活性[J].大学化学,2010,25:19-23.
    [33]Chan SJ, Keim P, Steiner DF. Cell-free synthesis of rat preproinsulins: characterization andpartial amino acid sequence determination[J]. Proc Natl Acad Sci USA,1976,73(6):1964-1968.
    [34]Steiner DF, Cunningham D, Spigelman L, Aten B. Insulin biosynthesis: evidence for aprecursor[J]. Science,1967,157(3789):697-700.
    [35]张薇.猪胰岛素与人胰岛素的临床疗效观察[J].锦州医学院学报,2005,26(6):30.
    [36]范树国,魏朔,李国树,等.不同方法提取猪胰岛素得率的比较[J].大理学院学报,2009,8(6):20-23.
    [37]杨继虞,方芳,祝小元,等.糖尿病治疗药物的研究现状[J].华西医科大学学报,1991,22(2):178-180.
    [38]陈春麟,吴梧桐,吴文俊,等.胰岛素制剂及其发展现状[J].中国药科大学学报,1990,21(4):219-221.
    [39]Berson SA, Yalow RS. Insulin in blood and insulin antibodies[J]. Am J Med,1966,40(5):676-690.
    [40]Knappskog S, Ravneberg H, Gjerdrum C, Tr sse C, Stern B, Pryme IF. The level of synthesisand secretion of Gaussia princeps luciferase in transfected CHO cells is heavily dependenton the choice of signal peptide[J]. J Biotechnol,2007,128(4):705-715.
    [41]Chan SJ, Weiss J, Konrad M, White T, Bahl C, Yu SD, Marks D, Steiner DF. Biosynthesisand periplasmic segregation of human proinsulin in Escherichia coli[J]. Proc Natl Acad SciUSA,1981,78(9):5401-5405.
    [42]Sung WL, Yao FL, Zahab DM, Narang SA. Short synthetic oligodeoxyribonucleotide leadersequences enhance accumulation of human proinsulin synthesized in Escherichia coli[J].Proc Natl Acad Sci USA,1986,83(3):561-565.
    [43]Kang Y, Yoon JW. Development of a high-expression vector (PYK10-9) of human proinsulingene[J]. Biotechnol Lett,1991,13(10):755-760.
    [44]Tang JG, Hu MH. Production of human proinsulin in Escherichia coli in a non-fusion form[J].Biotechnol Lett,1993,15(7):661-666.
    [45]Kang Y, Yoon JW. Effect of modification of connecting peptide of proinsulin on its export[J].J Biotechnol,1994,36(1):45-54.
    [46]Winter J, Neubauer P, Glockshuber R, Rudolph R. Increased production of human proinsulinin the periplasmic space of Escherichia coli by fusion to DsbA[J]. J Biotechnol,2000,84(2):175-185.
    [47]Mergulh o FJ, Taipa MA, Cabral JM, Monteiro GA. Evaluation of bottlenecks in proinsulinsecretion by Escherichia coli[J]. J Biotechnol,2004,109(1-2):31-43.
    [48]Trabucchi A, Guerra LL, Faccinetti NI, Iacono RF, Poskus E, Valdez SN. Expression andcharacterization of human proinsulin fused to thioredoxin in Escherichia coli[J]. ApplMicrobiol Biotechnol,2011, DOI10.1007/s00253-011-3721-5.
    [49]王燕,梁镇和,张友尚,等.人胰岛素在甲醇酵母Pichia pastoris中的分泌表达[J].生物化学与生物物理学报,1999,31(5):587-589.
    [50]郭永志,沈孝宙.人胰岛素原在甲醇酵母(Pichia pastoris)中的高效表达[J].生物工程进展,1999,19(6):64-67.
    [51]Kjeldsen T, Pettersson AF, Hach M. Secretory expression and characterization of insulin inPichia pastoris[J]. Biotechnol Appl Biochem,1999,29(1):79-86.
    [52]Wang Y, Liang ZH, Zhang YS, et al. Human insulin from a precursor overexpressed in themethylotrophic yeast Pichia pastoris and a simple procedure for purifying the expressionproduct[J]. Biotechnol Bioeng,2001,73(1):74-79.
    [53]王隆飞,方园园,陈功,等.产人胰岛素毕赤酵母工程菌的构建[J].南开大学学报,2006,39(5):69-73.
    [54]高剑坤,蔡绍皙,范开,等.含短C肽人胰岛素原类似物DesB30在毕赤酵母中的表达及纯化[J].生物化学与生物物理进展,2008,35(1):63-68.
    [55]何尧声,沈文涛,陈春宝,等.重组人胰岛素在毕赤酵母中的分泌表达[J].药物生物技术,2009,16(2):108-112.
    [56]Bucchini D, Ripoche MA, Stinnakre MG, et al. Pancreatic expression of human insulin genein transgenic mice[J]. Proc Natl Acad Sci USA,1986,83(8):2511-2515.
    [57]夏平安,刘维全,崔保安,等.人胰岛素基因在家蝇幼虫中的表达[J].河南农业大学学报,2006,40(4):386-390.
    [58]Pohajadak B, Mansour M, Hrytsenko O, et al. Producion of transgenic tilapia with Brockmannbodies secreting [desThrB30] human insulin[J]. Transgenic Res,2004,13(4):313-323.
    [59]Hrytsenko O, Rayat GR, Xu BY, et al. Lifelong stable human insulin expression in transgenictilapia expressing a humanized tilapia insulin gene[J]. Transgenic Res,2011,20(6):1397-1398.
    [60]Arakawa T, Yu J, Chong DK, Hough J, Engen PC, Langridge WH. A plant-based choleratoxin B subunit-insulin fusion protein protects against the development of autoimmunediabetes[J]. Nat Biotechnol,1998,16(10):934-938.
    [61]Nykiforuk CL, Boothe JG, Murray EW, et al. Transgenic expression and recovery ofbiologically active recombinant human insulin from Arabidopsis thaliana seeds[J]. PlantBiotechnol J,2006,4(1):77-85.
    [62]张昱,张小平,赵凌侠.利用烟草表达重组人胰岛素原的初步研究[J].上海交通大学学报,2010,28(1):14-18.
    [63]李华,刘维全,刘海鹏,等.人胰岛素基因重组杆状病毒在家蝇中表达的研究[J].中国医科大学学报,2004,33(2):113-114.
    [64]薛美思,刘毅.构建携带重组人胰岛素基因慢病毒表达载体及其病毒包装[J].中国组织工程研究与临床康复,2010,14(33):6133-6137.
    [65]Saiki RK, Scharf S, Faloona, et al. Enzymatic amplification of beta-globin genomic sequencesand restriction site analysis for diagnosis of sickle cell anemia[J]. Science,1985,230(4732):1350-1354.
    [66]Heid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR[J]. Genome Res,1996,6(10):986-994.
    [67]宋勇涛,王勇,刘勤,等. FQ-PCR在转基因产品检测中的应用研究进展[J].动物医学进展,2008,29(11):55-59.
    [68]Morrison TB, Weis JJ, Wittwer CT. Quantification of low-copy transcripts by continuousSYBR GreenⅠmonitoring during amplification[J]. Biotechniques,1998,24(6):954-958.
    [69]Walker NJ. Real time and quantitative PCR: applications to mechanism-based toxicology[J]. JBiochem Mol Toxicol,2001,15(3):121-127.
    [70]Smith RD, Brown B, Ikonomi P, et al. Exogenous reference RNA for normalization ofreal-time quantitative PCR[J]. Biotechniques,2003,34(1):88-91.
    [71]Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CTmethod[J].Nature Protocols,2008,3(6):1101-1108.
    [72]钟江华,张光萍,柳小英.实时荧光定量PCR技术的研究进展与应用[J].氨基酸和生物资源,2011,33(2):68-72.
    [73]廉红霞,高腾云,傅彤,等.实时荧光定量PCR定量方法研究进展[J].江西农业学报,2010,22(10):128-129.
    [74]Freeman WM, Walker SJ, Vrana KE. Quantitative RT-PCR: pitfalls and potential[J].Biotechniques,1999,26(1):112-125.
    [75]Suzuki T, Higgins PJ, Crawford DR. Control selection for RNA quantitation[J]. Biotechniques,2000,29(2):332-337.
    [76]Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitativeRT-PCR data by geometric averaging of multiple internal control genes[J]. Gonome Biol,2002,3(7): RESEARCH0034.Epub2002Jun18.
    [77]唐永凯,贾永义.荧光定量PCR数据处理方法的探讨[J].生物技术,2008,18(3):89-91.
    [78]袁继红.实时荧光定量PCR技术的实验研究[J].现代农业科技,2010,13:20-22.
    [79]薛霜,独军政,高闪电,等.实时荧光定量PCR技术研究进展及其在兽医学中的应用[J].中国农学通报,2011,26(7):11-15.
    [80]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using Real-timequantitative PCR and2-(Ct)method[J]. Method,2001,25(4):402-408.
    [81]Southern EM. Detection of specific sequences among DNA fragments separated by geleletrophoresis[J]. J Mol Biol,1975,98(3):503-517.
    [82]Larramendy ML, el-Rifai W, Kokkola A, et al. Comparative genomic hybridization revealsdifferences in DNA copy number changes between sporadic gastric carcinomas and gastriccarcinomas from patients with hereditary nonpolyposis colorectal cancer[J]. Cancer GenetCytogenet,1998,106(1):62-65.
    [83]Kallioniemi A, Visakorpi T, Karhu R, et al. Gene copy number analysis by fluorescence in situhybridization and comparative genomic hybridization[J]. Methods,1996,9(1):113-121.
    [84]Armour JA, Sismani C, Patsalis PC, Cross G. Measurement of locus copy number byhybridization with amplifiable probes[J]. Nucleic Acids Res,2000,28(2):605-609.
    [85]Li J, Protopopov A, Wang F, et al. NotⅠsubtraction and NotⅠ–specific microarrays to detectcopy number and methylation changes in whole genomes[J]. Proc Natl Acad Sci USA,2002,99(16):10724-10729.
    [86]Li Z, Hansen JL, Liu Y, et al. Using real-time PCR to determine transgene copy number inwheat[J]. Plant Mol Biol Rep,2004,22(2):179-188.
    [87]Gadaleta A, Giancaspro A, Cardone MF, Blanco A. Real-time PCR for the detection of precisetransgene in durum wheat[J]. Cell Mol Biol Lett,2011,16(4):652-668.
    [88]Omar AA, Dekkers MG, Graham JH, Grosser JW. Estimation of transgene copy number intransformed citrus plants by quantitative multiplex real-time PCR[J]. Biotechnol Prog,2008,24(6):1241-1248.
    [89]Beltrán J, Jaimes H, Echeverry M, et al. Quantitative analysis of transgene in cassava plantsusing real-time PCR technology[J]. In Vitro Cell Dev Biol Plant,2009,45(1):48-56.
    [90]Casu RE, Selivanova A, Perroux JM. High-throughout assessment of transgene copy numberin sugarcane using real-time quantitative PCR[J]. Plant Cell Rep,2011,31(1):167-177.
    [91]王晓建,杨旭,宋晓东,等.实时荧光定量PCR法检测转基因小鼠拷贝数[J].中国实验动物学报,2007,15(3):170-174.
    [92]郑杰辉,林炤华,徐瑛,等.实时荧光定量PCR检测转基因小鼠外源基因拷贝数方法的建立和应用[J].中国优生与遗传杂志,2011,19(2):34-36.
    [93]孔庆然,武美玲,朱江,等.转基因猪中外源基因拷贝数和整合位点的研究[J].生物化学与生物物理进展,2009,36(12):1617-1625.
    [94]王荣谈,张建中,刘冬儿,等.转基因产品检测方法研究进展[J].上海农业学报,2010,26(1):116-119.
    [95]苏锐,熊嫣,庆宏,等.转基因作物检测新技术研究进展[J].化学通报,2012,75(2):121-125.
    [96]Engvall E, Jonsson K, Perlmann P. Enzyme-linked immunosorbent assay.Ⅱ.Quantitativeassay of protein antigen, immunoglobulin G, by means of enzyme-labelled antigen andantibody-coated tubes[J]. Biochim Biophys Acta,1971,251(3):427-434.
    [97]李月婷,卢士英,周玉,等.弧菌三联融合毒素基因表达及ELISA检测方法建立[J].中国生物工程杂志,2009,29(11):74-81.
    [98]杨明凡,崔保安,张素梅,等.鸡传染性喉气管炎病毒gD基因的表达及间接ELISA检测方法的初步建立[J].中国兽医学报,2009,29(3):263-265.
    [99]于庭,刘爱忠,金玉芬,等. A组轮状病毒VP7基因表达及ELISA检测的方法研究[J].中国实验诊断学,2010,14(8):1186-1189.
    [100]王保民,何钟佩,赵继勋.抗虫棉Bt杀虫晶体蛋白免疫检测方法的研究[J].棉花学报,1998,10(4):220-221.
    [101]Roda A, Mirasoli M, Guardigli, et al. Development and validation of a sensitive and fastchemiluminescent enzyme immunoassay for the detection of genetically modified maize[J].Anal Bioanal Chem,2006,384(6):1269-1275.
    [102]Renart J, Reiser J, Stark GR. Transfer of proteins from gels to diazobenzyloxymethyl-paperand detection with antisera: a method for studying antibody specificity and antigenstructure[J]. Proc Natl Acad Sci USA,1979,76(7):3116-3120.
    [103]Gert van Duijn, Ria van Biert, et al. Detection methods for genetically modified crops[J].Food Control,1999,10(6):375-378.
    [104]Corstjens PL, Zuiderwijk M, Nilsson M, et al. Lateral-flow and up-coverting phosphorreporters to detect single-stranded nucleic acids in a sandwich-hybridization assay[J]. AnalBiochem,2003,312(2):191-200.
    [105]潘映红.蛋白组学在转基因生物检测和研究中的应用前景[J].中国农业科技导报,2010,12(1):31-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700