用户名: 密码: 验证码:
维吾尔族宫颈癌发生与抗原呈递元件基因表达调控的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:
     维吾尔族妇女宫颈癌发病率高,死亡率高,远远超过全国平均水平,是新疆特高发肿瘤。HPV是宫颈癌发生的主要因素,其在维吾尔族妇女宫颈癌的检出率也与国内外宫颈癌高发人群水平相当。利用维吾尔族宫颈癌疾病资源,开展宫颈癌的基础与临床研究,揭示宫颈癌发病发展规律,寻找HPV致病与致癌的生物学本质,建立肿瘤分子标志物体系及临床诊断标准,对新疆宫颈癌的临床早期诊断、基于人群的疫苗预防和临床治疗有重大社会经济意义。
     肿瘤细胞的产生与生存标志着肿瘤免疫逃逸的成功,人体免疫监视与清除功能的失败。人类白细胞抗原Ⅰ(human leukocyte antigen class Ⅰ, HLA-Ⅰ)及抗原呈递元件(antigen processing machinery, APM)的正常功能是T细胞介导的免疫监视的前提。HLA-Ⅰ在APM成员的协助下,完成内源性抗原肽的组装、负载和提呈,介导抗肿瘤或病毒的细胞和体液免疫。因此HLA-Ⅰ和APM的正常表达或表达缺陷可能决定肿瘤细胞的免疫清除,或者肿瘤生存和发展。
     本研究拟以HLA-Ⅰ和APM(10种基因)为候选基因,利用维吾尔族妇女宫颈病变资源,从基因组表观遗传学修饰(启动子甲基化)、基因转录(mRNA)和蛋白质表达水平等三种基因表达调控层次分析肿瘤进程与候选基因表达水平改变的关系。在实际研究中,我们从蛋白质和mRNA表达水平鉴定入手,第一步筛选具有显著差异的、代表总体趋势的基因种类,淘汰无意义的指标。其次,按照本研究主题思路(表观遗传学),选择肿瘤特异性下调表达或蛋白质缺失的基因,从基因启动子CpG岛异常甲基化水平分析,主要是设计候选基因启动子区富含CpG序列片段特异性引物,通过宫颈癌细胞(细胞株)DNA中特定基因CpG片段的PCR扩增、载体克隆与测序,筛选宫颈癌特异性甲基化的基因。第三步,基于以上结果,依托Sequenom MassARRAY质谱技术平台,对临床宫颈病变组织DNA进行甲基化水平定量分析。同时,分析组织DNA的HPV感染与候选基因甲基化水平的关系。寻求发现宫颈癌病变进程与HLA-Ⅰ及APM基因表达调控的分子机制,提出基于HLA-Ⅰ及APM基因表达水平改变的宫颈癌早期预警指标,从抗原呈递功能角度揭示宫颈癌发病机制。
     研究方法
     (1)收集维吾尔族妇女宫颈病变患者的石蜡包埋组织和新鲜组织,采用免疫组织化学和半定量RT-PCR方法,鉴定TAP1、TAP2、LMP2、LMP7、calnexin、 calreticulin、ERp57、ERAP1、Tapasin)和HLA-Ⅰ等10种基因的蛋白质和mRNA表达水平。
     (2)从Genbank数据库获取基因信息,利用专业软件扫描基因启动子区,设计出CpG岛片段特异性引物,对亚硫酸氢盐修饰的宫颈癌细胞DNA进行PCR扩增、载体克隆和测序分析,获得基因甲基化相关的序列和CpG位点信息。
     (3)依托Sequenom MassARRAY技术,选择“第二部分”研究中确认的候选基因CpG岛片段及其特异性引物,对宫颈病变组织DNA进行CpG‘岛片段甲基化水平定量分析,确定不同组织甲基化片段及其CpG位点之差异。利用HPV分型芯片分析组织DNA的HPV阳性及其与候选基因甲基化的依存关系。
     结果
     (1)免疫组织化学分析显示,随着正常宫颈到CIN和宫颈癌的发病进程,宫颈上皮组织内HLA-Ⅰ、TAP1、TAP2、LMP2、LMP7、ERAP1, Tapasin、calreticulin和ERp57等9种基因的蛋白质表达水平呈现由正常强表达、中度表达到弱表达和或表达缺失的转变,组间差异有统计学意义(P<0.05),而calnexin的变化无统计学意义。RT-PCR结果表明TAP1、TAP2、LMP2、LMP7、Tapasin和ERp57等6种基因以及编码HLA-Ⅰ的HLA-A、HLA-B、HLA-C等三种基因的mRNA表达水平变化趋势与以上蛋白表达水平变化趋势一致,其差异也有统计学意义。分析宫颈癌临床预后参数与候选基因表达水平的关系,发现HLA-Ⅰ、TAP1、LMP7和ERp57蛋白表达水平变化与肿瘤的分化程度存在一定的负相关性,肿瘤组织学级别越高,蛋白表达越少,其蛋白表达在中低分化组低于高分化组,其差异有统计学意义(P<0.05)。HLA-Ⅰ,TAP1,LMP7,Tapasin, calreticulin和ERp57蛋白表达与淋巴结转移也存在一定的负相关性,在淋巴结转移组其蛋白表达明显少于无淋巴结转移组,表达差异有统计学意义(P<0.05)。以FIGO分期为准,低级别组ERp57蛋白表达低于高级别组,差异有统计学意义(P<0.05)。比较分析HLA-Ⅰ与其他候选基因的关联程度,在CIN中HLA-Ⅰ与TAP1,TAP2,LMP7,ERAP1, Tapasin和ERp57表达下调呈正相关,宫颈癌中HLA-Ⅰ与TAP1,TAP2,LMP2、LMP7,ERAP1,ERp57和Tapasin表达下调呈正相关。
     (2)通过基因启动子区CpG片段甲基化测序,发现宫颈癌细胞基因组的TAP1、TAP2、LMP7、Tapasin和ERp57基因启动子区中选定的CpG位点均有不同程度的甲基化,依次为5/23、8/8、2/22、12/12和18/18。但是,没有发现HLA-B、LMP2和ERAP1等3种基因启动子区发生任何位点甲基化。
     (3)根据Sequenom MassARRAY DNA甲基化测试和数据分析,TAP1、LMP7和ERp57基因在宫颈癌组织总甲基化水平高于CIN和正常宫颈组织,两者比较具有统计学意义(P<0.05),但是TAP2和Tapasin的甲基化水平差异无统计学意义(P>0.05)。单点甲基化率分析显示,TAP1、LMP7和ERp57基因的所有CpG位点在不同宫颈病变组织之间具有“单点”差异,其差异也有统计学意义(P<0.05)。比较分析以上基因的目的片段甲基化水平变化与“第一部分”所述的蛋白质水平表达改变,可以看出,TAP1、LMP7和ERp57等三种基因的甲基化水平变化与蛋白质表达变化(阳性)呈负相关。本研究的组织DNA标本中,共检出13种HPV亚型,高危型11种,低危型2种,HPV16感染率构成比达69.8%。分析HPV阳性组织DNA中,HPV16阳性和“非HPV16”与候选基因的目的片段甲基化水平变化的关系,发现HPV16感染组织中ERp57、TAP1和LMP7启动子区甲基化水平明显增加,两者呈正相关(P均<0.05)。
     结论
     (1)HLA-Ⅰ和抗原呈递元件(APM)基因的转录表达下调或蛋白质表达缺失与维吾尔族妇女宫颈癌病变进程密切相关,可以成为建立肿瘤分子标志物体系重要候选基因。
     (2)宫颈癌细胞中TAP1、TAP2、LMP7、Tapasin和ERp57等5种基因的目的CpG岛片段均发生不同程度的CpG位点甲基化,此可能更好地揭示这些基因转录表达下调或蛋白质表达缺失的表观遗传学原因。
     (3)TAP1、LMP7和ERp57等三种基因的启动子区甲基化是一种宫颈癌病变特异性改变,其中HPV16感染可能是重要原因之一,也是从表观遗传学层次调节蛋白质表达水平的分子机制。
Aim of the Study:
     The prevalence and mortality of cervical cancer in Uighur women has been very high and beyond the average level in China, known as a high incident cancer of Xinjiang. The infection with human papillomavirus (HPV) was believed to be the main cause of cervical cancer development, and indeed HPV was also detectable in Uighur women with cervical cancer at a rate comparable with other populations in and outside China. To promote the cervical cancer research based on clinical practice focusing on the treatment of Uighur women with cervical cancer, reveal the cervical cancer pathogenesis and seek for the nature of HPV induced pathogenesis and carcinogenesis as well as to establish the tumor specific molecular marker profile and clinical diagnostic standard have a great social-economic importance for the early diagnosis, preventive vaccination and clinical treatment of the cancer in Xinjiang.
     The formation and survival of a tumor cell is a sign of a successful immune escape and the failure of host in immune surveillance and elimination. The normal function of human leukocyte antigen class Ⅰ (HLA-Ⅰ) and antigen processing machinery (APM) is the prerequisite for the T cell-mediated immune surveillance. HLA-Ⅰ works together with the members of APM in the assembling, loading and presentation of endogenous antigenic peptide, mediates anti-tumor or anti-viral cellular and humoral immunity. Thus, the elimination of tumor cells by immune system or the tumor survival and development may greatly be depended on the normal or abnormal expression of APM and HLA-Ⅰ.
     In this study, we will focus on10candidate genes belong to the HLA-Ⅰ and APM family and clinical resources from the treatment of cervical cancer, analyze the relationship between cancer development and the alteration of candidate gene expression at three different levels of gene expression control including epigenomic modification (gene promoter methylation), transcription (mRNA) and protein expression. In the practical approach, we will start with the detection at protein and mRNA expression levels, as a first step to identify genes significantly different and representing the overall trend of changes, and abandon the genes without significance. In the second step, in accordance with the main topic of this study (epigenetic research), we will focus on genes that were tumor-specific down-regulated or loss of protein expression and analyze the aberrant methylation of CpG islands at promoter regions such as to design primers of candidate genes specific to promoter regions rich in CpG islands, to screen cervical cancer specific methylated genes by amplification of cervical cancer cell DNA, cloning and sequencing of target CpG fragments of corresponding genes.
     In the third step, we will analyze tissue DNA generated from clinical samples for the quantitative difference of methylation by mass spectrometry approach (Sequenom MassARRAY) and the dependence on HPV infection, to find out the molecular mechanism of the relationship between cervical carcinogenesis and HLA-I and APM expression regulation, provide with early diagnostic markers based on the alteration of HLA-I and APM gene expression, and to understand the cervical cancer pathogenesis related to the function of antigen presentation.
     Methods:
     (1) Paraffin-embedded and/or fresh tissue specimens of Uighur women with cervical disease were collected for the detection of protein and semi-quantitative mRNA expression level of TAP1、TAP2、LMP2、LMP7、calnexin、calreticulin、ERp57、ERAP1、 tapasin and HLA-Ⅰ genes by immunohistochemistry (IHC) and RT-PCR.
     (2) CpG island fragment specific primers were designed by scanning gene promoter region using specialized software based on genetic information obtained from the Genbank database online, and bisulphate treated DNA of cervical cancer cells was amplified with PCR followed by cloning into vector and sequencing to identify CpG sites related to gene promoter methylation.
     (3) By DNA Sequenom MassARRAY approach for quantitative detection of methylated DNA, we analyzed the cervical tissue DNA for CpG content of candidate genes provided by the analysis in "Part II" of this study using gene specific primer pairs to compare methylation level of target fragments and CpG sites among different tissues. The dependence of candidate gene methylation on HPV infection was analyzed by detection of HPV positivity and genotypes of tissue DNA by HPV typing chips.
     Results:
     (1) Immunohistochemical analysis showed that with the development of cervical lesions from normal uterine cervix to cervical intraepithelial neoplasia (CIN) or cervical squamous cell carcinoma (CSCC), the protein expression level of nine genes, including HLA-Ⅰ、TAP1、TAP2、LMP2、IMP7、ERAP1, Tapasn、CRT and ERp57, was altered from normal expression to partial loss or total loss of expression, with statistically significance except for calnexin (P<0.05). RT-PCR results suggested that the change in mRNA expression level of TAP1, TAP2, LMP2, LMP7, ERAP1, Tapasin, CRT and ERp57as well as the HLA-A, HLA-B and HLA-C genes coding for HLA-Ⅰ was also significant among cervical lesions, and correlated with the protein expression described above. From the analysis of the association of clinical prognostic parameters for cervical cancer with candidate gene expression, we found a reverse correlation of the downregulation of HLA-Ⅰ, TAP1, and LMP7and ERp57protein expression with tumor differentiation state (P<0.05) as well as the down regulation of HLA-Ⅰ, TAP1, LMP7, Tapasin, CRT and ERp57with lymphnode metastasis, both with a statistically significance (P<0.05). From the FIGO stage point of view, the ERp57protein expression was significantly lower in low stage cancer than in high stage. The downregulation of TAP1, TAP2, LMP7, ERAP1, Tapasin and ERp57protein expression was positively associated with HLA in CIN lesions, whereas TAP1, TAP2, LMP2, LMP7, ERAP1, ERp57and Tapasin was positively associated with HLA-Ⅰ in the cancer.
     (2) By sequencing of the CpG fragment methylation at gene promoter region, we identified the target CpG site methylation to various extents at promoter regions of TAP1, TAP2, LMP7, Tapasin and ERp57, with the ratio5/23,8/8,2/22,12/12and18/18representing methylated CpG sites in total CpG sites. However, no methylation was found for HLA-B, LMP2and ERAP1.
     (3) According to the data generated by Sequenom Mass ARRAY DNA detection, total methylation level of target fragments of TAP1, LMP7, and ERp57genes tissues was higher in cervical cancer than CIN and normal tissues with statistical significance (P<0.05), but no difference was found for TAP2and Tapasin. The single-site methylation level analysis showed that the single-site methylation was significant for almost all CpG sites of TAP1, LMP7and ERp57genes in cervical cancer tissues compared to CIN and the normal. Comparative analysis of target fragment methylation and the data of altered protein expression described in "part Ⅰ" of this study, we found a reverse correlation of TAP1, LMP7and ERp57gene methylation level with the protein expression. We detected13HPV genotypes in tissue DNA samples, including11high-risk and2low-risk types, with infection rate of52/78(69.8%). Comparative analysis of methylation level of target gene fragments between HPV positive and negative cases, we found a significant increase of promoter methylation of ERp57, TAP1and LMP7genes in HPV positive tissues.
     Conclusion:
     (1) The transcription downregulation and loss of protein expression of HLA-Ⅰ and antigen processing machinery (AMP) was closely associated with development of cervical cancer in Uighur women, and may become important candidates for the establishment of tumor molecular marker profile.
     (2) The target CpG fragments of TAP1, TAP2, LMP7, Tapasin and ERp57were CpG site methylated at various degrees in cervical cancer cells, may most probably the cause of the transcription downregulation or protein loss expression regulated at epigenetic level.
     (3) The promoter methylation of TAP1, LMP7and ERp57genes was a change specific to cervical carcinogenesis caused by HPV16infection, and an epigenetic regulation mechanism of protein expression too.
引文
[1]Bouvard V, Baan R, Straif K, et al. A review of human carcinogens--Part B:biological agents[J]. Lancet Oncol.2009;10:321-322.
    [2]de Sanjose S, Quint WG, Alemany L, et al. Human papillomavirus genotype attribution in invasive cervical cancer:a retrospective cross-sectional worldwide study[J]. Lancet Oncol.2010;11:1048-1056.
    [3]李连弟,鲁凤珠,张思维,等.中国恶性肿瘤死亡率20年变化趋势和近期预测分析[J].中华肿瘤杂志.1997;19(1):3-9.
    [4]古扎丽努尔,彭芝兰,郭英.HPV及其亚型在四川西北地区汉族及新疆南部地区维吾尔族妇女宫颈癌组织中的差异表达[J].中华微生物学和免疫学杂志.2004;24(5):406.
    [5]拉莱·苏祖克,彭玉华,周康等.新疆不同民族宫颈癌发病趋势分析[J].新疆医科大学学报.2006;29(7):569-571.
    [6]Castellsague X, Diaz M, de Sanjose S, et al. Worldwide human papillomavirus etiology of cervical adenocarcinoma and its cofactors:implications for screening and prevention[J]. J Natl Cancer Inst.2006;98(5):303-315.
    [7]Ronco G, Giorgi-Rossi P, Carozzi F, et al. Efficacy of human papillomavirus testing for the detection of invasive cervical cancers and cervical intraepithelial neoplasia:a randomised controlled tria[J]l. Lancet Oncol 2010;11:249-257.
    [8]拉莱.苏祖克,AmyE. Noffsinger,买买提艾力,CeciliaM. Fenoglio-Preiser.新疆维吾尔族妇女子宫颈癌活检组织中人类乳头状瘤病毒DNA的检测[J].中华妇产科杂志.1997,29(7):569-571.
    [9]Ferenczy A, Franco E. Persistent human papillomavirus infection and cervical neoplasia[J]. Lancet Oncol.2002;3(1):11-6.
    [10]F Xavier Bosch. Human papillomavirus:science and technologies for the elimination of cervical cancer. Expert Opin. Pharmacother.2011;Ltd. ISSN 1465-6566.
    [11]田秀君,史娟,乌姗娜,等.肿瘤调节性T细胞与肿瘤免疫[J].中华临床医师杂志,2010,4(11)2205-2208.
    [12]Liu Z, Kim JH, Falo LD, et al. Tumor regulatory T cells potently abrogate antitumor immunity[J]. J IMMUNOL,2009,182(10)6160-6167.
    [13]Garrido F, Ruiz-Cabello F, Cabrera T, Perez-Villar J, Lopez-Botet M, Duggan-Keen M, Stern PL. Implications for immunosurveillance of altered HLA class Ⅰ phenotypes in human tumors[J]. Immunol Today 1997;18:89-95.
    [14]Paulsson K. Evolutionary and functional perspectives of the major histocompatibility complex class Ⅰ antigen-processing machinery[J]. CMLS, Cell Mol Life Sci.2004;61:2446-60.
    [15]Yinan Z, David B. Williams. Assembly of MHC Class Ⅰ Molecules within the Endoplasmic Reticulum[J]. Immunologic Research 2006;34(1-2):151-62.
    [16]Seliger B, Ritz U, Ferrone S. Molecular mechanisms of HLA class Ⅰ antigen abnormalities following viral infection and transformation[J]. Int J Cancer. 2006;118:129-138.
    [17]杨婷,阿尔孜古丽·吐尔逊,马磊,等.DNA甲基转移酶抑制剂5-杂氮-2’-脱氧胞苷对人食管癌细胞株Eca109的影响[J].中华检验医学杂志,2008,31(4)76-79.
    [18]de Boer M, Jordanova E, van Poelgeest M, van den Akker B, et al. Circulating HPV Type 16 specific T-cells are associated with HLA Class Ⅰ expression on tumor cells, but not related to the amount of viral oncogene transcripts [J]. Int J Cancer.2007; 121,2711-15.
    [19]Li H, Ou X, Xiong J, Wang T. HPV16E7 mediates HADC chromatin repression and downregulation of MHC class Ⅰ genes in HPV16 tumorigenic cells through interaction with an MHC class Ⅰ promoter[J]. BBRC.2006; 349:1315-1321.
    [20]Ashrafi G, Haghshenas M, Marchetti B, Campo M. E5 protein of human papillomavirus 16 downregulates HLA classes Ⅰ and interacts with the heavy chain via its first hydrophobic domain[J]. Int J Cancer 2006 Nov 1;119(9):2105-2112.
    [21]Ashrafi G, Haghshenas M, Marchetti B, O'Brien P, et al. E5 protein of human papillomavirus type 16 selectively downregulates surface HLA classes Ⅰ[J]. Int J Cancer 2005,113(2):276-283.
    [22]Monsonego J, Hudgens MG, Zerat L, et al. Evaluation of oncogenic human papillomavirus RNA and DNA tests withliquid-based cytology in primary cervical cancer screening:the FASE study. Int J Cancer 2011; 129(3):691-701.
    [23]Hasim A, Qing S, Wu XC, Ge L, Abudula A. Association of expression of antigen processing machinery components with HLA-I in cervical lesions. Chin J Pathol, 2010,39(10):703-704.
    [24]de Boer M, Jordanova E, van Poelgeest M, van den Akker B, van der Burg S, Kenter G, Fleuren G. Circulating human papillomavirus Type 16 specific T-cells are associated with HLA Class Ⅰ expression on tumor cells, but not related to the amount of viral oncogene transcripts[J]. Int J Cancer.2007;121:2711-2715.
    [25]Qifeng S, Bo C, Xingtao J, Chuanliang P, Xiaogang Z. Methylation of the promoter of human leukocyte antigen class Ⅰ in human esophageal squamous cell carcinoma and its histopathological characteristics[J]. J Thorac Cardiovasc Surg. 2011;141(3):808-814.
    [26]Suarez-Alvarez B, Rodriguez RM, Calvanese V, Blanco-Gelaz MA, Suhr ST. Epigenetic mechanisms regulate MHC and antigen processing molecules in human embryonic and induced pluripotent stem cells[J]. PLoS One.2010;5(4):e10192.
    [27]Breitburd F, Ramoz N, Salmon J, Orth G. HLA control in the progression of human papillomavirus infections[J]. Semin Cancer Biol 1996;7:359-371.
    [28][28]Koopman L, Corver W, van der Slik A, Giphart MJ, Fleuren GJ. Multiple genetical alterations cause frequent and heterogeneous human histocompatibility leukocyte antigen class Ⅰ loss in cervical cancer. J Exp Med 2000;191:961-976.
    [29]刘玲,张丽萍,陈艳,等.哈萨克族食管癌中survivin基因启动子区CpG岛及全基因共构建真核表达载体[J].新疆医科大学学报,2010,33(7):739-742.
    [30]Feinberg, AE, Ohlsson R, Henikoff S. The epigenefic progenitor origin of human cancer[J]. Nat. Rev. Genet.2006,7(1):21-33.
    [31]Nuovo GJ, Plaia 1, Belinsky SA, et al. In situ detection of the hyper methylation-induced inactivation of the p16 gene as an early event in encogenesis[J]. Proc Natl Acad Sci USA,1999,96(22):12754-12759.
    [32]Tang M, Fadlo R, Khuri J, et aL. hypermethylation of the Death-Associated Protein(DAP)Kinase Promoter and Aggressiveness in Stage Ⅰ Non-Small-Cell Lung Cancer[J]. Journal of the National cancer Institutet,2000,92(18):1511-1516.
    [33]Chil A, Sikorski M, Bobek M, Jakiel G, Marcinkiewicz J. Alterations in the expression of selected MHC antigens in premalignant lesions and squamous carcinomas of the uterine cervix[J]. Acta Obstet Gynecol Scand.2003; 82:1146-1152.
    [34]Nie Y, Yang G, Song Y, et al. DNA hypermethylation is a mechanism for loss of expression of the HLA class Ⅰ genes in human esophageal squamous cell carcinomas [J]. Carcinogenesis.2001,22(10):1615-1623.
    [35]Paulsson K, Wang P. Chaperones and folding of MHC class Ⅰ molecules in the endoplasmic reticulum[J]. Biochim Biophys Acta,2003,1641(1):1-12.
    [36]Kochan G, Krojer T, Harvey D, Fischer R, Crystal structures of the endoplasmic reticulum aminopeptidase-1(ERAP1)reveal the molecular basis for N-terminal peptide trimming[J]. Proc Natl Acad Sci.2011;108(19):7745-7750.
    [37]Roder G, Geironson L, Rasmussen M, Harndahl M, Buus S, Paulsson K. Tapasin discriminates Peptide-human leukocyte antigen-a* 02:01 complexes formed with natural ligands[J]. J Biol Chem.2011; 286(23):20547-20557.
    [38]Yinan Zhang, David B. Williams. Assembly of MHC Class Ⅰ Molecules within the Endoplasmic Reticulum[J]. Immunologic Research 2006,34(2):151-162.
    [39]Valerie Cesson, Jean-Paul Rivals, Anette Escher, et al. MAGE-A3 and MAGE-A4 specific CD4+T cells in head and neck cancer patients:detection of naturally acquired responses and identification of new epitopes[J]. Cancer Immunol Immunother,2011,60:23-35.
    [40]Guillaume P, Dojcinovic D, Luescher IF. Soluble MHC-peptide complexes:tools for the monitoring of T cell responses inclinical trials and basic research[J]. Cancer Immun 2009,9:7.
    [41]C. J. Sanchez · T. Le Treut · A. Boehrer · B, et al. Natural killer cells and malignant haemopathies:a model for the interaction of cancer with innate immunity[J]. Cancer Immunol Immunother.2011,60:1-13.
    [42]Verheyden S, Ferrone S, Mulder A, et al. Role of the inhibitory KIR ligand HLA-Bw4 and HLA-C expression levels in the recognition of leukemic cells by natural killer cells[J]. Cancer Immunol Immunother.2009,58:855-865.
    [43]Kittang AO, HatWeld K, Sand K et al. The chemokine network in acute myelogenous leukemia:molecular mechanisms involved in leukemogenesis and therapeutic implications[J]. Curr Top Microbiol Immunol.2010,341:149-172.
    [44]Romero AI, Thoren FB, Aurelius J, et al. Post-consolidation immunotherapy with histamine dihydrochloride and interleukin-2 in AML[J]. Scand J Immunol.2009, 70:194-205.
    [45]Hearn A, York IA, Rock KL. The specificity of trimming of MHC class Ⅰ-presented peptides in the endoplasmic reticulum[J]. J Immunol.2009; 183(9):5526-5536.
    [46]Tina T N, Shih-C Ch, Irini E, Ian A Y. Structural basis for antigenic peptide precursor processing by the endoplasmic reticulum aminopeptidase ERAP1[J]. Nat Struct Mol Biol.2011; 18(5):604-613.
    [47]Saveanu L, Carroll O, Lindo V, et al. Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum[J]. Nat Immunol 2005;6:689-697.
    [48]Zhang K., Kaufman R. J. Signaling the Unfolded Protein Response from the Endoplasmic Reticulum[J]. J Biol Chem,2004,279:25935-25938.
    [49]Saveanu L, Carroll O, Lindo V, et al. Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum[J]. Nat Immunol 2005;6:689-697.
    [50]Haroon N, Inman RD. Endoplasmic reticulum aminopeptidases:Biology and pathogenic potential[J]. Nat Rev Rheumatol.2010; 6(8):461-467.
    [51]Maciag PC, Schlcht NF, Souza PS, et al. Major histocompatibility complex and human papillomavirus infection in Brazilian women[J]. Cancer Epidemiol Biomakers Prev,2000,9,11:1183-1191.
    [52]Chang CC, Ferrone S. Immune selective pressure and HLA class Ⅰ antigen defects in malignant lesions[J]. Cancer Immunol Immunother 2007,56:227-236.
    [53]Dunn GP, OldL J, Schreiber RD, et al. The immunobiology of cancer immunosurveillance and immunoediting[J]. Immunity,2004,21(2):137-148.
    [54]Li Z, Cui J, Zhang X, Kang W. Aflatoxin G1 reduces the molecular expression of HLA-I, TAP-1 and LMP-2 of adult esophageal epithelial cells in vitro [J]. Toxicol Lett.2010,195(2-3):169-173.
    [55]Ayshamgul H, Ma H, Ilyar S, Zhang LW, Abulizi A. Association of defective HLA-I expression with antigen processing machinery and their association with clinicopathological characteristics in Kazak patients with esophageal cancer[J]. Chin Med J.2011,124(3):341-346.
    [56]Seliger B, Stoehr R, Handke D, Mueller A, Ferrone S, Wullich B, Tannapfel A, Hofstaedter F, Hartmann A. Association of HLA class Ⅰ antigen abnormalities with disease progression and early recurrence in prostate cancer[J]. Cancer Immunol Immunother.2010,59(4):529-540.
    [57]Bandoh N, Ogino T, Katayama A, Takahara M, Katada A, Hayashi T, Harabuchi Y. HLA class Ⅰ antigen and transporter associated with antigen processing downregulation in metastatic lesions of head and neck squamous cell carcinoma as a marker of poor prognosis[J]. Oncol Rep.2010,23(4):933-939.
    [58]Cathro HP, Smolkin ME, Theodorescu D, Jo VY, Ferrone S, Frierson HF Jr. Relationship between HLA class Ⅰ antigen processing machinery component expression and the clinicopathologic characteristics of bladder carcinomas[J]. Cancer Immunol Immunother.2010,59(3):465-472.
    [59]Willemsen RA, Debets R, Hart E, Hoogenboom HR, et al. A phage display selected Fab fragment with MHC class Ⅰ-restricted specificity for MAGE-A1 allows for retargeting of primary human T lymphocytes[J]. Gene Ther.2001,8(21):1601- 1608.
    [60]Seliger B, Dressler SP, Massa C, et al. Identification and characterization of human leukocyte antigen class Ⅰ ligands in renal cell carcinoma cells[J]. Proteomics. 2011,1(12):2528-2541.
    [61]Chinnasamy N, Wargo JA, Yu Z, Rao M, et al. A TCR targeting the HLA-A*0201-restricted epitope of MAGE-A3 recognizes multiple epitomes of the MAGE-A antigen super family in several types of cancer[J]. J Immunol.2011 Jan 15;186(2):685-696.
    [62]Seliger B, Wollscheid U, Momburg F, et al. Coordinate down regulation of multiple MHC class Ⅰ antigen processing genes in chemical-induced murine tumor cell lines of distinct origin[J]. Tissue Antigens.2000,56:327-336.
    [63]Chefalo PJ, Grandea AG 3rd, Van Kaer L, Harding CV. Tapasin-/-and TAP1-/-macrophages are deficient in vacuolar alternate class Ⅰ MHC (MHC-I) processing due to decreased MHC-I stability at phagolysosomal pH[J]. J Immunol. 2003,15; 170(12):5825-5833.
    [64]Boulanger DS, Oiiveira R, Ayers L, et al. Absence of tapasin alters immunodominanee against lymphocytic chorlomeningitis virus polytpe[J]. J Immunol.2010,4(1):73-83.
    [65]Lin CT, Chang Tc, Chao A. el al. Enhancement of DNA vaccine potency through linkage of antigen gene to ER chopemne molecules, ER-60, tapesin, and cahexin[J]. J Biomed Sci,2005,12(2):279-287.
    [66]Mehta AM. Jordanova ES. Kenter GG. et al. Association of antigen processing machinery and HLA class Ⅰ defects with clinicopathological outcome in cervical carcinoma[J]. Cancer Immunol Immunother.2008,57(2):197-206.
    [67]Watanabe Y. Shibata K. Kikkawa F. el al. Adipocyte-derived leucine aminopeptidase (A-LAP) suppresses angiogenesis in human endometrial carcinoma via rennin-angiogenesis system[J]. Clin Cancer Res,2003,9:6497-6503.
    [68]Panaretakis T. Joza N, Modjtahedi N, et al. The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death[J]. Cell Death Differ,2008, 15(9):1499-1509.
    [69]LanD. Y, Michael AB, SoPhia Z, et al. EndoPlas retieulumamino Peptidasel (ERAPI) trims MHC class 1 Presented Peptide vivo and Plays an important role in immunodominanee[J]. J Immunol.2006;103:9202-9207.
    [70]马琦,阿仙姑·哈斯木,阿比达·阿不都卡德尔等.维吾尔族妇女宫颈癌HPV感 染与HLA-I类基因表达缺失的关系及意义[J].中华病理学杂志2010,39(4):255-258.
    [71]阿仙姑·哈斯木,盛磊,马俊旗,阿布力孜·阿布杜拉,等.人类白细胞抗原Ⅰ在新疆维吾尔族和汉族宫颈病变患者中的表达差异[J].肿瘤,2011,31(5)432-435.
    [72]Akash M, Mehta E, katerina S, et al. Association of antigen processing machinery and HLA class Ⅰ defects with clinicopathological outcome in cervical carcinoma[J]. Cancer Immunol Immunother.2008,57:197-206.
    [73]James G, Herman, M. D., Stephen B. Baylin, M. D. Gene Silencing in Cancer in Association with Promoter Hypermethylation. N Engl J Med 2003; 349:2042-2054.
    [74]Jasper Manning,, Marie Indrova, Barbora Lubyova, et al. Induction of MHC class Ⅰ molecule cell surface expression and epigenetic activation of antigen-processing machinery components in a murine model for human papilloma virus 16-associated tumours[J]. Immunology,2007;123,218-227.
    [75]Fuk SF. DNA methylation and histone modifieations:teaming up to silence genes[J]. Current opinion in genetics & development.2005; 15:490-495.
    [76]Doerfler W. On the biological signifieance of DNA methylation[J]. Bioehemistry. 2005; 70:505-524.
    [77]吕京滠,徐酩,谭建新,王宗丹,韩晓,孙玉洁.Alu序列甲基化水平与两种乳腺癌细胞系转移能力高度相关[J].医学分子生物学杂志,2009,6(4):317-321.
    [78]Das PM. Singal R. DNA methylation and cancer[J]. J Clin Oncol 2004; 22:4632-4642.
    [79]Bird A. DNA methylation Patterns and epigenetic memory[J]. Genes Dev 2002:16 (1):6-21.
    [80]Lu Q, Qiu X, Hu N, et al. Epigenetic, disease, and therapeutic interventions [J]. Ageing Res Rev 2006:5(4):449-467.
    [81]Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics[J]. Science,2001; 293:1068-1070.
    [82]Cao, R and Zhang, Y. SUZl 2 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex[J]. Mol Cell,2004, 15(1):57-67.
    [83]Jun Gao, JianSong, Haojie Huang, et al. Methylation of the SPARC gene promoter and its clinical implication in pancreatic cancer[J]. Journal of Experimental & Clinical Cancer Research 2010,29:28.
    [84]Frommer M, MeDonald LE, Millar DS, et al. A genomic sequencing Protocol that yields a Positive display of 5-methyleytosine residues in individual DNA strands[J]. Proc Natl Acad Sci 1992;89(5):1827-1831.
    [85]邓大君.CpG甲基化与癌变原理研究[J].中国肺癌杂志,2005,8(3):239-242.
    [86]Lal A, Abdelmohsen K, Pullmann R, el al. Posttranscriptional depression of GADD45 alpha by genotoxic stress[J]. Mol Cell,2006; 22(1):117-128.
    [87]Li LC. Designing PCR primer for DNA methylation mapping[J]. Methods Mol Biol, 2007,40(2):371-384.
    [88]Tetzner R, Dietrich D, Distler J. Control of carry-over contamination PCR. based DNA methylation quantification using bisulfite treated DNA[J]. Nucleic Acids Res 2007,35:e4.
    [89]Geng qiu, Jianchang Fang, Yumhao He.5'CpG island methylation analysis identifies the MAGE-A1 and MAGE-A3 genes as potential markers of HCC[J]. Clinical biochemistry.2006,39(7):259-266.
    [90]Lind, GE, Thorstensen, L, Lovig T, et al. A CpG island hypermethylation profile of primary colorectal carcinoma and colon cancer cell lines. M01[J]. Cancer,2004, 3(1):28-31.
    [91]Esteller, M. CpG island hypermethylafion and tamor suppressor genes:a booming present, a brighter future[J]. Oncogene,2002,21(35):5427-5440.
    [92]Li LC, Dahiya R. MethPrimer:designing primers for methylation PCRs[J]. Bioinformatics.2002,18(11):1427-1431.
    [93]Li LC. Designing PCR primer for DNA methylation mapping[J]. Methods Mol Biol, 2007,40(2):371-384.
    [94]Costello JF, Fruhwald MC, Smlraglia DJ, et al. Aberrant CPG-island methylation has non-random and tumor type-specific patens[J]. Nat Genet,2000,24:132-138.
    [95]Esteller M. Cancer epigenomics:DNA methylomes and histone-modifieation maps[J]. Nat Rev Genet,2007,8:286-298.
    [96]Esteller M, Fraga MF, Guo M, et al. DNA methylation Pattens in hereditary human cancers mimic sporadic tumor genesis[J]. Hum Mol Genet,2001,10:3001-3007.
    [97]Weber M, Davies JJ, Wittig D, et al. Chromosome-wide and Promoter-specific Analyses identified sites of differential DNA methylation in normal and transformed[J]. Nat Genet,2005,37:853-862.
    [98]Lavinia Mihaela Corneanu, Diana Stanculescu, Cecilia Corneanu. HPV and cervical squamous intraepithelial lesions:clinicopathological study[J]. Rom J Morphol Embryol 2011,52(1):89-94.
    [99]Simone LC, Wang X, Solheim JC. A transmemebrance tail:interaction of tapasin with TAP and the MHC class Ⅰ molcaule[J]. Mol Immunol,2009, 46(10):2147-2150.
    [100]Oancea G, OMaraml, Bennett WF, et al. structural arrangement of the transmission interface in the antigen ABC transport complex TAP[J]. Proc Natl Acad Sci USA, 2009,106(14):5551-5556.
    [101]. Dunn GP, OldL J, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting[J]. Immunity,2004,21:137-148.
    [102]. Groothuis TA, Griekspoor AC, Neijssen JJ, Herberts CA, Neefjes JJ. MHC class Ⅰ alleles and their exploration of the antigen-processing machinery [J]. Immunol Rev 2005,207:60-76.
    [103]Dunn GP, Koebel CM, Schreiber RD. Interferons, immunity and cancer immunoediting[J]. Nat Rev Immunol 2006,6:836-848.
    [104]Dissemond J, Busch M, Kothen T, Mors J, Weimann TK, Lindeke A, Goos M et al. Differential downregulation of endoplasmic reticulum-residing chaperones calnexin and calreticulin in human metastatic melanoma[J]. Cancer Lett 2004,203:225-231.
    [105]Saveanu L, Carroll O, Lindo V, Del Val M, Lopez D, Lepelletier Y, Greer F, Schomburg L, Fruci D, Niedermann G, van Endert PM. Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum[J]. Nat Immunol 2005,6:689-697.
    [106]Kienast A, Preuss M, Winkler M, Dick TP. Redox regulation of peptide receptivity of major histocompatibility complex class Ⅰ molecules by ERp57 and tapasin[J]. Nat Immunol,2007,8:864-872.
    [107]Yinan Zhang, David B. Williams. Assembly of MHC Class Ⅰ Molecules within the Endoplasmic Reticulum[J]. Immunologic Res 2006,34/1-2:151-162.
    [108]Flutter B, Gao B. MHC class Ⅰ antigen presentation:recently trimmed and well presented[J]. Cell Mol Immunol,2004,1:22-30.
    [109]Santos SG, Campbell EC, Lynch S, Wong V, Antoniou AN, PowisSJ. Major histocompatibility complex class Ⅰ-ERp57-tapasin interactions within the peptide-loading complex[J]. J Biol Chem 2007,282:17587-17593.
    [110]Lars Ellgaard, Eva-Maria Frickel. Calnexin, Calreticulin and ERp57[J]. Humana Press Inc 2003,195:223-224.
    [111]Reid F, Thompson, Masako, Suzuki Kevin W, Laul and John M. Greally. A pipeline for the quantitative analysis of CG dinucleotide methylation using mass spectrometry[J]. Genome analysis,2009,25(17):2164-2170.
    [112]Li Wang, Fang Wang, Jing Guan, Jing Le, Lihua Wu, et al. Relation between hypomethylation of long interspersed nucleotide elements and risk of neural tube defects[J]. Am J Clin Nutr 2010;91:1359-1367.
    [113]Christiane O B, Anna R, Poetsch, Peter N, Rainer C, et al. Aberrant DNA methylation characterizes juvenile myelomonocytic leukemia with poor outcome[J]. Blood,2011; 117:4871-4880.
    [114]Kalpana Ghoshal, Tasneem Motiwala, Rainer Claus, et al. HOXB13, a Target of DNMT3B, Is Methylated at an Upstream CpG Island, and Functions as a Tumor Suppressor in Primary Colorectal Tumors[J]. PLoS One.2010,29,5(4):e10338.
    [115]Yi-Wen Huang, Jingqin Luob, Yu-I Weng, et al. Promoter hypermethylation of CIDEA, HAAO and RXFP3 associated with micro satellite instability in endometrial carcinomas[J]. Gynecol Oncol.2010,117(2):239-247.
    [116]Yan Ling, Xiaomu Li, Qian Gu, Hongyan Chen, Daru Lu and Xin Gao. Associations of common polymorphisms in GCKR with type 2 diabetes and related traits in a Han Chinese population:a case-control study[J]. BMC Medical Genetics 2011,12:66.
    [117]Defraneeseo MA, Gargiulo F, Sehreiber C, et al. Detection and genotyping of human Papillomavirus in cervieal samples from Italian Patients[J]. Journal of medical virology 2005,75:588-592.
    [118]Cuschieri KS, Cubie HA, Whitley MW, et al. Persistent high risk HPV infection associated with development of cervical neoplasia in a prospective population study[J]. J Clin Pathol.2005,58(9):946-950.
    [119]NubiaMunoz, Xavier Castellsagu E, et al. HPV in the etiology of human cancer[J]. Vaccine,2006,24(S3):1-5.
    [120]沈艳红,陈凤,黄曼妮,等.我国山西省宫颈癌高发区HPV感染调查[J].中国医学科学院学报,2003,25:381-385.
    [121]DalsteinV, Riethrnuller D, Pretet JL, et al. Persistence and load of high risk HPV are predietors for develovment of high gade cervieal lesions:a longitudinal French cohort study[J]. IniJ Cancer 2003;106:396-403.
    [122]Clifford GM, Smith JS, Aguado T. Comparison of HPV type distribution in high-grade cervieal lesions and cerviealcaneer:a meta-analysis[J]. Br J Cancer 2003:89:101-105.
    [123]Menton JF, Cremin S, Canier L, Horgan M, Fanning LJ, Molecular epidemiology of sexually transmitted humanpapillomavirus in a self referred group of women in Ireland[J]. Virol J,2009,6:112.
    [124]Rohan TE, Burk RD, Franco EL. Toward a reduction of theglobal burden of cervical cancer. Am J Obstet Gynecol,2003,189:S37-S39.
    [125]Choi YD, JungWW, Nam JH, et al. Detection of HPV genotypes in cervical lesions by the HPV DNA chip and sequencing[J]. Gynecol Oncol,2005,98(3):369-375.
    [126]Bosch FX, Manos MM, MunozN, et al. Prevalence of human papillomavirus in cervical cancer:a world perspective[J]. J Natl Cancer Inst,1995,87(11):796-802
    [127]Franceschi S. The IARC commitment to cancer prevention:the example of papillomavirus and cervical cancer[J]. Recent Results Cancer Res, 2005,166:277-297.
    [128]Altekruse SF, Lacey JV Jr, Brinton LA, et al. Comparison of human papillomavirus genotypes, sexual, and reproductive risk factors of cervical adenocarcinoma and squamous cell carcinoma:Northeastern UnitedStates[J]. Am J Obstet Gynecol, 2003,188(3):657-663.
    [129]陶萍萍,卞美璐,李敏,等.HPV多重感染与宫颈病变关系探讨[J].中国妇产科临床杂志,2006,7(2):94-96.
    [130]赵方辉,乔有林.宫颈癌流行病学研究进展[J].人民卫生出版社.2002第5章.
    [131]花敏慧,刘春花,张玉泉.宫颈癌中DAPK Ⅰ、RARβ甲基化与高危型HPV感染的相关研究[J].南通大学学报(医学版)2011,31(2):134-136.
    [132]高艳萍,李敏,张颖颖,等.子宫颈癌细胞中RAR-β基因表达缺失与其DNA甲基化的关系[J].中华妇产科杂志,2007,42(7):472-476.
    [133]陈勇,陈双郧,张春莲,等.宫颈癌APC基因启动子甲基化与其临床病理特征的关系[J].中国癌症毒志,2009,19(10):755-760.
    [134]Igor Kuzmin, Limin Liu, Reinhard Dammann, et al. Inactivation of RAS Association Domain Family 1A Gene in Cervical Carcinomas and the Role of Human Papillomavirus Infection[J]. Cancer Res 2003;63:1888-1893.
    [135]聂晓瑞,张阳,潘凯枫,张联,等.环氧化酶-2基因启动子甲基化及表达与胃黏膜病变的关系[J].中华预防医学杂志,2009;43(7):571-575.
    [136]Chang CC, Campoli M, Ferrone S. Classical and nonclassical HLA class Ⅰ antigen and NK cell-activating ligand changes in malignant cells:current challenges and future directions[J]. Adv Cancer Res,2005,93:189-234.
    [137]Tomasi TB, Magner WJ, Khan AN. Epigenetic regulation of immune escape genes in cancer[J]. Cancer Immunol Immunother 2006,10:1159-1184.
    [138]Khan AN, Gregorie CJ, Tomasi TB. Histone deacetylase inhibitors induce TAP, LMP, Tapasin genes and MHC class Ⅰ antigen presentation by melanoma cells[J]. Cancer Immunol Immunother,2008,57:647-654.
    [139]Creswell P. Antigen processing and presentation[J]. Immunol Rev 2005, 207:5-313.
    [1]Dunn GP, Koebel CM, Schreiber RD. Interferons, immunity and cancer immunoe-diting[J]. Nat Rev Immunol,2006,6:836-848.
    [2]Dissemond J, Busch M, Kothen T, et al. Differential downregulation of endoplasmic reticulum-residing chaperones calnexin and calreticulin in human metastatic melanoma[J]. Cancer Lett,2004,203:225-231.
    [3]Groothuis TA, Griekspoor AC, Neijssen JJ, et al. MHC class I alleles and their exploration of the antigen-processing machinery [J]. Immunol Rev 2005,207:60-76.
    [4]Stolze L, Nussbaum A K, Sijts A, et al. The function of the p roteasome system in HLA-class Ⅰ antigen processing[J]. Immuno 1 Today,2000,21(7):317-319.
    [5]Hammer GE, Kanaseki T, Shastri N. The final touches make perfect the peptide-MHC class I repertoire[J]. Immunity,2007,26:397-406.
    [6]Rodriguez T, Mendez R, Del Campo A, et al. Distinct mechanisms of loss of IFN-gamma mediated HLA class Ⅰ inducibility in two melanoma cell lines[J]. BMC Cancer,2007,7:34.
    [7]Shen YQ, Zhang JQ, Xia M, Miao FQ, Shan XN, Xie W. Low-molecular-weight protein(LMP)2/LMP7 abnormality underlies the downregulation of human leukocyte antigen class Ⅰ antigen in a hepatocellular carcinoma cell line[J]. J Gastroenterol Hepatol.2007,22(7):1155-1161.
    [8]Qifeng S, Bo C, Xingtao J, Chuanliang P, Xiaogang Z. Methylation of the promoter of human leukocyte antigen class Ⅰ in human esophageal squamous cell carcinoma and its histopathological characteristics [J]. J Thorac Cardiovasc Surg.2011, 141(3):808-814.
    [9]Seliger B, Stoehr R, Handke D, Mueller A, Ferrone S, Wullich B, Tannapfel A, Hofstaedter F, Hartmann A. Association of HLA class Ⅰ antigen abnormalities with disease progression and early recurrence in prostate cancer[J]. Cancer Immunol Immunother.2010,59(4):529-540.
    [10]Bandoh N, Ogino T, Katayama A, Takahara M, Katada A, Hayashi T, Harabuchi Y. HLA class Ⅰ antigen and transporter associated with antigen processing downregulation in metastatic lesions of head and neck squamous cell carcinoma as a marker of poor prognosis[J]. Oncol Rep.2010,23(4):933-939.
    [11]Cathro HP, Smolkin ME, Theodorescu D, Jo VY, Ferrone S, Frierson HF Jr. Relationship between HLA class I antigen processing machinery component expression and the clinicopathologic characteristics of bladder carcinomas[J]. Cancer Immunol Immunother.2010,59(3):465-472.
    [12]Qiao L, Chun yan H, Peng S, et al. Down-regulation of HLA class Ⅰ antigen-processing machinery components in esophageal squamous cell carcinomas: Association with disease progression[J]. Gastroenterology,2009,44:960-969.
    [13]Mehta AM, Jordanova ES, vanW ezel T, et al. Genetic variation of antigen processing machinery components and association w ith cervical carcinoma[J]. Genes chromosomes cancer,2007,46(6):577-586.
    [14]Liu Q, Hao C, Su P, Shi J. Down-regulation of HLA class Ⅰ antigen-processing machinery components in esophageal squamous cell carcinomas:association with disease progression[J]. Scand J Gastroenterol.2009;44(8):960-969.
    [15][15]戴悦,宁涛,李坤,等.LMP2/LMP7基因多态性于人群中乙型肝炎病毒感染相关性研究[J].北京大学学报(医学版),2005,37(5):508-512.
    [16]Higgins CF. ABC transporters:from microorganisms to man[J]. Annu. Rev. Cell Biol,1992,8:67-113.
    [17]Koppers-Lalic D, Reits EA, Ressing ME, et al. Varicelloviruses avoid T cell recognition by UL49.5-mediated inactivation of the transporter associated with antigen processing[J]. Proc Natl Acad Sci USA,2005,102(14):5144-5149.
    [18]Boname JM, May JS, Stevenson PG. The murine -herpesvirus-68 MK3 protein causes TAP degradation independent of MHC class Ⅰ heavy chain degradation[J]. Eur J Immunol,2005,35(1):171-179.
    [19]de la SH, Saulquin X, Mansour I, et al. Asymptomatic deficiency in the peptide transporter associated to antigen processing[J]. Clin. Exp. Immunol 2002, 128:525-531.
    [20]Seliger B, Ritz U, Ferrone S. Molecular mechanisms of HLA class Ⅰ antigen abnormalities following viral infection and transformation[J]. Int J Cancer,2006, 118:129-138.
    [21]Aptsiauri N, Cabrera T, Mendez R, et al. Role of altered expression of HLA class Ⅰ molecules in cancer progression[J]. Adv Exp Med Biol,2007,601:123-131.
    [22]Helen P, Cathro Mark E, Smolkin D, et al. Relationship between HLA class Ⅰ antigen processing machinery component expression and the clinico-pathologic characteristics of bladder carcinomas[J]. Cancer Immunol Immunother 2010, 59:465-472.
    [23]Liz Y, Mavis S, Fletcher D, et al. HLAC lass Ⅰ Antigen Processing Machinery Component Expression and Intratumoral T 8 Cell Infiltrateas Independent Prognostic Markers in Ovarian Carcinoma[J]. Clin Cancer Res,2008, 14(11):3372-3379.
    [24]Barbara S, Robert S, Diana H, et al. Association of HLA class Ⅰ antigen abnormalities with disease progression and early recurrence in prostate cancer[J]. Cancer Immunol Immunother,2009,9:769-781.
    [25]Akash M, Mehta E, katerina S, et al. Association of antigen processing machinery and HLA class Ⅰ defects with clinicopathological outcome in cervical carcinoma[J]. Cancer Immunol Immunother.2008,57:197-206.
    [26]Markus Meissner, Torsten E. Reichert, Martin Kunkel. Defects in the Human Leukocyte Antigen Class Ⅰ Antigen-Processing Machinery in Head and Neck Squamous Cell Carcinoma:Association with Clinical Outcome[J]. Clin Cancer Res 2005,11(7):2552-2560.
    [27]Ayshamgul H, Ma H, Ilyar S, Zhang LW, Abulizi A. Association of defective HLA-I expression with antigen processing machinery and their association with clinicopathological characteristics in Kazak patients with esophageal cancer[J]. Chin Med J(Engl).2011,124(3):341-346.
    [28]Hasim A, Qing S, Wu XC, Ge L, Abudula A. Association of expression of antigen processing machinery components with HLA-I in cervical lesions[J]. Chin J Pathol, 2010,39(10):703-704.
    [29]Lopez-Albaitero A, Mailliard R, Hackman T, Andrade Filho PA, Wang X, Gooding W, Ferrone S, Kalinski P, Ferris RL. Maturation pathways of dendritic cells determine TAP1 and TAP2 levels and cross-presenting function[J]. J Immunother. 2009,32(5):465-473.
    [30]Leibowitz MS, Andrade Filho PA, Ferrone S, Ferris RL. Deficiency of activated STAT1 in head and neck cancer cells mediates TAP1-dependent escape from cytotoxic T lymphocytes [J].Cancer Immunol Immunother.2011,60(4):525-535.
    [31]Liu Q, Hao C, Su P, Shi JDown-regulation of HLA class Ⅰ antigen-processing machinery components in esophageal squamous cell carcinomas:association with disease progression[J]. Scand J Gastroenterol.2009,44(8):960-969.
    [32]Meissner MR, Eichert TE, Kunkel M, et al. defects in the HLA-I antigen processing machinery in head and neck squamous cells carcinoma:associated with clinical outcome[J]. Clin cancer Res,2005,11(7):2552-2560.
    [33]Lopez-Albaiter A, Nayak JV, OginoT, et al. role of antigen-processing machinery in the in vitro resistance of squamous cells carcinoma of the head and neck cells to recognition by CTL[J]. J Immunol,2006,176(6):3402-3409.
    [34]Zhang QJ, Seipp RP, Chen SS, et al. TAP expression reduces IL-10 expressing tumor infiltrating lymphocytes and restores immunosurveillance against melanoma[J]. Int J Cancer,2007,120(9):1935-1941.
    [35]Kim KR, Cho SH, Choi SJ, et al. TAP1 and TAP2 gene polymorphisms in Korean patients with allergic rhinitis. J Korean Med Sci,2007,22(5):825-831.
    [36]Einstein MH, Leanza S, Chiu LG, et al. Genetic variants in TAP are associated with high-grade cervical neoplasia[J]. Clin Cancer Res,2009,15(3):1019-1023.
    [37]Aquino-Galvez A, Camarena A, Montano M, et al. Transporter associated with antigen processing (TAP) 1 gene polymorphisms in patients with hypersensitivity pneumonitis[J]. Exp Mol Pathol,2008,84(2):173-177.
    [38]Dogru D, Ozbas Gerceker F, et al. The role of TAP1 and TAP2 gene polymorphism in idiopathic bronchiectasis in children[J]. Pediatr Pulmonol,2007,42(3):237-241.
    [39]Deshpande A, Wheeler CM, Hunt WC, et al. Variation in HLA class Ⅰ antigen-processing genes and susceptibility to human papillomavirus type 16 associated cervical cancer[J]. J Infect Dis,2008,197(3):371-381.
    [40]Kochan G, Krojer T, Harvey D, Fischer R, Crystal structures of the endoplasmic reticulum aminopeptidase-1(ERAP1)reveal the molecular basis for N-terminal peptide trimming[J]. Proc Natl Acad Sci.2011; 108(19):7745-7750.
    [41]Hearn A, York IA, Rock KL. The specificity of trimming of MHC class I-presented peptides in the endoplasmic reticulum[J]. J Immunol.2009; 183(9):5526-5536.
    [42]Tina T N, Shih-C Ch, Irini E, Ian A Y. Structural basis for antigenic peptide precursor processing by the endoplasmic reticulum aminopeptidase ERAP1[J]. Nat Struct Mol Biol.2011;18(5):604-613.
    [43]Saveanu L, Carroll O, Lindo V, et al. Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum[J]. Nat Immunol 2005; 6:689-697.
    [44]Zhang K., Kaufman R. J. Signaling the Unfolded Protein Response from the Endoplasmic Reticulum[J]. J Biol Chem,2004,279:25935-25938.
    [45]Saveanu L, Carroll O, Lindo V, et al. Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum[J]. Nat Immunol 2005; 6:689-697.
    [46]Haroon N, Inman RD. Endoplasmic reticulum aminopeptidases:Biology and pathogenic potential[J]. Nat Rev Rheumatol.2010; 6(8):461-467.
    [47]Lan D. Y, Michael AB, SoPhia Z, et al. EndoPlas retieulumamino Peptidasel(ERAPI)trims MHC class 1 Presented Peptide vivo and Plays an important role in immunodominanee[J]. J Immunol.2006; 103:9202-9207.
    [48]Mehta AM, Jordanova ES, Corver WE, van Wezel T, Uh HW, Kenter GG, Jan Fleuren G. Single nucleotide polymorphisms in antigen processing machinery component ERAP1 significantly associate with clinical outcome in cervical carcinoma[J]. Genes Chromosomes Cancer.2009,48(5):410-418.
    [49]刘冰,黎丹戎,倪萍,李力.卵巢上皮性癌淋巴结转移相关差异表达蛋白内质网氨基肽ERAP1的表达及意义[J].中华妇产科杂志,2010;45(1):41-44.
    [50]Li S, Paulsson KM, Chen W, el al. Tapasin is required for efficient peptide binding to transporter associated with antigen processing[J]. Bid Chem,2000,275(3):1581.
    [51]Park B, Lee S, Kim E, el al. Redox regulation facilitates optimal peptide selection by MHC class Ⅰ during antigen processing[J]. Cell.2006,127(2):249-251.
    [52]Chapman DC, Williams DB. ER quality control in the biogenesis of MHC class Ⅰ molecules[J]. Semin Cell Dev Biol,2010,21(5):512-519.
    [53]Thirdbomugh SM, Roddick JS, Radcliffe JN, el al. Tapasins hapes immunodominance hierarchies according to the kinetic stability of peptide-MHC class Ⅰ complexes[J]. Eur J Immunol,2008,38(2):364-369.
    [54]Crbrem CM. The double role of the endoplasmic reticulum chaperone tapasin in poptide optimization of HLA class Ⅰ molecules[J]. Seand J Immunol,2007, 65(6):487-493.
    [55]杨英.陈怀增,叶大凤等Tapasin和HLA Ⅰ类分子在人卵巢癌中的表达及相关性[J].中国肿瘤,2005,14(4):272-274.
    [56]Ogino T, Shigyo H, Ishii H, et al. HLA class Ⅰ antigen down-in primary laryngeal squamons cell carcinoma lesions in poor prognostic marker[J]. Cancer Res,2006,15; 66(18):9281-9289.
    [57]Atkins D, Ferrone S, Schmahl GE. el al. Down-regulation Of HLA-I antigen processing molecules:an immunoescape mechanism of renal cell carcinoma[J]. J Urol,2004,171(2):885-889.
    [58]Bamden MJ, Purcell AW, Gorman JJ, et al. Tapasin-mediated retention and optimization of peptide legends during the assembly of class I molecules[J]. J Immtmol,2000,165:322-330.
    [59]Purcell AW, Gorman JJ, Garcia-Peydro M, et al. Quantitative and qualitative influences of tapasin on the class Ⅰ peptide repertoire[J]. J Immunol,2001, 166:1016-1027.
    [60]. Spiliotis ET, Manley H, Osorio M, et al. Selective export of MHC class Ⅰ molecules from the ER after their dissociation from TAP. Immunity[J].2001, 14:205.
    [61]Ogino T, Moriai S, Ishii H, el al. Association of immunoescape nlechanisnls with EB virus infection in rmsopharyngeal carcinoma[J]. Int J Cancer,2007, 120(11):2401-2410.
    [62]Strange A, Capon F, Spencer CC, Knight J, Weale ME, et al. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1 [J]. Nat Genet.2010; 42(11):9.85-990.
    [63]Garbi N, HgmmerlingG, Tanaka S. Interaction of ERp57 and tapasin in the generation of MHC class 1-peptide complexes [J]. Curt Opin hnmunol,2007, 19(1):99-105.
    [64]zaki T, Yamashita T, Ishiguro S. ERp57-associated mitochondrial microcalpain truncates apoptosis-inducing factor[J]. Bioehim Biophys Acta,2008, 1783(10):1955-1963.
    [65]Jessop CE, Tavender TJ, Watkins RH, et al. Substrate specificity of the oxidoreduetase EB. p57 is determined primarily by its interaction with calnexin and calretieulin[J]. J Riol Chem,2009,284(4):2194-2202.
    [66]Beid M. ERP57 membrane translocation dictates the immunogenieity of tumor cell death by controlling the membrane translocation of calreticulin[J].J Immunol,2008, 181(4):2533-2543.
    [67]Aanaretakis T. Joza N, Modjtahedi N, et al. The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death[J]. Cell Death Differ,2008, 15(9):1499-1509.
    [68]Takizawa T., Tatematsu C., Watanabe K. et al. Cleavage of calnexin caused by apoptotic stimuli:implication for the regulation of apoptosis[J]. Biochem,2004, 136:399-405.
    [69]Roder G, Geironson L, Rasmussen M, Harndahl M, Buus S, Paulsson K. Tapasin discriminates Peptide-human leukocyte antigen-a*02:01 complexes formed with natural ligands[J]. J Biol Chem.2011; 286(23):20547-20557.
    [70]Mancino L, Rizvi SM, Lapinski PE, et al. Calreticulin recognizes misfolded HLA-A2 heavy chain[J]. Natl Acad Sci USA,2002,99:5931-5940.
    [71]Gao B, Adhikari R, Howarth M, et al. Assembly and antigen2pressing function of MHC class Ⅰ molecules in cells lacking the ER chaperone caltreticulin[J]. Immunity, 2002,16:99-106.
    [72]Lee C, Yu MH. Protein folding and diseases[J]. J Biochem Mol Biol.2005, 38(3):275-801.
    [73]David R, Johson. Differential expression of human major histo compatibility class Ⅰ loci:HLA-A,-B, and-C. Hum Immunol,2000,61:389.
    [74]马琦,阿仙姑·哈斯木,阿比达·阿不都卡德尔等.维吾尔族妇女宫颈癌HPV感染与HLA-I类基因表达缺失的关系及意义[J].中华病理学杂志,2010,39(4):255-258.
    [75]Guilio L, Palmisano, Maria P P, et al. Investigantion of HLA class Ⅰ downregulation in breast cancer by RT-PCR[J]. Hum Immunol,2001,62:133.
    [76]Arias-Pulido H, Joste N, Wheeler CM. Loss of heterozygosity on chromosome 6 in HPV16 positive cervical carcinomas carrying the DRB1*1501, DQB1*0602 haplotype[J]. Genes Chromosomes Cancer,2004,40(4):277-84.
    [77]Okubo M, Saito M, Inoku H, etal. Analysis of HLA-DRB 1*0901-binding HPV-16 E7 helper T cell epitope[J]. J Obstet Gynaecol Res,2004,30(2):120-29.
    [78]Deshpande A, Wheeler CM, Hunt WC, et al. Variationin HLA class I antigen processing genes and susceptibility to human papillomavirus type 16 associated cervical cancer[J]. J Infect Dis,2008,197(3):371-81.
    [79]Suarez-Alvarez B, Rodriguez RM, Calvanese V, Blanco-Gelaz MA, Suhr ST. Epigenetic mechanisms regulate MHC and antigen processing molecules in human embryonic and induced pluripotent stem cells[J]. PLoS One.2010; 5(4):e10192.
    [80]Ooi SK, O'Donnell AH, Bestor TH. Mammalian cytosine methylation at a glance[J]. J Cell Sci,2009,122:2787-2791.
    [81]Gopalakrishnan S, Van Emburgh BO, Robertson KD. DNA methylation in development and human disease[J]. Mutat Res.2008,1; 647(1-2):30-38.
    [82]Barres R, Osler ME, Yan J, Rune A, Fritz T, et al. Non-CpG methylation of the PGC-lalpha promoter through DNMT3B controls mitochondrial density[J]. Cell Metab 2009,10:189-198.
    [83]Akahashi T, Shivapurkar N, Reddy J, et al. DNA methylation profiles of lympboid and hematopoietic malignancies[J]. Clin Cancer Res,2004,10(9):2928-2935.
    [84]Pulhng LC, Vuillemenot BR, Hutt JA, et al. Aberrant promoter hypermethylation of the death_associated protein kinase gene is early and frequent in murine lung tumors induced by cigarette smoke and tobacco carcinogens[J]. Cancer Res,2004, 64(11):3844-3848.
    [85]Govindarajan B, K1after R, Miller MS, et al. Reactive oxygen-induced carcinogenesis causes hypermethylation of p16 and activation of MAPK kinase[J]. Mol Med,2002,8(1):1-8.
    [86]Carbone M, Klein G, Gruber J, et al. Modern criteria to establish human cancer etiology[J]. Cancer Res,2004,64(15):5518-5524.
    [87]Lal A, Abdelmohsen K, Pullmann R, el al. Posttranscriptional depression of GADD45 alpha by genotoxic stress[J]. Mol Cell,2006,22(1):117-128.
    [88]Qifeng S, Bo C, Xingtao J, Chuanliang.P, Xiaogang Z. Methylation of the promoter of human leukocyte antigen class Ⅰ in human esophageal squamous cell carcinoma and its histopathological characteristics[J]. J Thorac Cardiovasc Surg. 2011;141(3):808-814.
    [89]Illingworth RS, Bird AP. CpG islands-'a rough guide'[J]. FEBS Lett,2009, 583:1713-1720.
    [90]Coolen MW, Statham AL, Gardiner-Garden M, Clark S J. Genomic profiling of CpG methylation and allelic specificity using quantitative high-throughput mass spectrometry:critical evaluation and improvements[J]. Nucleic Acids Res.2007; 35(18):e119.
    [91]Huang YW, Luo J, Weng YI, et al. Promoter hypermethylation of CIDEA, HAAOand RXFP3 associated with microsatellite instability in endometrial carcinomas[J]. Gynecol Oncol.2010; 117(2):239-247.
    [92]Ehrich M, Nelson MR, Stanssens P et al. Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry[J]. Proc Natl Acad Sci U S A.2005,102(44):15785-15790.
    [93]Yi-Wen Huang, Jing qin Luo b, Yu-I Wenga, et, al. Promoter hypermethylation of CIDEA, HAAOand RXFP3 associated with microsatellite instability in endometrial carcinomas[J]. Gynecol Oncol.2010; 117(2):239-247.
    [94]James G. Herman, M. D., and Stephen B. Baylin, M. D. Gene Silencing in Cancer in Association with Promoter Hypermethylation. N Engl J Med 2003; 349:2042-2054.
    [95]Esteller M. Epigenetics provides a new generation of oncogenes and tumour-suppressor genes[J]. Br J Cancer.2006,94(2):179-183.
    [96]Akahashi T, Shivapurkar N, Reddy J, et al. DNA methylation profiles of lympboid and hematopoietic malignancies[J]. Clin Cancer Res,2004,10(9):2928-2935.
    [97]Pulhng LC, Vuillemenot BR, Hutt JA, et al. Aberrant promoter hypermethylation of the death_associated protein kinase gene is early and frequent in murine lung tumors induced by cigarette smoke and tobacco carcinogens[J]. Cancer Res,2004, 64(11):3844-3848.
    [98]Carbone M, Klein G, Gruber J, et al. Modern criteria to establish human cancer etiology[J]. Cancer Res,2004,64(15):5518-5524.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700