用户名: 密码: 验证码:
光控作动器本构建模及板壳结构振动模态控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将智能材料作为传感器及作动器,层合于空间板壳结构表面或嵌入其内部,实现对结构的智能控制已经成为航空、航天领域的一个重要发展方向。与传统的作动器(如压电作动器、记忆合金作动器及电致伸缩作动器等)相比,当采用基于光电材料镧改性锆钛酸铅(PLZT)的光控作动器时,由于作动器与控制光源间无需线路连接,因此可以避免电磁干扰,并且符合航空、航天结构轻质化发展的趋势,具有重大的理论研究价值。本文将开展利用光控作动器的板壳结构振动控制的研究,提出利用沿厚度(0-3)方向极化的PLZT(简称PLZT(0-3))作动器及光控压电混合驱动两种方式实现板壳结构的振动控制,针对光控作动器产生驱动应变的本构模型、光电层合板壳结构系统动力学建模、面向不同应用背景的分布式光控作动器的构型设计及光控作动器的激励策略等问题展开系统的研究,为此类智能结构在航空航天领域的具体应用提供理论依据。
     分别建立了PLZT(0-3)作动器及光控压电混合驱动方式的本构方程。基于PLZT在光-电-热-力等多能场耦合作用下的反常光生伏打效应及光致伸缩机理,研究光照强度及PLZT(0-3)作动器的尺寸参数对其产生的饱和光致应变及时间常数的影响,从而建立了PLZT(0-3)作动器在光照阶段产生驱动应变的数学模型;提出了利用PLZT在紫外光照射下产生的光电压驱动压电作动器的光控压电混合驱动方式,利用等效电路模型,建立了光控压电混合驱动下作动器产生应变的本构方程;通过实验证明了所建立的数学模型能准确描述在不同光强下,光控作动器产生的驱动应变随光照时间的动态响应。
     基于Hamilton原理和多层薄壳理论,建立了可适用于不同结构类型、不同几何参数的光控层合板壳结构的通用动力学模型;基于所建立的动力学模型,利用模态展开技术建立了光控层合板壳结构的模态控制方程及分布式光控作动器在激励信号的作用下,对结构产生的模态控制力数学模型。为研究作动器布局及构型设计奠定理论基础。
     基于作动器边界条件的的变化,开展了能产生多自由度非均匀控制力/力矩的新型光致伸缩作动器构型的研究。基于平面位移变分法,建立了特定边界条件下,作动器在激励信号的作用下对结构产生的非均匀控制力及力矩的分布函数;以开口圆柱壳为例,利用模态控制因子,参数评价了新型作动器的尺寸、布局对其产生模态控制行为的影响;针对PLZT(0-3)光致伸缩作动器“单向驱动性”的特点,提出了对新型作动器各区域的速度反馈半周期激励的控制策略;利用Newmark-β法对开口圆柱壳的模态控制方程进行数值仿真分析,仿真结果证明了本文所提出的控制策略的有效性,并且表明增大光照强度可以提高作动器的响应速度,从而改善新型作动器对结构的模态控制效果。
     研究表面成型式作动器构型,以实现对结构的光控独立模态控制。针对典型结构,推导了实现结构独立模态控制的光控作动器表面电极形状函数;以悬臂梁结构为例,分别研究了基于PLZT(0-3)作动器及光控压电混合驱动,实现结构的独立模态控制。针对PLZT(0-3)作动器,提出了作动器各个区域双面粘贴,两个光源ON/OFF的激励策略;针对光控压电混合驱动,提出了多片PLZT与压电作动器正/反接控制的激励策略;结合速度反馈定光强控制的控制算法,分别对两种光控方式下悬臂梁的独立模态控制进行了数值仿真分析,仿真结果证明了针对光控板壳结构独立模态控制,作动器表面电极形状函数设计及控制策略的正确性。
     对光控压电混合驱动的激励策略及光控结构独立模态主动控制进行实验研究。针对光控压电混合驱动提出四种激励策略,并对其可行性进行了实验分析;搭建了实验平台,对模态传感器的正交模态性进行了实验验证;通过对不同光照强度下悬臂梁独立模态主动控制的实验研究,有力地支撑了本文关于成型式传感/作动器的理论推导及参数评价的相关结论。
Smart materials can be used as sensors and actuators by laminating on orinserting in space plate and shell structures to realize Smart control, which has beenan important direction in the aerospace field. In contrast to traditional actuators(e.g.,piezoelectric actuators, SMA actuators, electrostrictive actuators.etc.), photostrictiveactuators or actuators actuated by hybrid photovoltaic/piezoelectric actuationmechanism does not require hard-wird connections to control light source. Thus, thecontrol commands will not be influenced by undesirable electric noises. Withoutaccessorial devices and connecting wires, photonic control which conforms to thelightweight trend of space structure has great research value. In this paper, twomethods which are the lanthanum modified lead zirconate titanate (PLZT) with0-3polarization photostrictive laminated smart structure and hybridphtovoltaic/piezoelectric actuation mechanism are proposed respectively to realizevibration control of shell structures. Systematical theoretical research on theestablishment of constitutive model of photostrictive actuator, dynamic model of thephotostrictive laminated plate and shell, actuator configuration theory and controlscheme of actuator are carried out. This research can provide theoretical proof forapplications of this kind of smart structure in the field of space aviation.
     Constitutive equations defining the photo-induced time dependent strains ofactuator for the two photonic control method are established respectively. In view oflight-electric-thermal-elastic coupling, the photovoltaic effect and photostrictivemechanism of PLZT are studied. Equations are established to define the effect ofgeometric parameters of0-3polarized PLZT (PLZT(0-3)) acuator and light intensityon photo-induced saturated strain and time constant. Constitutive equations definingthe time history response of photo-induced strain for PLZT(0-3) actuator areaccordingly established. The novel hybrid photovoltaic/piezoelectric actuationmechanism is proposed. The ultraviolet light-driven PLZT induced voltages are usedto drive piezoelectric actuator. Based on the equivalent electrical model, equationsare derived to define the actuation strain of piezoelectric acutuator driven byphotovoltage. These two constitutive model are verified by experimentsrespectively.
     Based on the Hamilton’s principle and composite shell theory, the systematicdynamic model of the photostrictive laminated shell are set up, which can be appliedto shell with different structure types and geometric parameters. Based on the modalexpansion technique, the modal control actions of photostrictive actuator are st udied,which can technically support the design of actuator location and configuration.
     By specifically configuring the boundary condition of the actuator, askew-quad actuator system inducing multi-DOF non-uniform control forces andcontrol moments is proposed. Based on the variation method, the distributionfunctions of induced forces and moments are calculated. In the case study of opencylindrical shell, control actions of the skew-quad actuator system with differentlocations and sizes are calculated to define the better placement and the size of thenew actuator system. According to the characteristic of one-way actuation of PLZT(0-3) photostrictive actuator, the control schemes of half cycle illumination toeach region of skew-quad actuator system together with the constant light intensitycontrol based on velocity feedback is proposed. Based on the Newmark-β method,the modal control equation is numerically analyzed, and the results show that theshell vibration can be effectively controlled by this proposed control scheme. Thesimulation results of different light intensity show that the increase of light intensitywill increase the response speed of PLZT(0-3) actuator which accordingly improvethe control effectiveness of shell structures.
     In order to realize photonic independent modal control of smart structure, theshaped orthogonal actuator theory is studied. Electrode shape functions of theactuators are disigned for some typical structures. Independent modal control of thecantilever beam based on the PLZT(0-3) photostrictive actuator and on the hybridphotonic/piezoelectric actuation mechanism is studied respectively. According to thecharacteristic of one-way actuation of PLZT(0-3) photostrictive actuator, theactuation strategy of double side ON/OFF actuation with two light sources for eachregion of shaped orthogonal photostrictive actuator is proposed. In order to realizethe independent modal control of cantilever beam using hybridphotovoltaic/piezoelectric actuation mechanism, orthogonal sensors are designed.The ON/OFF control of positive/negative connection between PLZT andpiezoelectric actuator is used, combining with constant light control algorithm basedon velocity feedback. Dynamic modal control equations of the cantilever beamlaminated with orthogonal actuators based on the two photonic control methods arenumerically simulated respectively. The simulation results show that the orthogonalsensors/actuators designed and control schemes proposed for the two photonicmethod can effectively realize photonic independent modal control of cantileverbeam.
     Experiments for the actuation srategies of hybrid photovoltaic/piezoelectricactuation mechanism and active independent modal control of beam are carried out.Four actuation srategies are proposed and their feasibility are tested. Experimentalplatform for active beam independent modal control is set up, and the modalorthogonality of orthogonal sensors is tested. The validity of theoretical derivationand evaluation results of shaped photostrictive actuator configuration theory can be verified by the experimental results of different light intensity.
引文
[1] Crawely E F. Intelligent Structures for Aerospace: A Technology Overviewand Assessment[J]. AIAA Journal,1994,32:1689-1699.
    [2]黄文虎,王心清,张景绘,等.航天柔性结构振动控制的若干新进展[J].力学进展,1997,27(1):5-18.
    [3]黄尚廉.智能结构——工程学科萌生的一场革命[J].压电与声光,1993,15(1):13-15.
    [4]李传兵,廖昌荣,张玉璘,等.压电智能结构的研究进展[J].声电与光,2002,24(1):42-45.
    [5] Brody P S. High Voltage Photovoltaic Effect in Barium Titanate and LeadTitanate-lead Zirconate Ceramics[J]. Journal of Solid State Chemistry,1975,12(3):193-200.
    [6] Poosanaas P, Uchino K. Photostrictive Effect in Lanthanum-modified LeadZirconate Titanate Ceramics Near the Morphotropic Phase Boundary[J].Materials Chemistry and Physics,1999,61:36-41.
    [7] Nakada T, Cao D H, Morikawa Y, et al. Study on Optical Servo System(Estimation of Dynamic Characteristics of Bimorph-Type Optical ActuatorUsing PLZT Elements)[J]. The Japan Society of Mechanical Engineers,1993,59(564):206-211.
    [8] Nakada T, Cao D H, Hsien C Y, et al. Study on Optical Servo System(Contribution to Optical Actuator[J]. The Japan Society of MechanicalEngineers,1991,57(542):3228-3233.
    [9] Nakada T, Cao D H, Morikawa Y, et al. Study on Optical Servo System(Modelling for Photovoltaic Effect in PLZT Element)[J]. The Japan Society ofMechanical Engineers,1993,58(552):189-193.
    [10] Fukuda T, Hattori S, Arai F, et al. Characteristics of OpticalActuator-Servomechanisms Using Bimorph Optical Piezoelectric Actuator[C].IEEE International Conference on Robotics and Automation, Atlanta, USA,1993:618-623.
    [11] Matsukuma A, Nakada T, Morikawa Y. Study on Optical Servo System(Temperature Dependency of Photovoltaic Effect in PLZT Element)[J]. TheJapan Society of Mechanical Engineers,1998,64(619):297-302.
    [12] Poosanaasa P, Dogan A, Thakoor S, et al. Influence of Sample Thickness on thePerformance of Photostrictive Ceramics[J]. Journal of Applied Physics,1998,84(3):1508-1511.
    [13] Poosanaas P, Dogan A, Thakoor S, Uchino K. Dependence of Photostriction onSample Thickness and Surface Roughness for PLZT Ceramics[C].1997IEEEUltrasonics Symposium,1997:553-556.
    [14] Poosanaas P, Uchino K. Photostrictive Effect in Lanthanum-modified LeadZirconate Titanate Ceramics Near the Morphotropic Phase Boundary[J].Materials Chemistry and Physics,1999,61:36-41.
    [15] Poosanaas P, Tonooka K. Uchino K. Photostrictive Actuators[J].Mechatronics,2000,10:467-487.
    [16] Tzou H S, Chou C S, Nonlinear Optoelectromechanics and Photodeformation ofOptical Actuators[J]. Journal of Smart Materials and Structures,1996,5:230-235.
    [17] Liu B, Tzou H S. Distributed Photostrictive Actuation and Opto-piezoelectricityApplied to Vibration Control of Plates[J]. ASME Journal of Vibration andAcoustics,1998,120:937-943.
    [18] Sun D C, Tong L Y. Modeling of Wireless Remote Shape Control for BeamsUsing Nonlinear Photostrictive Actuators[J]. International Journal of Solids andStructures,2007,44:672-684.
    [19] Poosanaas-Burke P, Abothu L R, Uchino K. Fabrication and Device Design ofBulk and Thin Films Photostrictive Materials[C]. IEEE Instrumentation andMeasurement Technology Conference, Budapest, Hugary, May21-23,2001:443-447.
    [20] Ichiki M, Morikawa Y, Mabune Y, et al. Electrical Properties of PhotovoltaicLead Lanthanum Zirconate Titanate in an Electrostatic-optical MotorApplication[J]. Journal of the European Ceramic Society,2004,24:1709-1714.
    [21] Ichiki M, Morikawa Y, Mabune Y, et al. Preparation of Ferroelectric Ceramics ina Film Structure and Their Photovoltaic Properties[J]. MicrosystemTechnologies,2005,12(1-2):143-148.
    [22] Ichiki M, Maeda R, Morikawa Y, et al. Preparation and Photovoltaic Propertiesof Lead Lanthanum Zirconate Titanate in Design of Multilayers[J]. JapaneseJournal of Applied Physics,2005,44(9B):6927-6933.
    [23] Luo Q, Tong L Y. Constitutive Equations for0-3Polarized PLZT actuators[J].International Journal of Solids and Structures,2009,46:4313-4321.
    [24] Luo Q, Tong L Y. Multi-physics Field Models of Photostrictive Unimorphs andHeterogeneous Bimorphs Subjected to Light Illumination and MechanicalLoading [J]. International Journal of Solids and Structures,2010,47:2006-2016.
    [25] Luo Z, Luo Q T, Tong L Y, et al. Shape Morphing of Laminated CompositeStructures with Phostrictive Actuators Via Topology Optimization[J]. CompositeStructures,2011,93:406-418.
    [26] Luo Q T, Tong L Y. Laminated Plate Formulation for Photostrictive Actuatorsand Sensor[J]. Journal of Composite Materials,2012,46(5):557-573.
    [27] Qin M, Yao K, Liang Y C, et al. Thickness Effects on Photoinduced Current inFerroelectric (Pb0.97La0.03)(Zr0.52Ti0.48)O3Thin Films[J]. Journal of AppliedPhysics,2007,101:014104-1-8.
    [28]郑鑫森,郑芝凤,束慧君,等. PLZT陶瓷中的光致伏特效应的研究[J].功能材料,1991,22(6):351-355.
    [29]张显奎,李洪人,许耀铭. PLZT陶瓷的光伏效应研究[J].功能材料,1996,27(4):311-314.
    [30]张显奎,李洪人,许耀铭. PLZT陶瓷的光致电压效应和光致伸缩效应研究[J].哈尔滨工业大学学报,1997,29(3):1-3.
    [31] Li J F, Cheng D M. Compositional Effect on Piezoelectric and AnomalousPhotovoltaic Properties of PLZT Ceramics with Fixed Grain Sizes[J]. Journal ofElectroceramics,2008,21(1-4):267-270.
    [32]王新杰. PLZT光致伸缩特性及光电层合回转薄壳主动振动控制的研究[D].哈尔滨:哈尔滨工业大学博士论文,2011:28-38.
    [33]何聚,黄志永,宿杰. Mn掺杂对PLZT陶瓷制备及性能的影响[J].淮北师范大学学报(自然科学版),2012,33(4):31-34.
    [34] Brody P S. Optomechanical Bimorph Actuator[J]. Ferroelectrics,1983,50:27-32.
    [35] Sada T, Inoue M, Uchino K. Photostriction in PLZT Ceramics[J]. Journal of theCeramic Society of Japan,1987,95(5):545-550.
    [36] Uchino K. Micro Walking Machine Using Piezoelectric Actuators[J]. Journal ofRobotics and Mechatronics,1989,12:44-47.
    [37] Fukuda T, Hattori S, Arai F, et al. Performance Improvement of Optical Actuatorby Double Side Irradiation[J]. IEEE Transactions on Industrial Electronics,1995,42(5):455-461.
    [38] Thakoor S, Morookian J M, Cutts J A. The Role of PiezoceramicsMicroactuation for Advanced Mobility[C]. Proceedings of10thConference onIEEE International Symposium on Applications of Ferroelectrics Transaction,1996,1:205-211.
    [39] Shih H R, Smith R, Tzou H S. Photonic Control of Cylindrical Shells withElectro-Optic Photostrictive Actuators[J]. AIAA Journal,2004,42(2):341-347.
    [40] Shih H R, Watkins J, Tzou H S. Displacement Control of a Beam UsingPhotostrictive Optical Actuators[J]. Journal of Intelligent Material Systems andSturctures,2005,16:355-362.
    [41] Shih H R, Tzou H S, Saypuri M. Structural Vibration Control Using SpatiallyConfigured Opto-electromechanical Actuators[J]. Journal of Sound andVibration,2005,284:361-378.
    [42] Shih H R, Tzou H S. Wireless Control of Parabolic Shells Using PhotostrictiveActuators[C]. Proceedings of IMECE2006,Chicago,USA,2006:1-10.
    [43] Shih H R, Tzou H S. Photostrictive Actuators for Photonic Control of ShallowSpherical Shells[J]. Smart Materials and Structures,2007,6:712-717.
    [44] Shih H R, Rushon D, Tzou H S, et al. Photostriction and its Use in Actuation ofFlexible Structures[J]. Journal of Engineering Technology,2008,25(1):20-25.
    [45] Shih H R, Tzou H S, Walters Jr W L. Photonic Control of FlexibleStructures-Application to a Free-Floating Parabolic Membrane Shell[J]. SmartMaterials and Structures,2009,18:1-7.
    [46] Sun D C, Tong L Y. Theoretical Investigation on Wireless Vibration Control ofThin Beams Using Photostrictive Actuators[J]. Journal of Sound and Vibration,2008,312:182-194.
    [47]李琼,王少萍,梁磊.光控伺服系统建立、建模与仿真[J].压电与声光,2007,29(2):213-215.
    [48]黄学良,叶飞.基于新型光电材料PLZT的光电机研究[J].光电工程,2007,34(12):139-143.
    [49] Wang X J, Yue H H, Jiang J, et al. Photonic Control of Plates Laminated withMuliti-DOF Photostrictive Actuators[C]. Proceeding of ASME IDETC,2009,PTS A-B, Diego, California, USA,1:1499-1507.
    [50]王新杰,岳洪浩,邹鸿生,等.光电层合圆柱薄壳的激励特性及控制[J].振动与冲击,2009,28(9):9-14.
    [51]王新杰,岳洪浩,邓宗全.光致伸缩作动器对开口球壳的主动振动控制[J].宇航学报,2010,3(11):2483-2490.
    [52] WANG X J, YUE H H, DENG Z Q. Active Control of Free ParaboloidalMembrane Shells Using Photostrictive Actuators[J]. Transactions of TianjinUniversity,2011,17(1):6-12.
    [53] Zheng S J, Li S Y, Lian J J, Finate Element Simulation of Wireless StructuralVibration and Shaped Control with Photostrictive Actuators[C].2011Symposium on Piezoelectricity, Acoustic Waves and Device Applications,Shenzhen,China,2011:245-248.
    [54] Zheng S J. Finate Element Simulation of Wireless Structural Vibration Controlwith Photostrictive Actuators[J]. Science China-Technological Sciences,2012,55(3):709-716.
    [55]陈德金,光致伸缩层合结构振动无线主动控制研究[D].南京:南京航空航天大学硕士论文,2010:19-32.
    [56] Tzou H S. Piezoelectric Shells:Distributed Sensing and Control of Continua[M].Dordrecht:Kluwer Academic Publishers,Dordrecht/Boston/London,1993:63-154.
    [57] Tzou H S, Wang D W. Micro-sensing Characteristics and Modal Voltages ofPiezoelectric Laminated Linear and Nonlinear Toroidal Shells[J]. Journal ofSound and Vibration,2002,254(2):203-218.
    [58] Tzou H S, Smithmaitrie P, Ding J H. Sensor Electromechanics and DistributedSignal Analysis of Piezoelectric-elastic Spherical Shells[J]. Mechanical Systemand Signal Processing,2002,16:185-199.
    [59] Tzou H S, Gadre M. Theoretical Analysis of a Multi-layered Thin Shell Coupledwith Piezoelectric Shell Actuators for Distributed Vibration Control[J]. Journalof Sound and Vibration,1989,132(3):433-450.
    [60] Lee C K, Moon F C. Laminated Piezopolmer Plates for Torsion and BendingSensors and Actuators[J]. Journal of the Acoustic Society of America,1989,85(6):2432-2439.
    [61] Lee C K. Theory of Laminated Piezoelectric Plates for the Design of DistributedSensors and Actuators. Part1: Governing Equations and ReciprocalRelationships[J]. Journal of the Acoustic Society of America,1990,87(3):1144-1158.
    [62] Dokmeci M C. Theory of Vibration of Coated Thermopiezoelectric Laminate[J].Journal Math Phys,1978,19(1):109-126.
    [63] Tzou H S, Tseng C I. Distributed Piezoelectric Sensor/actuator Design forDynamic Measurement/control of Distributed Parameter Systems: a FiniteElement Approach[J]. Journal of Sound and Vibration,1990,138(1):17-34.
    [64] Tzou H S, Tseng C I. Distributed Vibration Control and Identification ofCoupled Elastic/Piezoelectric Systems: Finite Element Formulation andApplication[J]. Mechanical Systems and Signal Proceeding,1991,5(3):215-231.
    [65] Balamurugan V, Narayanan S. Shell Finite Element for Smart PiezoelectricComposite Plate/shell Structures and Its Application to the Study of ActiveVibration Control. Finite Element Anal Des,2001,37(9):713-718.
    [66] Wang S Y, Quek S T, Ang K K. Dynamic Stability Analysis of Finite ElementModeling of Piezoelectric Composite Plates[J]. International Journal of Solidsand Structures,2004,41(3-4):745-764.
    [67]伍晓红,沈亚鹏,陈常青,等.压电梯度薄壳的高阶理论解[J].复合材料学报,2003,20(5):100-107.
    [68]陈建军.压电智能板热效应分析模型的建立与仿真[J].机械电子工程,2008,37(6):938-942.
    [69]丁根芳.层合压电智能结构的数值模拟和振动控制研究[D].合肥:合肥工业大学博士学位论文,2008:21-41.
    [70]刘相秋,王聪,王威远,等.压电智能结构的主动控制仿真与实验研究[J].力学与实践,2008,30(4):50-53.
    [71] Wang W Y, Wei Y J, Wang C, et al. Modeling and Optimal Vibration Controlof Conical Shell with Piezoelectric Actuators[J]. High Technology Letters,2008,14(4):418-422.
    [72] Wang W Y, Wang C, Zou Z Z. Active Vibration Control of Conical Shell withPatched Piezoelectric Actuators[J]. Journal of Harbin University ofCommerce,2008,24(6):721-726.
    [73]钱峰,王建国.压电智能板振动主动控制的数值模拟[J].合肥工业大学学报,2010,33(1):76-80.
    [74]钱峰,王建国,曲磊.压电智能板振动主动控制有限元模型[J].合肥工业大学学报,2011,34(2):259-263.
    [75]钱峰.层合压电智能结构振动主动控制数值模拟及其优化[D].合肥:合肥工业大学博士学位论文,2011:20-37.
    [76] Wang L, Ren B Y, Tzou H S, Yue H H. Finite Difference Based ElectricalModeling and Vibration Control Simulation of Piezoelectric Structronic PlateSystem[C]. Proceedings of the ASME Design Engineering TechnicalConference,2009:1413-1422.
    [77] Ren B Y, Wang L, Tzou H S, Yue H H. Finite Difference Based VibrationSimulation Analysis of A Segmented Distributed Piezoelectric StructronicPlate System[J]. Smart Materials and Structures,2010,19:1-12.
    [78]王雷.压电智能结构系统闭环振动控制的数值仿真方法研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2012:64-85.
    [79]王雷,任秉银,邹鸿生.压电悬臂梁智能元数字仿真模型设计及分析[J].北京航空航天大学学报,2012,38(8):1070-1074.
    [80]郭中阳.智能压电复合结构的有限元建模与位置优化[J].中国机械工程,2013,24(4):527-532.
    [81] Fanson J L, Caughey T K. Positive Position Feedback Control for Large SpaceStructures[J]. AIAA Journal,1990,28:717-724.
    [82] Vasques C M A, Dias Rodrigues J. Active Vibration Control of SmartPiezoelectric Beams: Comparison of Classical and Optimal Feedback ControlStrategies[J]. Computers and Structures,2006,84:1402-1414.
    [83] Trajkov T N, Koppe H, Gabbert U. Direct Model Reference AdaptiveControl(MRAC) Design and Simulation for the Vibration Suppression ofPiezoelectric Smart Structures[J]. Communications in Nonlinear Science andNumerical Simulation,2008,13:1896-1909.
    [84] Alhazza K A, Nayfeh A H, Daqaq M F. On Utilizing Delayed Feedback forActive-multimode Vibration Control of Cantilever Beams[J]. Journal of Soundand Vibration,2009,319:735-752.
    [85] Kucuk I, Sadek S I, Zeini E, et al. Optimal Vibration Control of PiezolaminatedSmart Beams by the Maximum Principle[J]. Computers and Structures,2011,89:744-749.
    [86] Marinaki M, Marinakis Y, Stavroulakis G E. Vibration Control of Beams withPiezoelectric Sensors and Actuators Using Particle Swarm Optimization[J].Expert Systems with Applications,2011,38:6872-6883.
    [87]胡举喜,邱志平.压电层合板振动的鲁棒控制[J].北京航空航天大学学报,2008,34(8):873-877.
    [88]王小兵,陈建军,高伟,等.压电智能板的H∞振动控制[J].应用力学学报,2005,22(4):517-521.
    [89]陈建军,李姣枫,王小兵,等.基于LMI的压电智能板的H∞振动控制[J].振动、测试与诊断,2008,28(3):201-205.
    [90]蒋建平,李东旭.智能太阳翼有限元建模与振动控制研究[J].动力学与控制学报,2009,7(2):164-170.
    [91]张京军,曹丽雅,袁伟泽,等.压电智能结构振动的模糊控制及仿真实现[J].工程力学,2009,26(10):228-232.
    [92]马天兵,裘进浩,季宏丽,等.基于鲁棒模型参考控制器的智能结构振动主动控制研究[J].振动与冲击,2012,31(7):14-18.
    [93] Tzou H S, Ye R, Ding J H. A New X-actuator Design for Dual Bending/TwistingControl of Wings[J]. Journal of Sound and Vibration,2001,241(2):271-281.
    [94] Kang Y K, Park H C, Wang W, Han K S. Optimal Placement of PiezoelectricSensor/Actuator for Vibration Control of Laminated Beams[J]. AIAA Journal,1996,34(9):1921-1926.
    [95] Suleman A, Goncalves M A. Multi-objective Optimization of an AdaptiveComposite Beam Using the Physical Programming Approach[J]. Journal ofIntelligent Material Systems and Structures,1999,10:56-70.
    [96] Aldraihem O J, Singh T, Wetherhold R C. Optimal Size and Location ofPiezoelectric Actuator/Sensors: Practical Considerations[J]. Journal of Guidance,Control, and Dynamics,2000,23(3):500-515.
    [97] Barboni R, Mannini A, Fantini E, et al. Optimal Placement of PZT Actuators forthe Control of Beam Dynamics[J]. Smart Materials and Structures,2000,9:110-120.
    [98] Hac A, Liu L. Sensor and Actuator Location in Motion Control of FlexibleStructures[J]. Journal of Sound and Vibration,1993,167(2):239-261.
    [99] Geroges D. The Use of Observability and Controllability Gramians or Functionsfor Optimal Sensor and Actuator Location in Finite-Dimensional Systems[C].Proceedings of the34th IEEE Conference on Decision and Control,1995,4:3319-3324.
    [100] Bruant I, Coffignal G, Lene F, et al. A Methodology for Determination ofPiezoelectric Actuator and Sensor Location on Beam Structures[J]. Journal ofSound and Vibration,2001,243(5):861-882.
    [101] Nestorovic T, Trajkov M. Optimal Actuator and Sensor Placement Based onBalanced Reduced Models[J]. Mechanical Systems and Signal Processing,2013,36:271-289.
    [102] Han, J H, Lee I. Optimal Placement of Piezoelectric Sensors and Actuators forVibration Control of a Composite Plate Using Genetic Algorithms[J]. SmartMaterials and Structures,1999,8(2):257-267.
    [103] Gao F, Shen Y, Li L. The Optimal Design of Piezoelectric Actuators for PlateVibroacoustic Control Using Genetic Algorithms with Immune Diversity[J].Smart Materials and Structures,2000,9:485-491.
    [104] Zhang H, Lennox B, Goulding P R, et al. A Float-encoded Genetic AlgorithmTechnique for Integrated Optimization of Piezoelectric Actuator and SensorPlacement and Feedback Gains[J]. Smart Materials and Structures,2000,9:552-557.
    [105] Yang Y, Jin Z, Soh C K. Integrated Optimal Design of Vibration Control Systemfor Smart Beams Using Genetic Algorithms[J]. Journal of Sound and Vibration,2005,282:1293-1307.
    [106] Dhuri K D, Seshu P. Multi-objective Optimization of Piezo Actuator Placementand Sizing Using Genetic Algorithm[J]. Journal of Sound and Vibration,2009,323:495-514.
    [107]孙东昌,张洪华,吴洪鑫,等.压电智能材梁振动控制中致动片优化配置与实验[J].中国空间科学技术,1999,(6):46-52.
    [108]闫洁,曹秉刚,杨仲庆,等.柔性结构作动器/传感器优化配置研究[J].应用力学学报,2001,18(3):47-53.
    [109]王威远,魏英杰,王聪,等.压电智能结构传感器/作动器位置优化研究[J].宇航学报,2007,28(4):1025-1029.
    [110]王建国,丁根芳,覃艳.基于遗传算法和梯度算法压电层合结构的最优形状控制[J].固体力学学报,2008,29(1):59-64.
    [111]袁伟泽,高瑞贞,曹丽雅,等.智能结构中致动器位置和尺寸的优化研究[J].河北工程大学学报(自然科学版),2008,25(3):38-45.
    [112] Yue H H, Deng Z Q, Tzou H S. Optimal Actuator Locations and PrecisionMicro-Control Actions on Free Paraboloidal Membrane Shells[J].Communications Nonlinear Science and Numerical Simulation,2008,13(10):2298-2307.
    [113]董晓马,魏保立,孙庆珍,等.智能结构中应变传感器布局研究[J].华中科技大学学报,2009,26(4):29-31.
    [114]戴文芳,曹宗杰,金延中.智能压电传感器位置选取优化研究[J].长春工业大学学报(自然科学版),2009,30(3):327-330.
    [115]吕永桂,陈凯,魏燕定.智能杆致动器优化配置及扭振主动控制试验[J].振动、测试与诊断,2010,30(4):400-404.
    [116]张京军,何丽丽,王二成,等.压电智能结构振动主动控制传感器/驱动器的位置优化设计[J].工程力学,2010,27(1):228-232.
    [117] Chen D J, Zheng S J, Wang H T. Genetic Algorithm Based LQR VibrationWirelesss Control of Laminated Plate Using Photostrictive Actuators[J].Earthquake Engineering and Engineering Vibration,2012,11(1):83-90.
    [118] Burke S E, Hubbard J E. Active Vibration Control of a Simply Supported BeamUsing a Spatially Distributed Actuator[J]. IEEE Control System Magazine,1987,(7):25-30.
    [119] Lee C K, Moon F C. Modal Sensors/Actuator[J]. ASME Trans.J.Appl.Mech,1990,57:434-441.
    [120] Lee C K, Chiang W, O’sullivan T C. Piezoelectric Modal Sensor/Actuator Pairsfor Critical Damping Vibration Control[J]. Journal of the Acoustical Society ofAmerica,1991,90(1):374-383.
    [121] Tzou H S. Spatially Distributed Orthogonal Piezoelectric Shell Actuators:Theory and Applications[J]. Journal of sound and vibration,1994,177(3):363-378.
    [122] Gawronski W. Modal Actuators and Sensors[J]. Journal of Sound andVibration,2000,229(4):1013-1022.
    [123] Friswell M I. On the Design of Modal Actuators and Sensors[J]. Journal ofSound and Vibration,2001,241(3):361-372.
    [124] Kailin J, Friswell M I. Design Distributed Modal Sensors for Plate StructuresUsing Finite Element Analysis[J]. Mechanical Systems and Signal Processing,2006,(20):2290-2304.
    [125] Donoso A, Bellido J C. Distributed Piezoelectric Modal Sensors for CircularPlates[J]. Journal of Sound and Vibration,2009,319:50-57.
    [126] Sullivan J M, Hubbard, Jr J E, Burke S E. Distributed Sensors/actuator Designfor Plates: Spatial Shape and Shading as Design Parameters[J]. Joural of Soundand Vibration,1997,203(3):473-493.
    [127] Saravanan C, Ganesan N, Ramamurti V. Analysis of Active Damping inComposite Laminate Cylindrical Shells of Revolution with Skewed PVDFSensors/Actuators[J]. Composite Structures,2000,48:305-318.
    [128]吴锦武,姜哲,毛崎波.利用PVDF设计两维简支结构声辐射模态传感器[J].江苏大学学报,2002,23(6):15-20.
    [129]吴锦武,姜哲.利用PVDF压电膜设计声辐射模态传感器[J].传感器技术,2005,24(3):47-52.
    [130]李志春,吴锦武,张去,等.利用压电薄膜设计体积位移传感器[J].压电与声光,2007,29(5):523-526.
    [131]胡小伟,朱灯林.基于板梁扭转振动控制阻尼的压电片拓扑形状设计[J].河海大学学报,2008,36(1):112-115.
    [132] Tzou H S, Ye R. Pyroelectric and Thermal Strain Effects of Piezoelectric (PVDFand PZT) Devices[J]. Mechanical Systems and Signal Peocessing,1996,10(4):459-469.
    [133] Shih H R, Tzou H S. Opto-piezothermoelastic Constitutive Modeling of a New2-D Photostrictive Composite Plate Actuator[C]. Proceeding of ASME IMECE.2000,(61):1-8.
    [134]Glass A M, Von der Linde D, Auston D H, et al. Excited State Polarization,Bulk Photovoltaic Effect and the Photorefractive Effect in ElectricallyPolarized Media[J]. Journal of Electronic Materials,1975,4(5):915-941.
    [135]Soedel W. Vibrations of Shells and Plates[M].3rd. New York:Dekker M,2004:26-29.
    [136]徐芝伦.弹性力学[M].北京:高等教育出版社,2006:264-271.
    [137]胡海岩.机械振动基础[M].北京:北京航空航天大学出版社,2008:143-145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700