用户名: 密码: 验证码:
掺杂硫酸盐的含钛高炉渣处理溶液中Cr~(6+)及Cr~(6+)复合体系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文系统地研究了掺杂硫酸盐的含钛高炉渣催化剂的结构与光催化活性之间的构效关系,并探索了含钛高炉渣光催化处理溶液中Cr6+及Cr6+/有机物复合体系的机理,这对于含钛高炉渣作为光催化材料的开发和应用及处理既含有有机物物种又含有重金属的实际废水有着重要的指导意义。
     首先,以含钛高炉渣为原料,利用XRF、XRD、SEM、UV-Vis-DR、TG、FTIR等分析方法对含钛高炉渣、掺杂硫酸的含钛高炉渣、掺杂硫酸盐的含钛高炉渣光催化剂的化学成分和矿物组成进行分析,确定了三类光催化材料作为光催化剂的可行性。研究了不同光催化剂中晶相结构、表面形貌、粉体粒度、煅烧温度、掺杂不同硫酸盐以及硫酸盐掺杂比例等对含钛高炉渣光催化活性的影响。通过对比合成的35种催化剂的光催化活性,选出光催化活性最高的掺杂硫酸盐的含钛高炉渣(sulfate-modified titanium-bearing blast furnace slag, STBBFS)催化剂作为实验中的光催化剂。
     系统地研究了STBBFS催化剂的吸附性能,探讨了初始浓度、催化剂加入量、吸附温度、溶液pH等方面对STBBFS催化剂吸附Cr6+的影响;探讨了吸附等温线模型、表观吸附动力学模型、热力学参数以及吸附机理。结果表明,酸性条件下易于Cr6+去除;增加吸附剂投加量、吸附温度,都有益于Cr6+去除;Cr6+在STBBFS吸附剂表面上的吸附遵循Langmuir吸附等温线模型;不同吸附温度和初始浓度下,Cr6+吸附过程都遵循二级表观吸附动力学模型;通过计算Cr6+吸附过程中的热力学参数:得出Cr6+吸附至STBBFS吸附剂表面具有自发性,且升高温度易于Cr6+的吸附。
     系统地研究了STBBFS催化剂光催化还原Cr6+单一体系的可行性。研究了紫外光波长和强度、溶液pH、酸介质、初始浓度、催化剂的使用寿命和分离效果等方面对STBBFS催化剂光催化还原Cr6+单一体系的影响;探讨了STBBFS光催化还原Cr6+的机理,进行了表观动力学分析。结果表明,光源的波长越短、光强越强、酸性越强,Cr6+光催化还原效率就越高;不同酸介质对STBBFS催化剂光催化还原Cr6+的促进作用按P043-初始浓度>酸介质>催化剂投加量;Cr6+单一体系中Cr6+的光催化还原过程遵循Langmuir-Hinshelwood(L-H)动力学规律。
     研究了STBBFS催化剂光催化处理Cr6+-乙酸(acetic acid, AA)复合体系的可行性。研究复合体系中AA/Cr6+的体积比、初始浓度、溶液pH、协同效应因子等方面对STBBFS催化剂光催化处理Cr6+-AA复合体系的影响;探讨了STBBFS催化剂光催化处Cr6+-AA复合体系的机理,并进行了表观动力学分析。结果表明,最佳AA/Cr6+体积比=0.2%;溶液的初始浓度对Cr6+光催化还原效率仍有较大影响;随着溶液初始pH增大(pH=1.5-3.5),Cr6+的还原率和吸附率都明显降低;根据正交试验结果分析,不同因素对Cr6+-AA复合体系中Cr6+光催化还原效率的影响程度按:pH>初始浓度>AA/Cr6+体积比>催化剂投加量;Cr6+离子在Cr6+-AA复合体系中的光催化还原遵循L-H动力学规律;Cr6+-AA复合体系的SEF始终大于0,证明Cr6+-AA复合体系中存在着较强的协同效应,利于Cr6+离子的去除。
     研究了STBBFS催化剂光催化处理Cr6+-柠檬酸(citric acid, CA)复合体系的可行性。研究了复合体系中CA/Cr6+的摩尔比、初始浓度、溶液pH、协同效应因子等方面对STBBFS催化剂光催化处理Cr6+-CA复合体系的影响;探讨了STBBFS催化剂光催化处理Cr6+-CA复合体系的机理,并与Cr6+-AA复合体系进行了比较。结果表明,最佳CA/Cr6+摩尔比=3.75;溶液的初始浓度对Cr6+光催化还原效率影响程度降低;改变体系的初始pH,对Cr6+平衡吸附效率有显著影响;酸性条件下,对Cr6+还原效率的影响不大;Cr6+离子在Cr6+-CA复合体系中的光催化还原也遵循L-H表观动力学规律;Cr6+-CA复合体系的SEF始终大于6,证明Cr6+-CA复合体系中存在着较强的协同效应,利于Cr6+离子的去除。
     研究了STBBFS催化剂光催化处理Cr6+-CA-硝酸铁(ferric nitrate, FN)复合体系的可行性。研究复合体系中Fe3+与CA/Cr6+的摩尔比、初始浓度、溶液pH、协同效应因子等方面对含钛高炉渣光催化处理Cr6+-CA-FN复合体系的影响;探讨了STBBFS催化剂光催化处理Cr6+-CA-FN复合体系的机理,并进行了表观动力学分析。结果表明,Fe3+与CA/Cr6+的最佳摩尔比=0.019;溶液的初始浓度对Cr6+光催化还原效率影响程度高于Cr6+-CA复合体系;改变体系的初始pH,对Cr6+平衡吸附效率和还原效率都有显著影响;Cr6+离子在Cr6+-CA-FN复合体系中的光催化还原也遵循L-H动力学规律;Cr6+-CA-FN复合体系的SEF始终大于1,证明Cr6+-CA-FN复合体系中存在着较强的协同效应,利于Cr6+离子的去除。
     研究了STBBFS催化剂可见光催化处理Cr6+-甲基橙(methyl orange, MO)复合体系的可行性。研究Cr6+-MO复合体系中Cr6+初始浓度、MO初始浓度、光催化反应时间、溶液初始pH、协同效应因子(SEF)等方面对可见光下STBBFS催化剂光催化处Cr6+-MO复合体系的影响;初步探讨了STBBFS光催化处Cr6+-MO复合体系的机理。此外,也进行了表观动力学分析。结果表明,可见光下,MO和Cr6+在Cr6+-MO复合体系中都存在着较强的协同效应,且MO的协同效应因子(SEFMO=39.8)明显高于Cr6+的协同效应因子(SEFCr6+=18.3),利于两种污染物的去除。
The structure-activity relationships between the structure and photocatalytic activity of sulfate-modified titanium-bearing blast furnace slag were studied, and providing a solid theoretical foundation for the development and application of titanium-bearing blast furnace slag. In this paper, the photocatalysis mechanism of Cr6+ single system and Cr6+/organic compound combined pollution system in the presence of titanium-bearing blast furnace slag was first explored, which is profound significance for the real wastewater containing organic species and heavy metals.
     Firstly, the components and microstructures of TBBFS, SATBBFS and STBBFS photocatalysts were examined by XRF, XRD, SEM, UV-Vis-DRS, TG and FTIR. Then the feasibility of three kinds of photocatalytic materials as photocatalysts is determined. The effects of crystalline phase, surface morphology, powder particle size, calcinations temperature, doped different sulfate and the ratio of sulfate-doped on the photocatalytic activity for Cr6+ by the three kinds of photocatalysts were investigated. By comparing the photocatalytic activities of the 35 kinds of photocatalysts, it can be concluded that the photocatalytic activity of (sulfate-modified titanium-bearing blast furnace slag, STBBFS) photocatalyst is the highest.
     The effects of the initial concentration, catalyst amount, adsorption temperature and solution pH on the adsorption efficiency for Cr6+ by the STBBFS adsorbents were systematically studied; and the adsorption isotherm model, adsorption kinetics model, thermodynamic parameters and adsorption mechanism were also explored. The results showed that the adsorption data followed the Langmuir model rather than the Freundlich model, and the adsorption equilibrium was described by the Langmuir isotherm model with a maximum adsorption capacity of 8.25 mg/g of Cr6+ ions onto the STBBFS adsorbents at pH= 1.5. A pseudo-second-order kinetic model shows a good fitting to the experimental results at different initial concentrations and adsorption temperatures. The thermodynamic parameters, such as enthalpy change (ΔH°), free energy change (ΔG°) and entropy change (ΔS°) have been analyzed. The thermodynamics of Cr6+ ions onto the STBBFS adsorbents indicates the spontaneous and endothermic nature of the adsorption process. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) analysis show that in the process the reduction of Cr6+ could be followed after the adsorption of Cr6+.
     The feasibility of photocatalytic reduction of Cr6+ by STBBFS photocatalyst in Cr6+ single system was systematically studied. The UV wavelength and intensity, solution pH, acid medium, the initial concentration, catalyst life and separation efficiency were also studied. The photocatalytic reduction mechanism and L-H kinetic mechanism of Cr6+ in Cr6+ single system were also explored. The results showed that, with the increase of light intensity, the photocatalytic reduction efficiency of Cr6+ increased; the photocatalytic reduction efficiency of Cr6+ reached maximum at pH=1.5; the order of the inhibitory effect of four acidic ions (SO42-, Cl-, NO3-, PO43-) on the photocatalytic reduction efficiency of Cr6+ was PO43->NO3>Cr>SCO42-; the initial concentration had a great influence on the photocatalytic reduction efficiency of Cr6+; in accordance with the results of orthogonal test, influencing ratio of the different factors was:pH> initial concentration> acidic medium> catalyst dosage; the photocatalytic reduction of Cr6+ in Cr6+ single system followed L-H kinetics.
     The feasibility of photocatalytic reduction of Cr6+ by STBBFS photocatalyst in Cr6+-AA system was systematically studied. The effects of the volume ratio of AA/Cr6+, the initial concentration, solution pH and synergistic effect factor on the photocatalytic reduction efficiency of Cr6+ in Cr6+-AA system were studied; The photocatalytic reduction mechanism and L-H kinetic mechanism of Cr6+ in Cr6+-AA system were also explored. The results showed that, the maximum rate of Cr6+ reduction was obtained for an initial AA/Cr6+ volume ratio, R=0.2%, a further increment in R being disadvantageous; the initial concentration still had a great influence on the photocatalytic reduction efficiency of Cr6+; with the increase of initial solution pH(pH=1.5-3.5), photocatalytic reduction efficiency and adsorption efficiency of Cr6+ decreased significantly; according to the results of orthogonal test, influencing ratio of the different factors was:pH> initial concentration> AA/Cr6+ volume ratio> catalyst dosage; the photocatalytic reduction of Cr6+ in Cr6+-AA system also followed L-H kinetics. The synergistic effect factor is always greater than 0 in the compound system, indicating that a marked synergistic effect between the photocatalytic reduction of Cr6+ and acetic acid.
     The feasibility of photocatalytic reduction of Cr6+ by STBBFS photocatalyst in Cr6+-CA system was systematically studied. The effects of the molar ratio of CA/Cr6+, the initial concentration, solution pH and synergistic effect factor on the photocatalytic reduction efficiency of Cr6+ in Cr6+-AA system were studied; The photocatalytic reduction mechanism and L-H kinetic mechanism of Cr6+ in Cr6+-CA system were also explored. The results showed that, the maximum rate of Cr6+ reduction was obtained for an initial CA/Cr6+ molar ratio, R=3.75, a further increment in R being disadvantageous; the initial concentration had a little influence on the photocatalytic reduction efficiency of Cr6+; the highest reduction efficiency and adsorption efficiency of Cr6+ were obtained at pH=2.5 and pH=1.5, respectively; with the increase of initial solution pH(pH=1.5-3.5), adsorption efficiency of Cr6+ decreased significantly, and yet photocatalytic reduction efficiency of Cr6+ decreased slightly; the photocatalytic reduction of Cr6+ in Cr6+-CA system also followed L-H kinetics. The synergistic effect factor is always greater than 6 in the compound system, indicating that a marked synergistic effect between the photocatalytic reduction of Cr6+ and citric acid.
     The feasibility of photocatalytic reduction of Cr6+ by STBBFS photocatalyst in Cr6+-CA-FN system was systematically studied. The effects of the molar ratio of Fe3+-CA/Cr6+, the initial concentration, solution pH and synergistic effect factor on the photocatalytic reduction efficiency of Cr6+ in Cr6+-CA-FN system were studied; The photocatalytic reduction mechanism and L-H kinetic mechanism of Cr6+ in Cr6+-CA-FN system were also explored. The results showed that, the maximum rate of Cr6+ reduction was obtained for an initial Fe3+-CA/Cr6+ molar ratio, R=0.019; the initial concentration had a great influence on the photocatalytic reduction efficiency of Cr6+; the highest reduction efficiency and adsorption efficiency of Cr6+ were obtained at pH=2.5 and pH=1.5, respectively; with the increase of initial solution pH(pH=1.5-3.5), photocatalytic reduction efficiency and adsorption efficiency of Cr6+decreased significantly; the photocatalytic reduction of Cr6+in Cr6+-CA-FN system also followed L-H kinetics. The synergistic effect factor is always greater than 1 in the compound system, indicating that a marked synergistic effect between the photocatalytic reduction of Cr6+, Fe3+ and citric acid.
     The feasibility of photocatalytic disposal of Cr6+-methyl orange (MO) system by STBBFS photocatalyst was systematically studied. The effects of the initial concentration, solution pH and synergistic effect factor on the photocatalytic disposal of Cr6+-MO system were studied; The mechanism of the photocatalytic disposal of Cr6+-MO system and L-H kinetic were also explored. The results showed that, the synergistic effect factor of MO is always greater than Cr6+ in Cr6+-MO system, indicating that a marked synergistic effect between the photocatalytic reduction of Cr6+ and the photocatalytic oxidation of methyl orange.
引文
1.桥本和仁,藤岛昭.图解光催化技术大全[M],北京:科学出版社,2007,295
    2.孙德智.环境工程中的高级氧化技术[M],北京:化学工业出版社,2002,211
    3. 孙晓君,蔡伟民,井立强,等.二氧化钛半导体光催化技术研究进展[J],哈尔滨工业大学学报,2001,33(4):534-541
    4. Liu J H, Yang R, Li S M. Preparation and characterization of high photoactive TiO2 catalyst using the UV irradiation-induced sol-gel method[J], J. Univ. Sci. Technol. Beijing,2006,13(4): 350-354
    5. 牛新书,曹志民.钙钛矿型复合氧化物光催化研究进展[J],化学研究与应用,2006,18:770-775
    6. 孙希文,张建涛,杨志远,等.高钛型建筑矿渣砖的研制[J],新型建筑材料,2002,(2):36-38
    7. 金霞,李辽沙,董元篪.国内外高炉渣资源化技术发展现状和展望[J],中国资源综合利用,2005,9:4-7
    8. 杨合,薛向欣,左良,等.含钛高炉渣催化剂光催化降解亚甲基蓝[J],过程工程学报,2004,4:265-268
    9. 任允芙.钢铁冶金岩相学[M],北京:冶金工业出版社,1982,219
    10.王杰,赵碧建,张桂玉.高钛渣系列建材产品的开发及应用[J],新型建筑材料,2002,(2): 35-36
    11.杨合,赵苏.高炉渣在建材领域的应用[J],矿产保护与利用,2004,2(1):47-51
    12.王明玉,刘晓华,隋智通.冶金废渣的综合利用技术[J],矿产综合利用,2003,6(3):28-32
    13.叶平.高炉矿渣微粉的生产和应用[J],马钢技术,2003,4:43-46
    14.淑惠.矿渣微晶玻璃产品的研究与开发[J],玻璃与搪瓷,2002,2:51-56
    15.成海芳,文书明,殷志勇.高炉渣综合利用的研究进展[J],矿业快报,2006,9:21-23
    16.张则岗,王强,陈洁.钢铁厂工业废弃物的综合利用[J],新疆钢铁,2002,4:19-24
    17.稽琳,任泰祥,赵鹰立,等.用攀钢高炉残渣生产水泥[J],中国建材科技,1997,6(6):37-42
    18.李晨希.含钛高炉渣综合利用研究的进展[J],沈阳工业大学学报,2004,26(4):1-4
    19.张朝辉,莫涛.高炉渣综合利用技术的进展[J],中国资源综合利用,2008,5:12-15
    20.董学文,薛向欣,杨合,等.攀钢高炉渣作为光催化原料的可行性分析[J],工业安全与 环保,2004,30(4):10-12
    21.杨合,薛向欣,左良,等.含钛和稀土高炉渣光催化降解活性艳红X-3B[J],硅酸盐学报,2003,31(9):896-899
    22.杨合.含钛高炉渣再资源化的一个启发性观点[D],沈阳:东北大学,2005
    23.赵娜,杨合,薛向欣,等.高钛渣作为光催化材料降解邻硝基酚的实验研究[J],硅酸盐学报,2005,33(2):202-205
    24.王昱征,薛向欣,雷雪飞.硫掺杂含钛高炉渣光催化剂性能研究[J],材料与冶金学报,2009,8(1):73-76
    25.薛向欣,康艳红,杨合,等.含钛矿渣电化学催化降解硝基苯[J],过程工程学报,2008,8(5):1138-1142
    26.刘卯,薛向欣,杨合,等.含钛高炉渣光催化降解邻硝基酚的实验研究[J],材料导报,2006,20(1):140-142
    27.薛向欣,雷雪飞,杨合,等.硫酸盐修饰的含钛高炉渣光催化还原Cr6+[J],东北大学学报,2009,30(2):217-220
    28.雷雪飞,薛向欣.不同复合体系对含钛高炉渣光催化还原Cr6+的影响[J],化学学报,2008,66(22):2539-2546
    29.杨合,薛向欣,董学文.含钛高炉渣抗金黄色葡萄球菌的性能[J],硅酸盐学报,2008,36(3):387-390
    30.马俊伟,隋智通,陈炳辰.钛渣中钙钛矿浮选性能的研究[J],金属矿山,2001, (9):21-25
    31. Sui Z T,Zhang P X,Yamauchi C.Precipitation selectivity of boron compounds from slags[J],Acta Mater,1999,47(4):1337-1344
    32.隋智通,付念新.基于“选择性析出”的冶金废渣增值新技术[J],中国稀土学报,1998,16(S): 73-81
    33.李玉海,娄太平,隋智通.含钛高炉渣中钛组分选择性富集及钙钛矿结晶行为[J],中国有色金属学报,2000,10(5):719-722
    34.冯建成,张建树.采用攀钢高炉渣制取碳化钛的实验研究[J],矿产综合利用,1997,18(6):34-37
    35.李慧,仇永全,杨则器,等.离子炉碳(氮)化处理高钛高炉渣[J],北京科技大学学报,1996,18(3):232-236
    36.王荣凯,邹建新,高邦禄,等.攀枝花钛资源综合利用的合理途径探讨[J],四川有色金属,2001,(3):63-66
    37.李正平.含钛高炉渣与碳氮反应的实验研究[D],沈阳:东北大学,1999
    38. Fujishima A, Honda K. Photolysis-decomposition of water at surface of an irradiated semiconduction[J], Nature,1972,37 (1):238-245
    39.彭英才.半导体量子点的电子结构[J],固体电子学研究与进展,1997,17(2):165-172
    40. Bessekhouad Y, Robert D, Weber J V. Synthesis of photocatalytic TiO2 nanoparticles: optimization of the preparation conditions[J], J. Photochem. Photobiol., A:Chem.2003, 157(1):47-53
    41.高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M],北京:化学工业出版社,2002,276-282
    42. Jing Z, Qian X, Zhao C F, et al. Importance of the relationship between surface phases and photocatalytic activity of TiO2[J], Angew. Chem. Int. Ed.,2008,47:1766-1769
    43.赵晖,孙杰.TiO2光催化剂载体及提高其光催化活性的研究进展[J],江苏环境科技,2006,19(4): 52-55
    44. Hoffmann M R, Martin S T, Choi W Y, et al. Environmental applications of semiconductor photocatalysis[J], Chem. Rev.,1995;95:69-96
    45. Zhang X W, Lei L C. Effect of preparation methods on the structure and catalytic performance of TiO2/AC photocatalysts[J], J. Hazard. Mater.,2008,153(1-2):827-833
    46.金星龙,朱琨,房彦军,等.高分子金属卟啉光催化氧化处理废水[J],催化学报,2001,22(2):189-192
    47. Satuf M L, Brandi R J, Cassano A E, et al. Photocatalytic degradation of 4-chlorophenol: A kinetic study[J]. Appl. Catal., B Environ.,2008,82(1-2):37-49
    48. He D P, Lin F R. Preparation and photocatalytic activity of anatase TiO2 nanocrystallites with high thermal stability[J], Mater.Lett.,2007,61(16):3385-3387
    49. Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis[J], J. Photochem. Photobiol. C Photochem. Rev.,2000,1:1-21
    50. Linserbigler A L,Lu G Q,Yates J T. Photocatalysis on TiO2 surfaces principles, mechanisms and selected results[J], Chem. Rev.,1995,95(3):735-758
    51.尹莉松,沈辉.二氧化钛光催化应用进展及应用[J],材料导报,2000,14(12):23-25
    52.刘少华范济民赵志换.新型光催化剂在二氧化碳还原中的应用[J],化学通报,2006,69:1-7
    53. Bessekhouad Y, Robert D, Weber J V. Synthesis of photocatalytic TiO2 nanoparticles: optimization of the preparation conditions[J], J. Photochem. Photobiol. A Chem.,2003, 157:47-53
    54. Inagak M, Nakazawa Y, Hirano M, et al. Preparation of stable anatase-type TiO2 and its photocatalytic performance [J], Int. J. Inorg. Mater.,2001,3(7):809-811
    55. Xu N P, Shi Z F, Fan Y Q, et al. Effects of particle size of TiO2 on photocatalytic degradation of methylene blue in aqueous suspensions[J], Ind. Eng. Chem. Res.,1999, 38:373-379
    56. Ihara T, Miyoshi M, Iriyama Y, et al. Preparation of a visible-light-active TiO2 photocatalyst by RF plasma treatment[J], J. Mater. Sci.,2001,36:4201-4207
    57.余家国,熊建锋,程蓓.高活性二氧化钛光催化剂的低温水热合成[J],催化学报,2005,26(9):745-749
    58. Uchihara T, Matsumura M, Ono J, et al. Effect of ethylene diamine tetraacetic acid on the photocatalytic activities and flat-band potentials of cadmium sulfide and cadmium selenide[J], J. Phys. Chem.,1990,94(1):415-418
    59. Moser J, Punchihewa S, Pierre P, et al. Surface complexation of colloidal semiconductors strongly enhances interfacial electron-transfer rates[J], Langmuir,1991,7(12): 3012-3018
    60. Honga P, Bahnemann D W, Hoffmann M R. Cobalt(II) tetra sulfophthalo-cyanine on titanium dioxide:a new efficient electron re-lay for the photocatalytic formation and depletion of hydrogen peroxide in aqueous suspensions [J], J. Phys. Chem.,1987,91(8): 2109-2117
    61. Ranjit K T,Willner I, Bossmann S B, et al. Iron(III) phthalo-cyanine-modified titanium dioxide:a novel photocatalyst for the enhanced photodegradation of organic pollutants[J], J. Phys. Chem. B,1998,102(47):9397-9403
    62. Choi W, Termin A, Hoffmann M R. The role of metal-ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge-carrier recombination dynamics[J], J. Phys. Chem.,1994,98(51):13669-13679
    63. Paola A D, Marei G, Palmisano L, et al. Preparation of polycrystalline TiO2 photocatalysts impregnated with various transition metal ions:characterization and photocatalytic activity for the degradation of 4-nitrophenol[J], J. Phys. Chem. B,2002, 106(3):637-645
    64. Gratel M, Howe R F. Electron paramagnetic resonance studies of doped TiO2 colloids[J],J. Phys. Chem.,1990,94(6):2566-2572
    65. Clovis A L, Carter G J, Locuson D B, et al. Photocatalytic inhibition of algae growth using TiO2,WO3 and cocatalyst modifications [J], Environ. Sci. Technol.,2000,34(22): 4754-4758
    66. Li X Z, Li F B. Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and waste water treatment [J], Environ. Sci. Technol.,2001,35(11):2381-2387
    67. Yamakata A, Ishibashi T, Onishi H. Electron and hole capture reactions on Pt/TiO2 photocatalysts exposed to methanol vapor studied with time-resolved infrared absorption spectroscopy[J],J. Phys. Chem. B,2002,106(35):9122-9125
    68. Kisch H, Zang L, Lange C, et al. Modified amorphous titania—ahibrid semiconductor for detoxification and current generation by visible light[J], Angew. Chem. Int. Ed.,1998,37: 3034-3036
    69. Songk Y, Kwon Y T, Choi G J, et al. Photocatalytic activity of Cu/TiO2 with oxidation state of surface-loaded copper[J], Bull. Korean Chem. Soc.,1999,20(8):957-960
    70. Lin J, Yu J C. An investigation on photocatalytic activities of mixed TiO2-rare earth oxides for the oxidation of acetone in air[J], J. Photochem. Photobiol. A Chem.,1998, 116:63-67
    71. Ranjitk T, Cohen H, Willner I, et al. Lanthanide oxide-doped titanium dioxide:effective photocatalysts for the degradation of organic pollutants[J], J. Mate. Sci.,1999,34: 5273-5280
    72.岳林海,水淼,徐铸德,等.稀土掺杂二氧化钛的相变和光催化活性[J],浙江大学学报(理学版),2000,27(1):69-74
    73. Xu A W, Gao Y, Liu H Q. The preparation,characterization and their photocatalytic activites of rare-earth-doped TiO2 nanoparticles[J], J. Catal.,2002,207:151-157
    74.周武艺,唐绍裘,张世英,等.制备不同掺杂稀土纳米TiO2光催化剂及其光催化活性比较研究[J],硅酸盐学报,2004,32(10):1203-1208
    75. Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J], Sci.,2001,293:269-271
    76. Umebayashi T, Yamaki T, Itoh H. Band gap narrowing of titanium dioxide by sulfur doping[J], Appl. Phys. Lett.,2002,81(3):454-546
    77. Jimmy C, Yu J G, Ho W K, et al. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders[J], Chem. Mater.,2002,14:3803-3816
    78. Matthews R W. Photooxidation of organic impurities in water using thin films of titanium dioxide[J], J. Phys. Chem.,1987,91:3328-3333
    79. Vogel R, Hoyer P, Weller H. Quantum-sized PbS, CdS, Ag2S, Sb2S3 and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors[J], J. Phys. Chem., 1994,98(12):3183-3188
    80. Marci G, Augugliaro V, Lopez-munoz M J, et al. Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems.2 surface, bulk characterization and 4-nitrophenol photodegradation in liquid-solid regime[J], J. Phys. Chem. B,2001,105(5):1033-1040
    81. Tada H, Hattori A,Tokihisa Y, et al. A patterned-TiO2/SnO2 bilayer type photocatalyst[J], J. Phys. Chem. B,2000,104:4585-4587
    82. Do Y R, Lee W, Dwight K, et al. The effect of WO3 on the photocatalytic activity of TiO2[J], J. Solid State Chem.,1994,108(1):198-201
    83. Li X Z, Li F B, Yang C L, et al. Photocatalytic activity of WOx-Ti02 under visible light irradation[J], J. Photochem. Photobiol. A Chem.,2001,141:209-217
    84. Solbrand A, Henningsson A, Soidergren S. Charge transport properties in dye-sensitized nanostructured TiO2 thin film electrodes studied by photoinduced current transients[J], J. Phys. Chem. B,1999,103(7):1078-1083
    85. Cho Y M, Choi W Y. Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2[J], Environ. Sci. Technol.,2001,35(5):966-970
    86. Bae E Y, Choi W Y. Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light[J], Environ. Sci. Technol., 2003,37(1):147-152
    87. Ranjitk T, Cohen H, Willener I, et al. Lanthanide oxide-doped titanium dioxide effective photocatalysts for the degradation of organic pollutants [J], J. Mater. Sci.,1999,34: 5273-5280
    88.曹茂盛,关长斌,徐甲强,等.纳米材料导论[M],哈尔滨:哈尔滨工业大学出版社,2001.6-13
    89. Kopf P, E Gilbert, Eberle S H. TiO2 photocatalytic oxidation of monochloroacetic acid and pyridine:influence of ozone [J], J. Photochem. Photobiol. A Chem.,2000,136: 163-168
    90.李来胜,祝万鹏,张彭义,等.TiO2薄膜光催化臭氧化邻苯二酚[J],催化学报,2003,24(3):163-168
    91.胡军,周集体,孙丽颖,等.芳香化合物的光催化-臭氧联用降解研究[J],环境科学与技术,2004,27: 15-18
    92.李春雷,王新明,潘海祥,等.H202对载银Ti02光催化降解Aroclor1260的影响[J],重庆环境科学,2002,24(5):29-31
    93.罗亚田,汤红妍,余以雄.超声波、电场和紫外光催化协同降解苯酚[J],中国环境科学,2005,25(1):69-72
    94. Omole M A, KOwino I O, Sadik O A. Palladium nanoparticles for catalytic reduction of Cr6+ using formic acid[J], Appl. Catal., B Environ.,2007,76:158-167
    95. Colo'n G, Hidalgo C, Navi'o J A. Photocatalytic Deactivation of Commercial TiO2 Samples During Simultaneous Photoreduction of Cr6+ and Photooxidation of Salicylic Acid[J], J. Photochem. Photobiol. A,2001,138:79-85
    96. Testa J J, Grela M A, Litter M I. Heterogeneous Photocatalytic Reduction of Chromium(VI) over TiO2 Particles in the presence of Oxalate:Involvement of Cr(V) Species[J], Environ. Sci. Technol.,2004,38:1589-1594
    97. Fu H, Lu G, Li S. Adsorption and Photo-induced Reduction of Cr6+ Ion in Cr6+-4CP (4-Chlorophenol) Aqueous System in the presence of TiO2 as Photocatalyst[J], J. Photochem. Photobiol. A,1998,114:81-88
    98. Lee S M, Lee T W, Choi B J. Treatment of Cr6+ and Phenol by Illuminated TiO2[J], J. Environ. Sci. Health A,2003,38:2219-2228
    99. Schrank S G, Jose'H J, Moreira R F P M. Simultaneous Photocatalytic Cr6+ Reduction and Dye, Oxidation in a TiO2 Slurry Reactor[J], J. Photochem. Photobiol. A,2002,147: 71-76
    100. Selli E, Giorgi A, Bidoglio G. Humic Acid-Sensitized Photoreduction of Cr6+ on ZnO Particles[J], Environ. Sci. Technol.,1996,30:599-604
    101. Yang J K, Lee S M. Removal of Cr6+ and Humic Acid by Using TiO2 Photocatalysis[J]. Chemosphere,2006,63:1677-1684
    102.Meichtry J M, Brusa M, Mailhot G. Heterogeneous Photocatalysis of Cr6+ in the presence of Citric Acid over TiO2 Particles:Relevance of Cr(V)-Citrate Complexes[J]. Appl. Catal., B:Environ.,2007,71:101-107
    103.杨莉,吴少林,吴光辉.有机废水对光催化还原Cr6+的影响[J],南昌航空工业学院学报,2005,20(4):55-58
    104. Cheng S C, Chuan C T. Electrochemically promoted photocatalytic oxidation of nitrite ion by using rutile form of TiO2/Ti electrode[J], J. Mol. Catal. A:Chem.,2000,151: 133-145
    105.李宣东,刘惠玲,姜艳丽,等.Ti02/Ti薄膜电极制备和光电催化降解罗丹明B的研究[J],环境保护科学,2003,29(2): 9-13
    106.张乐观.组合光催化技术在水处理中的应用[J],化工进展,2006,25(9):1036-1039
    107.冷少华,张昭,成少安,等.光电催化降解苯胺的研究-外加电压的影响[J],环境科学学报,2001,21(6):710-715
    108.安太成,张文兵,朱锡海,等.一种新型光电催化反应器的研制及甲酸的光电催化深度氧化[J],催化学报,2003,24(5):338-342
    109.任树林.超声TiO2光催化协同降解对氨基偶氮苯废水[J],西北大学学报,2004,34(4):425-428
    110.何兵,范益群,徐南平.超声-光催化氧化联合法降解甲基橙的研究[J],合肥工业大学学报,2003,26(4):585-587
    111.王桂华,尹平河,赵玲,等.超声波辅助Ti02光催化降解印染废水的研究[J],工业水处理,2004,24(4):42-45
    112.付荣英,陈亮,胡牡丹,等.超声波-光催化氧化降解邻氯苯酚的研究[J],环境污染与防治,2004,26(2):116-118
    113.顾浩飞,安太成,文晟,等.超声光催化降解苯胺及其衍生物研究[J],环境科学学报, 2003,23(5):593-597
    114.周肜,吴纯德,王晓蕾,等.超声协同纳米Ti02光催化降解水中苯酚机理的研究[J],分析科学学报,2005,21(3):259-261
    115.kado Y, M Atobe, T Nonaka. Ultrasonic effects on electroorganic processes-Part20. Photocatalytic oxidation of aliphatic alcohols in aqueous suspension of TiO2 powder[J], Ultrsonics Sonochem.,2001,8:69-74
    116.Davydo L, Reddy E P, P France, et al. Sonophotocatalytic destruction of organic contaminants in aqueous systems on TiO2 powders[J], Appl. Catal., B Environ.,2001,32: 95-105
    117.安太成,顾浩飞,陈卫国,等.超声协同纳米Ti02光催化降解活性染料的初步研究[J],中山大学学报,2001,40(5):131-132
    118.S Horikoshi, H Hidaka, N Serpone. Environmental remediation by an integratedmicrowave/UV-illumination method Ⅱ. Characteristics of a novel UV-VIS-microwave integrated irradiation device in photodegradation processes[J], J. Photochem. Photobiol. A, Chem.,2002,153:185-189
    119.艾智慧,姜军清,杨鹏,等.微波辅助光催化降解4-氯酚的研究[J],工业水处理,2004,24(11): 41-44
    120.杨鹏,艾智慧,姜军清,等.微波辅助光催化脱色的研究[J],环境科学与技术,2004,27:1-3
    121.王怡中,陈梅雪,胡春,等.光催化氧化与生物氧化组合技术对染料化合物降解研究[J],环境科学学报,2000,20(6): 772-775
    122.李涛,谭欣,任俊革.光催化氧化-生物法处理有机磷农药废水[J],河南科技大学学报,2005,26(1): 75-78
    123.柳丽芬,杨凤林,张兴文.磁化与光催化协同作用氧化含酚水溶液[C],2002年全国光催化学术会议论文集,北京,2002,10
    124.胡波,黄励,张高科.磁化预处理作用下光催化降解水中有机染料[J],广西师范学院学报,2005,22(2): 43-46
    125.杜朝平,杨幼名.磁场助Y203/TiO2粉体的光催化性能研究[J],工业催化,2005,13(2):47-50
    126.刘旦初.多相催化原理[M],上海:复旦大学出版社,1997,216-225
    127.傅希贤,桑丽霞,王俊珍,等.钙钛矿型(AB03)化合物的光催化活性及其影响因素[J],天津大学学报,2001,34(2):229-231
    128.白树林,傅希贤,桑丽霞,等.钙钛矿(AB03)型复合氧化物的光催化活性变化趋势与分析[J], 高等学校化学学报,2001,22(4):663-665
    129.常振勇,崔连起.钙钛矿金属氧化物催化剂的研究与应用综述[J],精细石油化工, 2002, (3):50-53
    130. Kim S J, Demazeau G, Presniakov I, et al. Structural distortion and chemical bonding in TlFeO3:comparison with AFeO3 (A=Rare Earth) [J], J. Solid State Chem.,2001,161: 197-204
    131.牛新书,李红花,张峰,等.GdFeO3纳米晶的制备及其光催化活性[J],中国稀土学报,2005,23(1):81-84
    132.Niu X S, Li H H, Liu G G. Preparation characterization and photocatalytic properties of REFeO3 (RE=Sm, Eu, Gd) [J], J. Mol. Catal. A:Chem.,2005,232 (1-2):89-93
    133. Eng H W, Barnes P W, Auer B J, et al. Investigations of the electronic structure of d0 transition metal oxides belonging to the pervoskite family[J], J. Solid State Chem.,2003, 175:94-109
    134.桑丽霞,傅希贤,白树林,等.AB03钙钛矿型复合氧化物光催化活性与B离子α电子结构的关系[J],感光科学与光化学,2001,19(2):109-115
    135.Goodenough J B. Progress in Solid State Chemistry [M], Oxford:Pergamon Press,1991: 145-151
    136. Yamazoe N, Teraora Y. Oxidation catalysis of perovskites-relationships to bulk structure and composition [J], Catal. Today,1990,8:175-199
    137. Rao C N R. Transition metal oxides [J], Annu. Rev. Phys. Chem.,1989,40:291-326
    138.桑丽霞,钟顺和,傅希贤.LaBO3(B=Fe,Co)中氧的迁移与光催化反应活性[J], 高等学校化学学报,2003,24(2):320-323
    139.Gerischer H, Heller A. The role of oxygen in photooxidation of organic molecules on semiconductor particles[J], J. Phys. Chem.,1991,95:5261-5267
    140. Cherry M, IslamM S, Catlow C R A J. Oxygen ion migration in perovskite-type oxides[J], J. Solid State Chem.,1995,118:125-132.
    141.范崇政,肖建平.纳米TiO2的制备与光催化反应研究进展[J],科学通报,2001,46(4):265-273
    142.宋崇林,王军,沈美庆,等.干燥条件对纳米晶体La2Co03的结构与合成机理的影响[J],应用化学,1998,15(5):65-67
    143.夏熙,潘存信.固体反应法制备纳米LaCoyMn(1-y)O3系复合氧化物及其表征[J],应用化学学报,2001,18(2):96-99
    144.王海,朱永法,谭瑞琴,等.非晶态配合物法制备钙钛矿型纳米粉体催化剂及其CO催化氧化性能[J],化学学报,2003,61(1):13-16
    145.徐鲁华,翁端,吴晓东,等.La(1-x)SrxMn(o.7)Zn(o.3)0(3+λ)钙钛矿的制备及稀燃条件下氮氧化物的催化还原性能[J],中国稀土学报,2002,20(4):378-381
    146.翟永青,易涛,高松,等. Ba(1-x)CaxSnyTi(1-y)O3固溶体的合成与介电性能[J],功能材料, 2002,33(2):256-257
    147.蒋正静,戴洁,张志兰,等.钛酸铅的水热法制备及其光催化活性的研究[J],化学世界,2002,10:522-524
    148.Machida M, Mitsuyama T, Ikeue K, et al. Photocatalytic property and electronic structure of triple-layered perovskite tantalates MCa2Ta3010(M=Cs, Na, H, and C6H13-NH3)[J], J. Phys. Chem. B,2005,109:7801-7806
    149. Shimizu K, Itoh S, Hatamachi T, et al. Photocatalytic water splitting on Ni-intercalated Ruddlesden-Popper tantalate H2La2/3Ta2O7[J], Chem. Mater.,2005,17:5161-5166
    150. Kudo A, Kato H, Nakagawa S. Water splitting into H2 and O2 on new Sr2M2O7 (M=Nb and Ta) photocatalysts with layered perovskite structures:factors affecting the photocatalytic activity [J], J. Phys. Chem. B,2000,104:571-575
    151. Kato H, Kudo A. Water Splitting into H2 and O2 on Alkali Tantalate Photocatalysts ATaO3(A=Li, Na, and K)[J], J. Phys. Chem. B,2001,105:4285-4292
    152.Machida M, Yabunaka J, Kijima T. Synthesis and photocatalytic property of layered perovskite tantalates, RbLnTa2O7 (Ln=La, Pr, Nd, and Sm)[J], Chem. Mater.,2000,12: 812-817
    153. Yin J, Zou Z, Ye J. Possible role of lattice dynamics in the photocatalytic activity of BaM1/3N2/3O3(M=Ni, Zn; N=Nb, Ta)[J], J. Phys. Chem. B,2004,108:8888-8893
    154.杨秋华,傅希贤,王俊珍,等.La1-xSrxFeO3光催化降解水溶性染料[J],应用化学,2000,17(6):585-588
    155.桑丽霞,傅希贤,白树林,等.制备方法对LaFeO3及掺杂LaFeO3光催化活性的影响[J],化学工业与工程,2000,17(6):336-340
    156.杨立滨,井立强,李妹丹,等.ABO3型钙钛矿结构的可见光光催化剂LaCo0.5Ti0.5O3的设计与合成[J],高等学校化学学报,2007,28(3):415-418
    157.孙尚梅,康振晋,朴栋海,等.钙钛矿型La0.8Sr0.2CoO3的合成及其光催化活性的研究[J],延边大学学报(自然科学版),2000,26(4):285-287
    158.徐科,张朝平.钙钛矿型NdFeO3纳米材料的制备及光催化氧化NO2的研究[J],化学与生物工程,2005,10:26-28
    159.赵晓华,陈道平,娄向东,等.钙钛矿型复合氧化物镍酸镧光催化性能研究[J],河南师范大学学报(自然科学版),2005,33(2):69-72
    160.杨秋华,傅希贤,桑丽霞,等.钙钛矿型LaFeO3和SrFeO3的光催化性能[J],硅酸盐通报,2003,3:15-18
    161.桑丽霞,傅希贤,杨秋华,等. LaFeO3和SrFeO3-λ对水溶性染料的光催化降解[J],环境科学与技术,2002,25(2):4-6
    162. Hwang D W, Lee J S, Li W, et al. Electronic Band Structure and Photocatalytic Activity of Ln2Ti207 (Ln=La, Pr, Nd)[J], J. Phys. Chem. B,2003,107:4962-4970
    163.管晶,梁文懂.掺钒二氧化钛的可见光催化性能研究[J],应用化工,2006,35(2):117-119
    164.蔡邦宏.铁掺杂对二氧化钛结构和光催化性能的影响[J],云南大学学报,2005,27(3):274-280
    165. Gupta V K, Gupta M, Sharma S. Process development for the removal of lead and chromium from aqueous solutions using red mud—an aluminium industry waste[J], Water. Res.,2001,35(5):1125-1134
    166.黄韵,马晓燕,刘海林,等.改性累托石对水溶液中Cr(Ⅵ)的吸附[J],硅酸盐学报,2005,33(2):197-201
    167.Ku Y, Jung I L. Photocatalytic reduction of Cr6+ in aqueous solutions by UV irradiation with the presence of titanium dioxide[J], Wat. Res.2001,35(1):135-142
    168. Deng L, Wang H L, Deng N S. Photoreduction of chromium(VI) in the presence of algae,Chlorella vulgaris[J], J. Hazard. Mater.,2006,138:288-292
    169.魏复盛.水和废水监测分析方法[M],北京:中国环境科学出版社,2002,346
    170. Huang L, Bassir M, Kaliaguine S. Characters of perovskite-type LaCoO3 prepared by reactive grinding[J], Mater. Chem. Phys.,2007,101:259-263
    171.姜妍彦,李景刚,宁桂玲,等.尖晶石型CuAl2O4纳米粉体的制备及其可见光催化性能[J],硅酸盐学报,2006,34:1084-1087
    172.陆诚,杨平,杜玉扣,等.载体对负载型Ti02催化剂光催化性能的影响[J],催化学报,2003,24:248-252
    173.郑秀君,李锦州,李刚,等.尖晶石型(Zn1-xCdx)2 SnO4粉体的制备与光催化性能[J],分子催化,2008,22:65-69
    174. Lu C H, Hu C Y, Wu C H. Preparation and characterization of new visible-light-driven BaCoo.5Nb0.5O3 photocatalyst[J], Mater. Lett.2007,61:3959-3962
    175.Umebayashi T, Yamaki T, Itoh H. Band gap narrowing of titanium dioxide by sulfur doping [J], Appl. Phys. Lett.,2002,81(3):454-546
    176.Xu J C, Shi Y L,Huang J E, et al. Doping metal ions only onto the catalyst surface[J],J. Mol. Catal. A:Chem.,2004,219:315-355
    177.王桂赞,王延吉,秦娅,宋宝俊.焙烧条件对CaTiO3光催化性能的影响[J],材料科学与工艺,2007,15(6):831-834
    178.COL'ON G, S'ANCHEZ-ESPANA J M, HIDALGO M C. Effect of TiO2 acidic pre-treatment on the photocatalytic properties for phenol degradation[J],. Photochem. Photobiol. A,2006,179:20-27
    179. Jiang F, Zheng Z, Xu Z Y. Aqueous Cr6+ photo-reduction catalyzed by TiO2 and sulfated TiO2[J], J. Hazard. Mater. B,2006,134:94-103
    180.Noda L K, Almeida R M, Goncalves N S, et al. TiO2 with a high sulfate content-thermogravimetric analysis, determination of acid sites by infrared spectroscopy and catalytic activity[J], Catal. Today,2003,85:69-74
    181.张霞,赵岩,张彩碚,孟皓,混晶结构纳米TiO2粉的光催化活性[J],材料研究学报,2005,20(5):454-458
    182. Bojinova A, Kralchevska R, Poulios I, et al. Anatase/rutile TiO2 composites:Influence of the mixing ratio on the photocatalytic degradation of Malachite Green and Orange II in slurry[J], Mater. Chem. Phys.,2007,106:187-192
    183.彭文世,刘高魁.矿物红外光谱图集[M],北京:科学出版社,1982,508
    184.Nakamoto, K. Infrared spectra of inorganic and coordination compounds[M], New York: John Wiley and Sons, Inc.,1978,448
    185.Lyon J P. Infrared absorption spectra, the front page[M], London:Academic Press,1967, 508
    186. Taylor D G, Nenadic C M, Crable J V. Infrared spectra for mineral identification[J], Am. Ind. Hyg. Ass. J.,1970,31:100-108
    187. Hunt J M, Wisherd M P, Bonham L C. Infrared absorption spectra of minerals and other inorganic compounds[J], Analyt. Chem.,1950,22:1478-1497
    188. Samantaray S K, Mohapatra P, Parida K. Physico-chemical characterization and photocatalytic activity of nanosized SO42-/Ti02 towards degradation of 4-nitrophenol[J], J. Mol. Catal. A,2003,198:277-287
    189.Kobya M. Removal of Cr6+ from aqueous solutions by adsorption onto hazelnut shell activated carbon:kinetic and equilibrium studies[J], Biores. Technol.,2004,91:317-321
    190.黄韵,马晓燕,刘海林,等.改性累托石对水溶液中Cr(Ⅵ)的吸附[J],硅酸盐学报,2005,33(2):197-201
    191.张琳,肖玫,吴峰,等.光化学还原法处理Cr6+模拟废水的试验研究[J],水处理技术,2005,31(6):35-37
    192.刘淑云,李小明,曾光明.含Cr6+废水处理研究进展[J],湖南城市学院学报,2006,15(2):66-68
    193.Dinatale F, Lancia A, Molino A, et al. Removal of chromium ions form aqueous solutions by adsorption on activated carbon and char[J], J. Hazard. Mater.,2007,145: 381-390
    194.付桂珍,龚文琪.蒙脱石有机插层复合物处理含Cr6+废水研究[J],非金属矿,2005,28(3):49-51
    195.Golder A K, Samanta A N, Ray S. Removal of phosphate from aqueous solutions using calcined metal hydroxides sludge waste generated from electrocoagulation[J], Sep. Purif. Technol.,2006,52:102-109
    196.马勇,邵红,王恩德,等.铝钛柱撑系列改性膨润土处理含铬废水的应用研究[J],环境科学研究,2004,17(4):48-50
    197. Malklo E, Nuhoglo Y. Potential of tea factory waste for chromium(Ⅵ) removal from aqueous solutions:Thermodynamic and kinetic studies[J], Sep. Purif. Technol.,2007,54: 291-298
    198.Zer A O, Zer D O. The adsorption of copper(II) ions on to dehydrated wheat bran (DWB): determination of the equilibrium and thermodynamic parameters[J], Process Biochem., 2004,39:2183-2191
    199.Namasivayam C, Prathap K. Recycling Fe(Ⅲ)/Cr(Ⅲ) hydroxide, an industrial solid waste for the removal of phosphate from water[J], J. Hazard. Mater. B,2005,123: 127-134
    200. Li Y, Yue Q Y, Gao B Y,et al. Adsorption thermodynamic and kinetic studies of dissolved chromium onto humic acids[J], Colloids Surf., B:Biointerfaces (2008), doi:10.1016/j.colsurfb.2008.02.014
    201.Raji C, Anirudhan T S. Batch Cr6+ removal by polyacrylamide grafted sawdust:kinetics and thermodynamics[J], Water Res.,1998,32:3772-3780
    202.杨波,马玉龙.铜离子-氧化锌/十六烷基铵基吡啶-蒙脱石吸附大肠杆菌的能力[J],硅酸盐学报,2007,35(12):1661-1665
    203.Erdem M, Altundogan H S, Tumen F. Removal of hexavalent chromium by using heat-activated bauxite[J], Miner. Eng.,2004,17:1045-1052
    204.Demirbs A, Aralan G, Pehlivan E. Recent studies on activated carbons and fly ashes from Turkish resources [J], Energy Sources A,2006,28:627-638
    205.Erdem M, Altundogan H S, Turan M D, et al. Hexavalent chromium removal by ferrochromium slag[J], J. Hazard. Mater. B,2005,126:176-182
    206. Ali C, Kenan D, Hasan S. An investigation of Cr6+ ion removal from wastewaters by adsorption on residual lignin[J], Fresenius Environ. Bull.,2004,13:124-127
    207. Acar F N, Malkoc E. The removal of chromium(VI) from aqueous solutions by Fagus orientalis L. [J], Biores. Technol.,2004,94:13-15
    208. Selvaraj K, Manonmani S, Pattabhi S. Removal of hexavalent chromium using distillery sludge[J], Biores.Technol.,2003,89:207-211
    209. Malkoc E, Nuhoglu Y. Potential of tea factory waste for chromium(VI) removal from aqueous solutions:Thermodynamic and kinetic studies[J], Sep. Purif. Technol.,2007, 54:291-298
    210. Fadali O A, Magdy Y H. Daifullah A A M, et al. Removal of chromium from tannery effluents by adsorption[J], J. Environ. Sci. Health.,2004,239:465-472
    211. Arslan G, Pehlivan E. Batch removal of chromium(VI) from aqueous solution by Turkish brown coals[J], Biores. Technol.,2007,98:2836-2845
    212. Mohan D, Pittman C U. Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water (Review article) [J], J. Hazard. Mater.,2006,137: 762-811
    213.Lurie J. Handbook of Analytical Chemistry[M], Moscow:Mir Publishers,1975:306
    214. Wagner C D, Moulder J F, Davis L E, et al. Handbook of X-ray photoelectron spectroscopy[M], Minnesota:Perking-Elmer Corporation Physical Electronics Division, 1979:112
    215.Briggs, D, Seah M P. Practical surface analysis Vol.1 [M], New York:John Wiley & Sons,1993:533
    216. Olefjord I, Marcus P. A round robin on combined electrochemical and AES/ESCA characterization of the passive films on Fe-Cr and Fe-Cr-Mo alloys[J], Corros. Sci.,1988, 28:589-602
    217. Beccaria A M, Castello G, Poggi G. Influence of passive film composition and sea water pressure on resistance to localised corrosion of some stainless steels in sea water[J], British. Corros. J.,1995,30:283-287
    218.Matsubara E, Inoue H, Oku M,et al. XPS/GIXS Study of Thin Oxide Films Formed on the Fe-40%Cr Alloy with Trace of Manganese [J], Scripta Mater.,1997,36:841-845
    219.陈晓国,潘新朋,杨红刚,等.不同光源下Ti02膜对MC-RR光催化降解的比较研究[J],农业环境科学学报,2005,24(1):46-49
    220.颜晓莉,史惠祥,雷乐成,等.负载型二氧化钛光电催化降解苯酚废水的反应动力学[J],化工学报,2004,55(3):426-433
    221. Nicola J P, Michael R H.Mathematical model of a photocatalytic fiber-opticcable reactor for heterogeneous photocatalytic[J], Env. Sci. Tech.,1998,32(3):398-404
    222.Papadam T, Xekoukoulotakis N P, Poulios I, et al. Photocatalytic transformation of acid orange 20 and Cr6+in aqueous TiO2 suspensions [J], J. Photochem. Photobiol. A,2007, 186:308-315
    223.Chenthamarakshan C R, Rajeshwar K, Wolfrum E. Heterogeneous photocatalytic reduction of Cr (Ⅵ) in UV-irradiated titania suspensions:effect of protons, ammonium ions.and other interfacial aspects[J], Langmuir,2000,16(6):2715-2721
    224.陈心满,徐明芳. UV/TiO2光催化还原Cr(Ⅵ)过程中吸附作用的影响及其消除[J],环境科学,2006,27(5):913-917
    225.王萍,李国昌. Keggin离子改性凹凸棒石对废水中Cr6+的吸附研究[J],非金属矿,2006,29(6):46-49
    226.Mohapatra P, Samantaray S K, Parida K. Photocatalytic reduction of hexavalent chromium in aqueous solution over sulphate modified titania[J], J. Photochem. Photobiol. A,2005,170:189-194
    227.徐明芳,陈心满,徐开强.光催化反应器中光降解重金属Cr(Ⅵ)的研究[J],现代化工,2005,25(3):30-33
    228.赵景联,种法国,赵靓,等.磁场TiO2光催化耦合降解酸性大红3R的研究[J],西安交通大学学报,2006,40(7):851-855
    229.方开泰,马长兴.正交与均匀实验设计[M],北京:科学出版社,2001,43
    230.戴智铭,陈爱平,古宏晨,等.气固相光催化氧化反应动力学分析[J],化工学报,2002,53(6):578-582
    231.刘守新,刘鸿.光催化及光电催化基础与应用[M],北京:化工出版社,2005,168
    232. Herrmann J. Heterogeneous Photocatalysis:Fundamentals and Applications to the Removal of Various Types of Aqueous Pollutants [J], Catal. Today,1999,53:115-129
    233.Misono M. A view on the future of mixed oxide catalysts:The case of heteropolyacids (polyoxometalates) and perovskites[J], Catal. Today.,2005,100:95-100
    234.邓积光,王国志,张玉娟,等.钙钛矿型氧化物的制备与光催化性能研究进展[J],中国稀土学报,2006,24:80-93
    235.Pari G, Mathi J S, Subrumoniam G. Density-functional description of the electronic structure of LaMO3 (M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni) [J], Phys. Rev.B.,1995,23: 16575-16581
    236.张定国,杨焯,杨福来.Mn2+掺杂对纳米TiO2薄膜光催化活性的影响[J],吉林化工学院学报,2006,23(2):7-9
    237.吴树新,马智,秦永宁,等.掺杂纳米TiO2光催化剂性能的研究[J],物理化学学报,2004,20(2):138-143
    238.Stypula B, Stoch J. The characterization of passive films on chromium electrodes by XPS[J], Corros. Sci.,1994,36:2159-2167
    239.Olofa C, Hornstrom O S. An AES and XPS study of the high alloy austenitic stainless steel 254 SMO(?) tested in a ferric chloride solution[J], Corros. Sci.,1994,36:141-151
    240. Merritt K, Milard M, Wortman R S, Brown S A. XPS analysis of 316 LVM corroded in serum and saline[J], Biomat., Med. Dev., Art. Org.,1983,11:115-124
    241.孙俊.Al3+、Fe3+对有机酸还原Cr6+的催化作用研究[D],南京:南京农业大学,2007
    242.李琛.有机酸还原Cr6+反应动力学及其影响因素研究[D],南京:南京农业大学,2006
    243.董慧玉,姜先龙,孙立强,等.车间空气中乙酸最高容许浓度的研讨[J],工业卫生与职业病,1993,19(2): 93-95
    244.王泓波,王心崴.封永康,等.乙酸对男女工健康的影响差异[J],职业卫生与应急救援,1995,13(1): 20-21
    245.王泓波,王心崴,常虹,等.乙酸对作业工人健康的影响与卫生标准的讨论[J],中华劳动卫生职业病杂志,1993,11(3):152-155
    246.兴雅娟,孙秀红,高兴春.糠醛生产废水治理[J],辽宁化工,2004,33(11):665-666
    247.卢旭东,姜承志.多孔TiO2陶瓷光催化剂降解糠醛废水[J],辽宁化工,2002,31(4):139-140
    248.李善评,甄博如,栾富波,等.电催化氧化法预处理糠醛废水的研究[J],水处理技术,2006,32(12):47-50
    249. Arana J, Dona Rodriguez J M, Gonza'lez Di'az O. The Effect of Acetic Acid on the Photocatalytic Degradation of Catechol and Resorcinol[J], Appl. Catal., A,2006,299: 274-284
    250. Minero C, Catozzo F, Pelizzetti E. Role of Adsorption in Photocatalyzed Reactions of Organic Molecules in Aqueous Titania Suspensions[J], Langmuir,1992,8:481-486
    251. Hu C, Tang Y, Yu J C. Photocatalytic Degradation of Cationic Blue X-GRL Adsorbed on TiO2/SiO2 Photocatalyst[J], Appl. Catal. B:Environ.,2003,40:131-140
    252.Renzi C, Guillard C, Herrman J M. Effects of Methanol, Formamide, Acetone and Acetate Ions on Phenol Disappearance Rate and Aromatic Products in UV-Irradiated TiO2 Aqueous Suspensions [J], Chemosphere,1997,35:819-826
    253. Deng B, Stone A T. Surface-catalyzed chromium(Ⅵ) reduction:The TiO2 mandelic acid system a [J], Environ. Sci. Technol.,1996,30:463-472
    254. Deng B, Stone A T. Surface-catalyzed chromium(Ⅵ) reduction:The TiO2 mandelic acid system b [J], Environ. Sci. Technol.,1996,30:2484-2494
    255. Wittbrodt P R, Palmer C D. Reduction of Cr(Ⅵ) in the presence of excess of soil fulvic acid[J], Environ. Sci. Technol.,1995,29:255-263
    256. Dionysiou D D, Suidan M T, Bekou E, et al. Effect of ionic strength and hydrogen peroxide on the photocatalytic degradation of 4-chlorobenzoic acid in water [J], Appl. Catal. B:Environ.,2000,26(3):153-171
    257. Matos J, Laine J, Herrmann J M. Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon [J], Appl. Catal. B: Environ.,1998,18(3):281-291
    258.Ohno T, Tokieda K, Higashada S, et al. Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene [J], Appl. Catal. A:General,2003, 244 (2):383-391
    259.宋强,曲久辉.光电协同效应降解饮用水中邻氯苯酚的机理和动力学[J],中国科学(B辑),2003,33(1):80-88
    260. Kraeutler B. Bard A.J. Photoelectrosynthesis of ethane from acetate ion at an n-type titanium dioxide electrode. The photo-kolbe reaction[J], J. Am. Chem. Soc.,1977,99(23): 7729-7731
    261.Aran-a J, Gonzalez Di'az O, Dona Rodriguez J.M, et al. Role of Fe3+/Fe2+as TiO2 dopant ions in photocatalytic degradation of carboxylic acids[J], J. Mol. Catal.,197 (2003) 157-171
    262.Tzou Y M, Wang S L, Wang M K. Fluorescent Light Induced Cr6+ Reduction by Citrate in the presence of TiO2 and Ferric Ions[J], Colloids Surf. A.,2005,253:15-22
    263.Arana J, Rodriguez Lopez V M, Dona Rodn'guez J M. The Effect of Aliphatic Carboxylic Acids on the Photocatalytic Degradation of P-nitrophenol[J], Catal. Today, 2007,129:185-193
    264. Bussel M, Marcus P. XPS Study of the Passive Films Fonned on Nitrogen-Implanted Austenitic Stainless Steels[J], Appl. Surf. Sci.,1992,59:7-21
    265.Grimal J M, Marcus P. The Anodic Dissolution and Passivation of Ni-Cr-Fe Alloys Studied by ESCA[J], Corros. Sci.,1992,33(5):805-814
    266. Allison J D, Brown D S, Novo-Gradac K J. A Geochemical Assessment Model for Environmental Systems:Version 3.0 User's Manual[M], Washington, DC:US Environmental Protection Agency,1991
    267. Krumpolc M, Rocek J. Stable chromium(V) compounds[J], J. Am. Chem. Soc.,1976,98: 872-873
    268.Levina A, Lay P A. Mechanistic studies of relevance to the biological activities of chromium[J], Coord. Chem. Rev.,2005,249:281-298
    269. Hug S J, Laubscher H U. Iron(III) Catalyzed Photochemical Reduction of Chromium(VI) by Oxalate and Citrate in Aqueous Solutions[J], Environ. Sci. Technol.,1997,31: 160-170
    270. Schmidt C, Oetzmann H, Hess P, et al. XPS characterization of chromium films deposited from Cr(CO)6 at 248 nm[J], Appl. Surf. Sci.,1989,43:11-16
    271.Tzou Y M, Wang M K, Loeppert R H. Effect of N-hydroxyethyl-ethylenediamine-triacetic acid (HEDTA) on Cr6+ reduction by Fe(II)[J], Chemosphere,2003,51: 993-1000
    272. Stevenson F J, Fitch A. Interaction of soil minerals with natural organics and microbes[M], Madison:SSSA Special Publication,1994,29
    273.Marschner H. Mineral Nutrition of Higher Plants [M],London:Academic Press,1995, 912
    274. Jones D L, Darrah P R, Kochian L V. Critical-evaluation of organic-acid mediated iron dissolution in the rhi zosphere and its potential role in root iron uptake[J], Plant and Soil, 1996,180:57-66
    275. Stumm W. Chemistry of the solid-water Interface:processes at the mineral-water and particle-water interface in natural systems[M], New York:John Wiley & Sons Inc.,1992, 337
    276. Buerge I J, Hug S J. Influence of organic ligands on chromium (VI) reduction by iron(II) [J], Environ. Sci. Technol.1998,32:2092-2099
    277. Tzou Y M. Surface and solution abiotic processes in the redox transformations of chromium[D], Texas:Texas A&M University,2001
    278. Yao W F, Xu X H, Wang H, et al. Photocatalytic property of perovskite bismuth titanate[J], Appl. Catal., B.2004,52:109-116
    279.蒋茹,朱华跃,管玉江,等.活性炭负载壳聚糖/纳米CdS复合粒子对甲基橙的脱色作用[J],信阳师范学院学报(自然科学版),2009,22(1):106-109
    280.程云,周启星,马奇英,等.染料废水处理技术的研究与进展[J],环境污染治理技术与设备,2003,4(6):56-60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700