用户名: 密码: 验证码:
橙色珍贵束丝放线菌发酵生产抗癌药物安丝菌素P-3的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
美登醇是一类具有良好抗癌活性的大环内酯类化合物,在美国已进入二期临床。安丝菌素是由橙色珍贵束丝放线菌(Actinosynnema pretiosum)合成的美登醇类抗癌药物,其中安丝菌素P-3(AP-3)的活性最为显著。
     由于其重要的药理活性,近年来安丝菌素成为国内外研究的一个热点。尽管关于菌种筛选、培养基优化及途径调控以提高AP-3产量有一些报道,目前的低生产率及高生产成本仍然是制约其产业化的瓶颈之一。至今关于环境因子对AP-3的积累过程及其生物合成基因表达等的影响尚缺乏深入研究,了解和掌握相关信息对生产实践中有效提高其产量具有重要意义。
     本研究首先采用文献报道的培养基进行AP-3的发酵试验,结果表明其产量很低,仅1-2 mgL-1。通过应用Plackett-Burman设计和折叠Plackett-Burman设计进行发酵筛选,得到一组AP-3产量为12.9 mgL-1的培养基,并从单因素实验观察到异丁醇和铵离子对AP-3产量分别具有正效应和负效应。进一步应用中心组合设计及响应面分析,优化得到AP-3的发酵培养基为(gL-1):葡萄糖5、甘油40、酵母提取物10、玉米滤液20、碳酸钙5、磷酸氢二钾0.5、七水合硫酸亚铁0.002、异丁醇3。在上述发酵培养基的基础上,采用转速220 rpm,装液量60 mL/250 mL,接种量1.64×109CFUL-1的发酵条件,培养96h获得AP-3产量为68.2 mgL-1,生产率达17.1 mgL-ld-1,该生产率高于至今文献报道的水平。并且,基于摇瓶发酵的初始KLα,在实验室小型规模进行了放大探索,在3-L反应器、96h获得AP-3产量为52 mgL-1。
     在上述培养基优化过程中观察到铵离子的去除能提高AP-3产量,但铵离子作为常用氮源及含氮物质的中间代谢物,往往在发酵过程中积累;因此,结合抗生素的生物合成途径并从蛋白质组学的角度研究其影响机制可为铵离子抑制的解除、后续培养基选择及代谢途径改造等提供重要信息。由此,对添加(37 mM)和不添加铵离子的发酵过程进行了分析,结果表明铵离子抑制菌体生长速度,促进胞外异丁酸的代谢。从酶活性的检测数据观察到铵离子在整个发酵过程中提高缬氨酸代谢的第一个酶缬氨酸脱氢酶的活性,而不像其它抗生素发酵体系中报道的抑制作用。转录分析表明大部分AP-3生物合成基因的转录水平受铵离子抑制,与产量变化一致。进一步应用双向电泳考察蛋白质组的响应,在pH3-5.6且PAGE浓度为13.5%的双向电泳条件下获得约1600个蛋白质点,质谱鉴定得到12个差异表达1.5倍以上的蛋白质,包括3-磷酸-甘油醛脱氢酶(下调2倍)、脂肪酸合成酶(上调1.7倍)、及负责丝氨酸生物合成的3-磷酸甘油酸脱氢酶(上调3.9倍)等。这些结果显示铵离子影响脂肪酸和丝氨酸的生物合成,并调节AP-3生物合成基因的转录水平。
     已有文献表明异丁醇可作为AP-3的侧链异丁酰-辅酶A的前体,我们的实验也表明添加异丁醇可有效提高AP-3的产量,因此,本学位论文结合异丁醇的代谢及AP-3的生物合成途径又探索了其影响机制。首先考察了异丁醇添加条件对AP-3产量的影响,结果表明在第0h添加36 mM的异丁醇效果最显著,与不添加相比,发酵96h的AP-3产量提高了3.4倍。分析胞内辅酶A的积累动态,观察到添加异丁醇可以促进乙酰-辅酶A和丙二酰-辅酶A的积累,暗示异丁醇影响其它延伸单元的供应。对酶活性检测表明异丁醇分别在对数期和产素期提高异丁醇脱氢酶和缬氨酸脱氢酶的酶活性近2倍,且于36h组合添加缬氨酸可提高AP-3产量35%(82.3 mgL-1)。同时对AP-3生物合成途径及异丁酰-辅酶A代谢途径的基因转录分析,观察到其表达水平与抗生素的产量变化一致,其中AP-3侧链添加的基因asml9、调节基因asm40及异丁酰-辅酶A变构酶基因及甲基丙二酸半醛脱氢酶基因的转录水平在异丁醇条件下显著上调,后者暗示异丁醇可能改变异丁酰-辅酶A的代谢分布。进一步对蛋白质组研究表明,在异丁醇存在时,与细胞氧化还原状态相关的过氧化氢酶及LysR调节因子的蛋白表达水平均上调。此外,为进一步研究asml9和asm40对异丁醇的响应,对其基因工程菌株进行了发酵,观察到asml9的高表达可耐受更高浓度的异丁醇;asm40的基因缺失菌株在不添加异丁醇时其产量与野生型无显著差别,但添加异丁醇的AP-3产量则提高了20%,表明异丁醇的添加与asm40转录水平的激活具有相似的效应。上述结果表明异丁醇促进AP-3生物合成前体CoA的供应,并影响氧化还原相关的基因和蛋白的表达水平。
     本研究通过对环境因子的考察,发现铵离子影响脂肪酸及丝氨酸生物合成途径并抑制AP-3生物合成基因的转录水平;异丁醇不但促进AP-3前体CoA的供应,还影响与胞内氧化还原水平相关的基因转录及蛋白质表达。这些信息不但为AP-3发酵操作及其生物合成途径的改造提供了有益信息,还可为其它大环内酯类抗生素的发酵提供借鉴。
Maytansinoids are extraordinary antitumor macrolactam agents in phase II clinical trials in America. Ansamitocins are classified as maytansinoids, and biosynthesized by Actinosynnema proetiosum, therein ansamitocin P-3 (AP-3) has an excellent activity.
     Due to the important physiological activities, the interest in ansamitocins has increased around the world in recent years. Many studies have focused on strain improvement, medium optimization, and pathway regulation to enhance AP-3 production. However, its commercial application is still limited resulted from the low productivity and high price of AP-3. Until now there is no information related to environmental factor on AP-3 production based on the fermentation process and the molecular mechanism for regulation of AP-3 biosynthesis, albeit those knowledge is significant for increasing antibiotics productivity.
     In this study, we first adopted the reported medium to produce AP-3 in the fermentation of Actinosynnem pretiosum spp. auranticum 31565, however, only an amount of 1-2 mgL-1 was observed. Thus, the Plackett-Burman and fold-over Plackett-Burman designs were applied to select fermentation medium, and the maximum AP-3 production was 12.9 mgL-1. Furthermore, one-time-one-factor method was used to simplify the medium compositions, and found that ammonium and isobutanol exerted negative and positive effects on AP-3 production respectively. The center composition design as well as response surface method were then employed to optimize the medium concentrations, the final fermentation medium were (gL-1):glucose 5, yeast extract 10, glycerol 40, corn filtrate 20, CaCO35, K2HPO40.5, FeSO4·7H2O 0.002, and isobutanol 3, the maximum AP-3 production was 68.2 mgL-1 with an inoculua of 1.64×109 CFUL-1 cultivated for 96 h in 60 mL/250 mL flask at 220 rpm, the productivity (17.1 mgL-1d-1) was higher among the published references. Fermentation based on flask initial KLa was carried out in 3-L bioreactor successfully, and the AP-3 production achieved 52 mgL-1 at 96 h.
     It was observed that removal of ammonium from the fermentation medium was positive to AP-3 production. However, ammonium is an intermediate of nitrogen-contained compounds which always accumulated during antibiotics fermentation, information on ammonium effect from the viewpoint of biosynthetic gene transcription and proteomics has not yet reported, albeit it is beneficial to medium selection and pathway reconstruction. Hence, inhibition of AP-3 production was studied with (37 mM) and without ammonium based on fermentation process. Fermentation profiles showed that mycelium growth rate was repressed by ammonium, but the absorption rate of extracellular isobutyrate was facilitated. Assay of enzymatic activities showed that the activity of valine dehydrogenase, the first enzyme in valine metabolism pathway that always inhibited by ammonium in other systems, was induced during the whole process. Transcriptional levels of genes in AP-3 biosynthetic pathway were down-regulated by ammonium, which was in agreement with the production reduction. About 1600 protein spots by two-dimensional electrophoresis with pH3-5.6 and PAGE concentration of 13.5% were obtained; therein spots above 1.5-fold differential expression determined by mass determination were D-3-phosphoglycerate dehydrogenase, glyceraldehyde 3-phosphate dehydrogenase, and fatty acid synthase etc. The results showed that ammonium influenced the biosynthesis of fatty acid and serine, and regulated the transcription of AP-3 biosynthetic genes.
     Previous work implied that isobutanol might act as a precursor of isobutyryl-CoA (side chain of AP-3), and the enhancement of AP-3 production by isobutanol addition was also found during the process of medium optimization. We first optimize the addition conditions, and found that isobutanol added at 0 h with 36 mM was optimal, resulting in 3.4-fold improvement of AP-3 and 4-fold decrease of AP-2 production at 96 h. Accumulation profiles of intracellular CoAs showed that acetyl-CoA and malonyl-CoA concentration increased in isobutanol supplemented culture, suggested isobutanol also influence pools of extender units of AP-3. In isobutanol supplemented culture activities of both isobutanol dehydrogenase and valine dehydrogenase were enhanced for about 2 folds in the growth phase and production phase, respectively; further combined addition of valine at 36 h based on isobutanol resulted in 35% improvement of AP-3 yield (82.3 mgL"1). Transcriptional response of genes in AP-3 biosynthetic and isobutyryl-CoA catabolic pathways showed a similar way as the increase of AP-3 production, therein the side-chain incorporating gene asm19 and regulatory gene asm40 in the former pathway were up-regulated by isobutanol significantly, and genes in the latter pathway were also induced, suggested a shunt of isobutyryl-CoA metabolism by isobutanol. Furthermore, protein expression of catalase and LysR family regulator related to the state of cell redox was up-regulated by isobutanol resulted from proteomics study. In addition, to testify the responses of asm19 and asm40 to isobutanol, their engineering strains were cultivated, and it was observed that overexpression of asm19 resulted in more tolerance of isobutanol than wild type, while deletion of asm40 induced AP-3 production for 20% by isobutanol, suggested an indirect role of asm40 in response to isobutanol. The information indicated that isobutanol disturbed the pools of precursor CoAs for AP-3 biosynthesis, and influenced the expression of redox-related genes and proteins in cells.
     Collectively, this work revealed that ammonium could activate the biosynthetic pathways of fatty acid and serine, as well as down-regulated of the transcription of AP-3 biosynthetic genes; meanwhile, the positive role of isobutanol was caused by changes of precursor supply, and influence of expression of genes and proteins related to the redox state of cells. The information is helpful to development of fermentation medium and reconstitution of AP-3 biosynthetic pathway, and also taken as a reference to other antibiotics fermentation.
引文
1. Demain AL. Antibiotics:Natural products essential to human health. Med. Res. Rev. 2009,29:821-842.
    2. Demain AL, Sanchez S. Microbial drug discovery:80 years of progress. J. Antibiot.2009, 62:5-16.
    3. http://www.huaguangyiyuan.com.cn/shownews.asp?id=280
    4. http://www.marketresearch.com/
    5. Olano C, Lombo F, Mendez C, et al. Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metab. Eng.2008,10:281-292.
    6. Parekh S, Vinci VA, Strobel RJ. Improvement of microbial strains and fermentation processes. Appl. Microbiol. Biotechnol.2000,54:287-301.
    7. Deutscher J. The mechanisms of carbon catabolite repression in bacteria. Curr. Opin. Microbiol.2008,11:87-93.
    8. Gorke B, Stulke J. Carbon catabolite repression in bacteria:many ways to make the most out of nutrients. Nat. Rev. Microbiol.2008,6:613-624.
    9. Sanchez S, Chavez A, Forero A, et al. Carbon source regulation of antibiotic production. J. Antibiot.2010,63:442-459.
    10. Voelker F, Altaba S. Nitrogen source governs the patterns of growth and pristinamycin prodution in Streptomyces pritinaespiralis. Microbiology 2001,147:2447-2459.
    11. Amon J, Titgemeyer F, Burkovski A. Common patterns-unique features:nitrogen metabolism and regulation in Gram-positive bacteria. FEMS Microbiol. Rev.2010,34: 588-605.
    12. Harper C, Hayward D, Wiid I, et al. Regulation of nitrogen metabolism in Mycobacterium tuberculosis:a comparison with mechanisms in Corynebacterium glutamicum and Streptomyces coelicolor. IUBMB Life 2008,60:643-650.
    13. Aharonowitz Y. Nitrogen metabolite regulation of antibiotics biosynthesis. Ann. Rev. Microbiol.1980,34:209-233.
    14. Rokem JS, Lantz AE, Nielsen J. Systems biology of antibiotics production by microorganisms. Nat. Prod. Rep.2007,24:1262-1287.
    15. Inoue S, Nishizawa Y, Nagai S. Stimulatory effect of ammonium on strepotmycin formation by Strepotmyces griseus growing on a glucose minimal medium. J. Ferment. Technol.1983,61:7-12.
    16. Wallace KK, Payne GF, Speedie MK. Ammonium effects on streptonigrin biosynthesis by Streptomyces flocculus. J. Ind. Microbiol.1990,6:43-48.
    17. Arst HN, Cove DJ. Nitrogen metabolite repression in Aspergillus nidulans. Mol. Gen. Genet.1973,126:111-141.
    18. Hobbs G, Frazer CM, Gardner DC, et al. Pigmented antibiotics production by Streptomyces coelicolor A3(2):kinetics and the influence of nutrients. J. Gen. Microbiol. 1990,136:1291-1296.
    19. Aharonowitz Y, Demain AL. Nitrogen nutrition and regulation of cephalosporin production in Streptomyces clavuligerus. Can. J. Microbol.1979,25:61-67.
    20. Flores ME, Sanchez S. Nitrogen regulation of erythromycin formation in Streptomyces erythreus. FEMS Microbiol. Lett.1984,26:191-194.
    21. Omura S, Tanaka Y, Kitao C, et al. Stimulation of leucomycin production by magnesium phosphate and its relevance to nitrogen catabolite regulation. Antimicrob. Agents. Ch. 1980,18:691-695.
    22. Lebrihi A, Lamsaif D, Lefebvre G, et al. Effect of ammonium ions on spiramycin biosynthesis in Streptomyces ambofaciens. Appl. Microbiol. Biotechnol.1992,37: 382-387.
    23. Trong KV, Gray PP. Influence of ammonium on the biosynthesis of the macrolide antibiotic tylosin. Enzyme. Microb. Tech.1987,9:590-593.
    24.王平,庄英萍,储炬等.铵离子对梅岭霉素生物合成的调控效应.微生物学报2005,45:405-509.
    25. Lakel M, Lebrihi A, Khaoua S, et al. A link between primary and secondary metabolism: malonyl-CoA formation in Streptornyces arnbofaciens growing on ammonium ions or valine. Microbiology 1994,140:1451-1456.
    26. Bascaran V, Hardisson C, Brana AF. Regulation of nitrogen catabolic enzymes in Streptomyces clavuligerus. J. Gen. Microbiol.1989,135:2465-2474.
    27. Untrau S, Lebrihi A, Lefebvre G, et al. Nitrogen catabolite regulation of spiramycin production in Streptomyces ambofaciens. Curr. Microbio.1994,28:111-118.
    28. Khaoua S, Lebrihi A, Laakel M, et al. Influence of short-chain fatty acids on the production of spiramycin by Streptomyces ambofaciens. Appl. Microbiol. Biotechnol. 1992,36:763-767.
    29. Omura S, Tanaka Y, Mamada H, et al. Effect of ammonium ion, inorganic phosphate and amino acids on the biosynthesis of protylonolide, a precursor of tylosin aglycone. J. Antibiot.1984,5:494-502.
    30. Gunnarsson N, Eliasson A, Nielsen J. Control of fluxes towards antibiotics and the role of primary metabolism in production of antibiotics. Adv. Biochem. Engin. Biotechnol.2004, 88:137-178.
    31. Hutchinson CR, Decker H, Madduri K, et al. Genetic control of polyketide biosynthesis in the genus Streptomyces. Antonie. Van. Leeuwenhoek.1993,64:165-176.
    32. Omura S, Tanaka Y, Mamada H, et al. Ammonium ion suppresses the biosynthesis of tylosin aglycone by interence with valine catabolism in Streptomyces fraciae. J. Antibiot. 1983,36:1792-1794.
    33. Lee SH, Lee KJ. Relationship between threonine dehydratase and biosynthesis of tylosin in Streptomyces fradiae. J. Gen. Microbiol.1991,137:2547-2553.
    34. Stirrett K, Denoya C, Westpheling J. Branched-chain amino acid catabolism provides precursors for the Type Ⅱ polyketide antibiotic, actinorhodin, via pathways that are nutrient dependent. J. Microbiol. Biotechol.2009,36:129-137.
    35. Beltrametti F, Jovetic S, Feroggio M, et al. Valine influences production and complex composition of glycopetide antibiotic A40926 in fermentaion of Nonomuraea sp. ATCC 399727. J. Antibiot.2004,57:37-44.
    36. Survase SA, Sardagar PS, Singhal RS. Enhanced production of scleroglucan by Sclerotium rolfsii MTCC 2156 by use of metabolic precursors. Bioresour. Technol.2007, 98:410-415.
    37. Sun XQ, Zhou XS, Cai MH, et al. Significant stimulation of o-phthalic acid in biosynthesis of aspergiolide A by a marine fungus Aspergillus glaucus. Bioresour. Technol.2010,101:3609-3616.
    38. Eriksen SH, Jensen B, Schneider I, et al. Utilization of side-chain precursors for penicillin biosynthesis in a high-producing strain of Penicillium chrysogenum. Appl. Microbiol. Biotechnol.1994,40:883-887.
    39. Liao GJ, Li JN, Li L, et al. Selectively improving nikkomycin Z production by blocking the imidazolone biosynthetic pathway of nikkomycin X and uracil feeding in Streptomyces ansochromogenes. Microb. Cell Fact.2009,8:61-67.
    40. Reeves AR, Cernota WH, Brikun IA, et al. Engineering precursor flow for increased erythromycin production in Aeromicrobium erythreum. Metab. Eng.2004,6:300-312.
    41. El-Enshasy HA, Mohamed NA, Farid MA, et al. Improvement of erythromycin production by Saccharopolyspora erythraea in molasses based medium through cultivation medium optimization. Bioresour. Technol.2008,99:4263-4268.
    42. Potvin J, Peringer P. Influence of n-propanol on growth and antibiotic production by an industrial strain of Streptomyces erythreus under different nutritional conditions. Biotechnol. Lett.1993,16:63-68.
    43. Moragues MD, Estevez JJ, Rementeria A, et al. Effect of n-alkanols on acidification curves of Aureobasidium pullulans suspensions. Exp. Mycol.1994,18:1-6.
    44. Kennedy M, Krouse D. Strategies for improving fermentation medium performance:a review. J. Ind. Microbiol. Biot.1999,23:456-475.
    45. Plackett RL, Burman JP. The design of multifactorial experiments. Biometrika 1946,33: 305-325.
    46. Magallanes JF, Olivieri AC. The effect of factor interactions in Plackett-Burman experimental designs:comparison of Bayesian-Gibbs analysis and genetic algorithms. Chemometr. Intell. Lab. Syst.2010,102:8-14.
    47. Ahmad A, Panda BP, Mujeeb M. Screening of nutrient parameters for mevastatin production by Penicillium citrinum MTCC 1256 under submerged fermentation using Plackett-Burman design. J. Pharm. Bioall. Sci.2010,2:44-46.
    48. Wasko A, Monika KW, Podlesny M, et al. The Plackett-Burman design in optimization of media components for biomass production of Lactobacillus rhamnosus OXY. Acta Biologica Hungarica 2010,61:344-355.
    49. Box GEP, Hunter JS. The 2 k-p fractional factorial designs. Parts I. Technometrics 1961, 3:311-351.
    50.余慧敏,覃红.关于2水平折叠设计的一个结果.华中师范在学数学与统计学院2003,153-155.
    51. Diamond NT. Some properties of a foldover design. Aust. J. Statist.1995,37:345-352.
    52. Miller A, Sitter RR. Using the folded-over 12-run Plackett-Burman design to consider interactions. Technometrics 2001,43:44-53.
    53. Gao H, Liu M, Liu JT. Medium optimization for the production of avermectin B1a by Streptomyces avermitilis 14-12A using response surface methodology. Bioresour. Technol.2009,100:4012-4014.
    54. Xiong ZQ, Tu XR, Tu GQ. Optimization of medium composition for actinomycin X2 production by Streptomyces spp JAU4234 using response surface methodology. J. Ind. Microbiol. Biotechnol.2007,34:729-734.
    55. Denser CR, Guimaraes LM, Candida M. Applications of image analysis in the characterization of Streptomyces olindensis in submerged culture. Braz. J. Microbiol. 2002,33:17-21.
    56. Atkinson B, Daoud I. Microbial flocs and flocculation in fermentation process engineering. Adv. Biochem. Eng.1976,4:41-124.
    57. Kossen NWF. The morphology of filamentous fungi. Adv. Biochem. Eng. Biotechnol. 2000,70:1-33.
    58. Schugerl K, Wittler R, Lorens T. The use of molds in pellet formations. Trends Biotechnol.1983,1:120-123.
    59. Kristiansen B, Bullock JD. Developments in industrial fungal biotechnology. In:J.E. Smith, D.R. Berry and B. Kristiansen, Editors, Fungal biotechnology, Academic Press, London,1988,203-223.
    60. Konig B, Schugerl K, Seewald S. Strategies for penicillin fermentation in tower-loop reactors. Biotechnol. Bioeng.1982,24:259-280.
    61. Suijdam VJC, Kossen NWF, Paul PG. An inoculum technique for the production of fungal pellets. Eur. J. Appl. Microbiol. Biotechnol.1980,10:211-221.
    62. Papagianni M. Fungal morphology and metabolite production in submerged mycelial processe. Biotechnol. Adv.2004,22:189-259.
    63. Whitaker A. Actinomycetes in submerged culture. Appl. Biochem. Biotechnol.1992,32: 23-35.
    64. Dobson LF, O'Cleirigh CC, O'Shea DG. The influence of morphology on geldanamycin production in submerged fermentations of Streptomyces hygroscopicus var. geldanus. Appl. Microbiol. Biotechnol.2008,79:859-866.
    65. El-Enshasy H, Farid M, El-Sayed S. Influence of inoculum type and cultivation conditions on natamycin production by Streptomyces natalensis. J. Basic. Microbiol. 2000,40:333-342.
    66. Elibol M, Ulgen K, Kamaruddin K, Mavituna F. Effect of inoculum type on actinorhodin production by Streptomyces coelicolor A3(2). Biotechnol. Lett.1995,17:579-582.
    67. Fazeli M, Cove J, Baumberg S. Physiological factors affecting streptomycin production by Streptomyces griseus in batch and continuous culture. FEMS Microbiol. Lett.1995, 126:55-61.
    68. Wezel GP, Krabben P, Traag BA, et al. Unlocking Streptomyces spp. for use as sustainable industrial production platforms by morphological engineering. Appl. Environ. Microbiol.2006,72:5283-5288.
    69. Manteca A, Alvarez R, Salazar N. Mycelium differentiation and antibiotic produciton in submerged culture of Streptomyces coelicolor. Appl. Environ. Microbiol.2008,74: 3877-3886.
    70.储炬,李友荣.现代工业发酵调控学.北京:化学工业出版社,2001.
    71. Vardar F, and Lilly MD. Effect of cycling dissolved oxygen concentrations on product formation in penicillin fermentations. Eur. J. Microbiol. Biotechnol.1982,14:203-211.
    72. Vandamme EJ, Leyman D, Visscher PD, et al. Effect of aeration and pH on gramicidin S production by Bacillus brevis. J. Chem. Tech. Biotechnol.1981,31:247-257.
    73. Xu H, Dou WF, Xu HY, et al. A two-stage oxygen supply strategy for enhanced L-arginine production by Corynebacterium crenatum based on metabolic fluxes analysis. Biochem. Eng. J.2009,43:41-51.
    74. Mao XB, Zhong JJ. Hyperproduction of cordycepin by two-stage dissolved oxygen control in submerged cultivation of medicinal mushroom Cordyceps militaris in bioreactors. Biotechnol. Prog.2004,20:1408-1413.
    75. Feng Q, Mi L, Li L, et al. Application of oxygen uptake rate-amino acids associated mode in controlled-fed perfusion culture. J. Biotechnol.2006,122:422-430.
    76. Miura Y. Transfer of oxygen and scale-up in submerged aerobic fermentation. Adv. Biochem. Eng.1976,4:3-40.
    77. Junker B, Walker A, Hesse M. Actinomycetes scale-up for the production of the antibacterial, nocathiacin. Biotechnol. Prog.2009,25:176-188.
    78. Hu YL, Wu WT. A novel approach for scaling-up a fermentation system. Biochem. Eng J. 2002,11:123-130.
    79. Yu TW, Bai LQ, Clade D, et al. The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum. Proc. Natl. Acad. Sci. USA 2002,99:7968-7973.
    80. Cassady JM, Chan KK, Floss HG, et al. Recent developments in the maytansinoid antitumor agents. Chem. Pharm. Bull.2004,52:1-26.
    81. Reider PJ, Roland DM, Maytansinoids. In:Brossi A (ed) The alkaloids. Academic Press, New York,1984,23:71-156.
    82. Liu C, Tadayoni BM, Bourret LA, et al. Eradication of large colon tumor xenografts by targeted delivery of maytansinoids. Proc. Natl. Acad. Sci. USA 1996,93:8618-8623.
    83. Oroudjev E, Lopus M, Wilson L, et al. Maytansinoid-antibody conjugates induce mitotic arrest by suppressing microtubule dynamic instability. Mol. Cancer Ther.2010,9: 2700-2713.
    84. Lopus M, Oroudjev E, Wilson L, et al. Maytansine and cellular metabolites of antibody-maytansinoid conjugates strongly suppress microtubule dynamics by binding to microtubules. Mol. Cancer Ther.2010,9:2689-2699.
    85. Higashide E, Asai M, Ootsu K, et al. Ansamitocin, a group of novel maytansinoid antibiotics with antitumor properties from Nocardia. Nature (London) 1977,270: 721-722.
    86. Asai M, Mizuta E, Izawa M, et al. Isolation, chemical characterization and structure of ansamitocin, a new antitumor ansamycin antibiotic. Tetrahedron 1978,35:1079-1085.
    87. Liu ZF, Floss HG, Cassady JM, et al. Metabolism studies of the anti-tumor agent maytansine and its analog ansamitocin P-3 using liquid chromatography/tandem mass spectrometry. J. Mass Spectrom.2005,40:389-399.
    88. Collignon P, Power JH, Chiller TM, et al. World health organization ranking of antimicrobials according to their importance in human medicine:a critical step for developing risk management strategies for the Use of antimicrobials in food production animals. Clin. Infect. Dis.2009,49:132-41.
    89. Spiteller P, Bai LQ, Shang GD, et al. The post-polyketide synthetase modification steps in the biosynthesis of the antitumor agent ansamitocin by Actinosynnema pretiosum. J. Am. Chem. Soc.2003,125:14236-14237.
    90. Moss SJ, Bai LQ, Toelzer S, et al. Identification of Asm 19 as an acyltransferase attaching the biologically essential ester side chain of ansamitocins using N-desmethyl-4, 5-desepoxymaytansinol, not maytansinol, as its substrate. J. Am. Chem. Soc.2002,124: 6544-6545.
    91. Kato Y, Bai LQ, Xue Q, et al. Functional expression of genes involved in the biosynthesis of the novel polyketide chain extension unit, methoxymalonyl-acyl carrier protein, and engineered biosynthesis of 2-desmethyl-2-methoxy-6-deoxyerythronolide B. J. Am. Chem. Soc.2002,124:5268-5269.
    92. Carroll BJ, Moss SJ, Bai LQ, et al. Identification of a set of genes involved in the formation of the substrate for the incorporation of the unusual "glycolate" chain extension unit in ansamitocin biosynthesis. J. Am. Chem. Soc.2002,124:4176-4177.
    93. Pan WQ, Bai LQ, et al. Personal communication.
    94. Lu CH, Bai LQ, Shen YM. A novel amide N-glycoside of ansamitocins from Actinosynnema pretiosum. J. Antibiot.2004,57:348-350.
    95. Lu CH, Bai LQ, Shen YM. Five unusual natural carbohydrates from Actinosynnema pretiosum. Chem. Nat. Compd.2008,44:594-597.
    96. Wei GZ, Bai LQ, Yang T, et al. A new antitumour ansamitocin from Actinosynnema pretiosum. Nat. Pro. Res.2010,24:1146-1150.
    97. Taft F, Brnjes M, Floss HG, et al. Highly active ansamitocin derevatives:mutasynthesis using an AHBA-blocked mutant. Chem. Bio. Chem.2008,9:1057-1060.
    98. Meyer A, Brubhes M, Taft F, et al. Chemoenzymatic approaches toward dechloroansamitocin P-3. Org. Lett.2007,9:1489-1492.
    99. Taft F, Brubhes M, Knobloch T, et al. Timing of the Δ10,12-Δ11,13 double bond migration during ansamitocin biosynthesis in Actinosynnema pretiosum. J. Am. Chem. Soc.2009,131:3812-3813.
    100. Zhao PJ, Bai LQ, Ma J, et al. Amide N-Glycosylation by asm25, an N-Glycosyltransferase of ansamitocin. Chem. Biol.2008,15:863-874.
    101. Bandi S, Kim YJ, Sa SO, et al. Statistical approach to development of culture medium for ansamitocin P-3 production with Actinosynnema pretiosum ATCC 31565. J. Microbiol. Biotechnol.2005,15:930-937.
    102. Bandi S, Kim YJ, Chang YK, et al. Construction of asm2 deletion mutant of Actinosynnema pretiosum and medium optimization for ansamitocin P-3 production using statistical approach. J. Microbiol. Biotechol.2006,16:1338-1346.
    103. Ng D, Chin HK, Wong VVT. Constitutive overexpression of asm2 and asm39 increases AP-3 production in the actinomycete Actinosynnema pretiosum. J. Ind. Microbiol. Biotechnol.2009,36:1345-1351.
    104. Hatano K, Higashide E, Akiyama SA, et al. Selective accumulation of ansamitocins P-2, P-3 and P-4, and biosynthetic origins of their acyl moieties. Agric. Biol. Chem.1984,48: 1721-1729.
    105. Chung J, Byng GS, Snohomish WA. Mutant Actinosynnema pretiosum strain with increased maystansinoid production (in USA).2004, patent No. US7192750B2.
    106. Drew SW, Demain AL. Effect of primary metabolism on secondary metabolism. Ann. Rev. Microbiol.1977,31:343-356.
    107. Hasegawa T, Izawa M, Tanida S. Maytansinoids (in USA).1982, patent No.3331598.
    108. Vecht-Lifshitz SE, Magdassi S, Braun S. Pellet formation and cellular aggregation in Streptomyces tendae. Biotechnol. Bioeng.1989:890-896.
    109. Braun S, Vecht-Lifshitz SE. Mycelial morphology and metabolite production. Trends Biotechnol.1991:63-8.
    110.毛先兵.深层培养药用蕈菌蛹虫草生产虫草素的研究.华东理工大学博士论文.2004.
    111. Granozzi C, Billeta R, Passantino R, et al. A breakdown in macromolecular synthesis preceding differentiation in Streptomyces coelicolor A3(2). J. Gen. Microbiol.1990,136: 713-716.
    112. Kim JH, Hancock IC. Pellet forming and fragmentation in liquid culture of Streptomyces griseus. Biotechnol. Lett.2000,22:189-192.
    113. Nielsen J, Johansen CL, Jacobsen M, et al. Pellet formation and fragmentation in submerged cultures of Penicillium chrysogenum and its relation to penicillin production. Biotechnol. Prog.1995,11:93-98.
    114. Yang YK, Morikawa M, Shimizu H, et al. Image analysis of mycelial morphology in virginiamycin production by batch culture of Streptomyces virginiae. J. Ferment. Bioeng. 1996,81:7-12.
    115. Cimburkova E, Zima J, Novak J. Nitrogen regulation of avermectins biosynthesis in Streptomyces avermitilis in a chemically defined medium. J. Basic Microb.1988,28: 491-499.
    116. Hodge JE, Hofreiter, BT. Methods in carbohydrate chemistry, in:Whistler, RL, Wolfrom, ML (Eds.). Determination of reducing sugars and carbohydrates. Academic Press, New York,1962, pp.80-84.
    117. Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-254.
    118. Park YC, Yun NR, San KY, et al. Molecular cloning and characterization of the alcohol dehydrogenase ADH1 gene of Candia utilis ATCC 9950. J. Ind. Microbiol. Biotechnol. 2006,33:1032-1036.
    119. Schtitte H, Hummel W, Tsai H, et al. L-leucine dehydrogenase from Bacillus cereus: production, large-scale purification and protein characterization. Appl. Microbiol. Biotechnol.1995,22:306-317.
    120. Weatherburn MW. Phenol-hypochlorite reaction form determination of ammonia. Anal. Chem.1967,39:971-974.
    121. Sluiter A, Hames B, Ruiz R, et al. Determination of sugars, byproducts, and degradation products in liquid fraction process samples. Laboratory Analytical Procedure 2006.
    122. Kieser T, Bibb MJ, Buttner MJ, et al. Practical Streptomyces Genetics. John Innes Foundation, England,2000, pp.168-169.
    123. Goh S, Camattari A, Ng D, et al. An integrative expression vector for Actinosynnema pretiosum. BMC Biotech.2007,7:72-80.
    124. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) Method. Methods 2001,25:402-408.
    125. Zhu C, Lu H, He FP, et al. Regulation of avilamycin biosynthesis in Streptomyces viridochromogenes:effects of glucose, ammonium ion, and inorganic phosphate. Appl. Microbiol. Biotechnol.2007,73:1031-1038.
    126. Lee MS, Kojima I, Demain AL. Effect of nitrogen source on biosynthesis of rapamycin by Streptomyces hygroscopicus. J. Ind. Microbiol. Biotechnol.1997,19:83-86.
    127. Kim SY, Oh DK, Kim JH. Effect of soybean oil and glucose on sophorose lipid fermentation by Torulopsis bombicola in continuous culture. Appl. Microbiol. Biotechnol. 1997,48:23-26.
    128. Yoon YJ, Choi CY. Nutrient effects on FK-506, a new immunosuppressant, production by Streptomyces sp. in a defined medium. J. Ferment. Bioeng.1997,83:599-603.
    129. Nieselt K, Battke F, Herbig A, et al. The dynamic architechure of the metabolic switch in Streptomyces coelicolor. BMC Genomics.2010,11:10-19.
    130. Chen PF, Harcum SW. Effect of elevated ammonium on glycosylation gene expression in CHO cells. Metab. Eng.2006,8:123-132.
    131. Murphy T, Roy I, Harrop A, et al. Effect of oligosaccharide elicitors on bacitracin A production and evidence of transcriptional level control. J. Biotech.2007,131:397-403.
    132. Hesketh AR, Chandra G, Shaw AD, et al. Primary and secondary metabolism, and post-translational protein modifications, as portrayed by proteomic analysis of Streptomyces coelicolor. Mol. Microbiol.2002,46:917-932.
    133. Reznikoff WS. Tn5 as a model for understanding DNA transposition. Mol. Microbiol. 2003,47:1199-1206.
    134. Lovell S, Goryshin IY, Reznikoff WR, et al. Two-metal active site binding of a Tn5 transposase synaptic complex. Nat. Struct. Biol.2002,9:278-281.
    135. Kaneda T. Iso-and anteiso-fatty acids in bacteria:biosynthesis, function, and taxonomic significance. Microbiol. Rev.1991,55:288-302.
    136. Dey S, Hu ZQ, Xu XL, et al. D-3-phosphoglycerate dehydrogenase from Mycobacterium tuberculosis is a link between the Escherichia coli and mammalian enzymes. J. Biol. Chem.2005,280:14884-14891.
    137. Winicov I, Pizer LI. The mechanism of end product inhibition of serine biosynthesis. J. Biol. Chem.1973,240:1348-1355.
    138. Velasco J, Gutierrez S, Fernandez FJ, et al. Exogenous methionine increases levels of mRNAs transcribed from pcbAB, pcbC, and cefEF genes, encoding enzymes of the cephalosporin biosynthetic pathway, in Acremonium chrysogenum. J. Bacteriol.1994, 176:985-991.
    139. Esmahan C, Alvarez E, Montenegro E, et al. Catabolism of lysine in Penicillium chrysogenum leads to formation of 2-aminoadipic acid, a precursor of penicillin biosynthesis. Appl. Environ. Microbiol.1994,60:1705-1710.
    140. Reynolds KA, O'Hagan D, Gani D, et al. Butyrate metabolism in Streptomycetes. Characterization of an intramolecular vicinal interchange rearrangement linking isobutyrate and butyrate in Streptorn yces cinnamonensis. J. Chem. Soc. Perkin Trans. 1988,1:3195-3207.
    141. Zhang YX, Tang L, Hutchinson R. Cloning and characterization of a gene (msdA) encoding methylmalonic acid semialdehyde dehydrogenase from Streptomyces coelicolor. J. Bacteriol.1996,178:490-495.
    142. Li CX, Florova G, Akopiants K, et al. Crotonyl-coenzyme A reductase provides methylmalonyl-CoA precursors for monensin biosynthesis by Streptomyces cinnamonensis in an oil-based extended fermentation. Microbiology 2004,150: 3363-3472.
    143. Li CX, Akopiants K, Reynolds KA. Identification and disruptional analysis of the Streptomyces cinnamonensis msdA gene, encoding methylmalonic acid semialdehyde dehydrogenase. J. Ind. Microbiol. Biotechnol.2006,33:75-83.
    144. Buchholz A, Takors R, Wandrey C. Quantification of intracellular metabolites in Escherichia coli K12 using liquid chromatographic-electrospray ionization tandem mass spectrometric techniques. Anal. Biochem.2001,295:129-137.
    145. Shimazu M, Vetcher L, Galazzo JL, et al. A sensitive and robust method for quantification of intracellular short-chain coenzyme A esters. Anal. Biochem.2004,328: 51-59.
    146. Reeves AR, Brikun IA, Cernota WH, et al. Effects of methylmalonyl-CoA mutase gene knockouts on erythromycin production in carbohydrate-based and oil-based fermentations of Saccharopolyspora erythraea. J. Ind. Microbiol. Biotechnol.2006,33: 600-609.
    147. Kuo C, Byng GS, Widdison WC. Methods for the production of ansamitocins (in USA). 2005, patent No.20050170475.
    148. Bowles LK, Ellefson WL. Effect of butanol on Clostridium acetobutylicum. Appl. Environ. Microbiol.1985,50:1165-1170.
    149. Rajkarnikar A, Suh JW, Kwon HJ. Accumulation of intracellular ATP is a factor suppressing morphological differentiation in adenosine kinase mutant of Streptomyces lividans. J. Korean Soc. Appl. Biol. Chem.2009,52:401-404.
    150. Li M, Kim TJ, Kwon HJ, et al. Effects of extracellular ATP on the physiology of Streptomyces coelicolor A3 (2). FEMS Microbiol. Lett.2008,286:24-31.
    151. Janglova Z, Such□J, Vanek Z. Regulation of biosynthesis of secondary metabolites. VII. Intracellular adenosine-5'-triphosphate concentration in Streptomyces aurefaciens. Folia Microbiologica 1969,14:208-210.
    152. Takemura H, Kondo K, Horinouchi S, et al. Induction by ethanol of alcohol dehydrogenase activity in Acetobacter pasteurianus. J. Bacteriol.1993,175:6857-6866.
    153. Tang L, Zhang YX, Hutchinson CR. Amino acid catabolism and antibiotic synthesis: valine is a source of precursors for macrolide biosynthesis in Streptomyces ambofaciens and Streptomyces fradiae. J. Bacteriol.1994,176:6107-6119.
    154. Brynildsen MP, Liao JC. An integrated network approach identifies the isobutanol response network of Escherichia coli. Mol. Syst. Biol.2009,5:277-290.
    155. Beaucher J, Rodrigue S, Jacques PE, et al. Novel Mycobacterium tuberculosis anti-a factor antagonists control aF activity by distinct mechanisms. Mol. Microbiol.2002,45: 1527-1540.
    156. Brekasis D, Paget MSB. A novel sensor of NADH/NAD+ redox poise in Strertomyces coelicolor A3(2). The EMBO Journal 2003,22:4856-4865.
    157. Rigali S, Titgemeyer F, Barends S, et al. Feast or famine:the global regulator dasR links nutrient stress to antibiotic production by Streptomyces. The EMBO reports 2008,9: 670-675.
    158. Schell MA. Molecular Biology of the LysR family of transcriptional regulators. Ann. Rev. Microbiol.1993,47:597-625.
    159. Martinez-Costa OM, Martin-Triana AJ, Martinez E, et al. An additional regulatory gene for actinorhodin production in Streptomyces livedans involves a LysR-type transcriptional regulator. J. Bacteriol.1999,181:4353-4364.
    160. Colombo V, Fernandez-Heredia M, Malpartida F. A polyketide biosynthetic gene cluster from Streptomyces antbioticus includes a LysR-type transcriptional regulator. Microbiology 2001,147:3083-3092.
    161. Kullik I, Toledano MB, Tartaglia LA, et al. Mutational analysis of the redox-sensitive transcriptional regulator OxyR:regions important for oxidation and transcriptional activation. J. Bacteriol.1995,177:1275-1284.
    162. Dufour A, Haldenwang WG. Interaction between a Bacillus subtilis anti-σ factor (RsbW) and its antagonist (RsbV). J. Bacteriol.1994,176:1813-1820.
    163. Voekjer U, Voelker A, Maul B, et al. Separate mechanisms activate σB of Bacillus subtilis in response to environmental and metabolic stresses. J. Bacteriol.1995,177: 3771-3780.
    164. Alper S, Dufour A, Garsin D, et al. Role of adenosine nucleotides in the regulation of a stress-response transcription factor in Bacillus subtilis. J. Mol. Biol.1996,260:165-177.
    165. Zhang SY, Haldenwang WG. Contributions of ATP, GTP, and Redox state to nutritional stress activation of the Bacillus subtilis σB transcription factor. J. Bacteriol.2005,187: 7554-7560.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700