用户名: 密码: 验证码:
猪DGAT2基因3’-UTR区的多态性鉴定及功能初步分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DGAT2(乙酰辅酶A:二酰基甘油酰基转移酶,diacylglycerolacyl transferase,DGAT)是属于酰基辅酶A单酰甘油酰基转移酶(MGAT)家族中的一员,催化能量分子甘油三酯合成的最后一步反应并对其限速,这步反应使二酰甘油(diacylgycerol,DAG)加上脂肪酸酰基辅酶A以共价键结合形成三酰甘油(TG)。DGAT2的表达调控可能控制着动物体内脂肪合成进而影响肉质等生产性状。
     本研究采用克隆测序的方法寻找DGAT2基因3′-UTR区的多态性,在包括279头约克夏、96头长白、190头杜洛克、95头鲁莱黑猪、37头莱芜猪、57头大蒲莲和141头军牧一号在内的猪群中检测PS905位点13bp插入/缺失的多态性分布,对有生产性能记录的141头军牧一号猪群体进行基因型与性状数据的关联分析,最后通过生物信息学分析和在细胞水平检测构建的不同基因型3′-UTR载体pGL3-LUC-A和pGL3- LUC-B对报告基因表达的影响,分析PS905位点13bp插入缺失多态的生物学功能。研究结果如下:(1)DGAT2基因3′-UTR区终止密码子之后905bp(PS905)处有一个13bp(TCCTCTGACCTGC)的插入/缺失多态。(2)在所检测的约克夏、长白、杜洛克、鲁莱黑、莱芜猪、大蒲莲、军牧一号群体中AA型均为优势基因型,χ2检测显示所有的猪种该位点均处于哈代温伯格平衡状态。A等位基因频率变化趋势为:地方猪种>育成品种>西方品种。(3)在军牧一号猪群体中,AA基因型的校正背膘厚大于AB基因型,差异极显著(P<0.01);瘦肉率小于AB型,差异显著(P<0.05)。(4)不同类型3′-UTR荧光素酶载体的转染结果表明:pGL3-LUC-B型荧光素酶活性与pGL3-LUC-A但是差异不显著(P=0.0672),B型略高。(5)3′-UTR的RNA二级结构预测结果表明A型的最小自由能更小,更加趋于稳定。
     综上所述,DGAT2基因3′-UTR区PS905位点13bp插入型为优势基因型,数据关联分析表明此位点与背膘厚和瘦肉率数据显著相关,AA基因型趋于使背膘增厚,瘦肉率下降。瞬时转染实验显示的结果显示pGL3-LUC-A型载体表达较低,这与数据关联分析结果一致。该位点对于脂肪沉积的影响有待进一步研究。
DGAT2 (acyl-CoA: diacylglycerol acyltransferase) is a member of acyl-CoA: monoacylglycerol acyltransferase (MGAT) family. In the final reaction of triacylglycerols (TG) synthesis pathways, a fatty acyl-CoA and diacylglycerol (DG) molecule is covalently joined to form TG, which is catalyzed and rate-limited by acyl-CoA: diacylglycerol acyltransferase enzymes. The expression and regulation of DGAT2 may control TG synthesis pathway and affect meat traits. The 3′untranslated region (3′-UTR) of porcine DGAT2 gene was screened for polymorphic site using the method of cloning and sequencing, and a 13bp INS/DEL polymorphism in 905bp post stop codon TGA (PS 905) was identified,alleles A and B representing insertion and deletion of 13 bp, respectively. Polymorphism at site PS 905 was analysed by 15% PAGE in Yorkshire, Landrace, Duroc, Lulai Black pigs, Dapulian, Laiwu and Junmu No. 17 different pig breeds. Associations of polymorphism with trait data were analyzed in 141 Junmu No. 1 individuals. Two vectors carried different 3′-UTR with 13bp insertion or deletion at site PS905, named pGL3-LUC-A and pGL3-LUC-B respectively, was constructed. Their effect on gene expression was analyzed in vitro by transient transfection of the individual reporter constructs into 3T3-l1 cells. The results are summarized as follows: 1) There is a polymorphic site in DGAT2 3′-UTR with 13bp fragment (TCCTCTGACCTGC) insertion or deletion; 2). Genotyping of PS905 polymorphic locus in Yorkshire, Landrace, Duroc, Lulai Black, Dapulian, Laiwu and Junmu No. 1 pigs shows that INS/INS is dominant in all these breeds;χ2 test indicates that all the populations tested were in a state of Hardy-Weinberg equilibrium and the frequency of allele A was higher in Chinese local pig breeds than in cultivated pig breeds and was the lowest in western breeds. 3). Association analysis on Junmu No. 1 data indicates that backfat thickness of individuals with genotype AA is significantly higher than AB individuals (P<0.01), and lean percentage of individuals with genotype AA is significantly higher than AB individuals (P<0.05). 4) In vitro study indicated that there is no significant difference in the activities of driving reporter gene transcription between pGL3-LUC-A and pGL3-LUC-B constructs (P =0.0672). 5) RNA structures predicted by Mfold show that secondary structure of 3′-UTR with 13bp insertion is more stable than deletion type.
     Collectively, the present study shows that 13bp insertion is dominant on PS905 locus of DGAT2 3′-UTR in pigs. Association analysis indicates that allele A has higher backfat thickness and lower lean percentage. The transfection experiment with different 3′-UTR of reporter gene showed no significant differerces. The result that the activity of driving reporter gene transcription of pGL3-LUC-B is slightly higher is consistent with association analysis. Further studies need to be carried out to elucidate the effect of DGAT2 on fat deposition and pork quality.
引文
陈杰,赵茹茜,杨晓静. ADDI基因PCR-SSCPs标记与猪肌内脂肪含量及背膘厚的关系. 南京农业大学学报,2004,27(3):66-69.
    马海明,施启顺,柳小春. DGAT相关基因研究进展.遗传学报, 2005, 32(12): 1327?1332.
    董文甫,刘金兰,李艳军,李艳红,高希军.影响猪肉肉质性状主效基因探折.现代畜牧兽医,2006,12.
    高勤学,李俊,刘红林,王林云,徐银学.二花脸猪与大约克猪生长期肌内脂肪合成与水解基因表达特征的比较研究.遗传学报,2004, 31(11): 1218-1225.
    高勤学,李俊,刘梅.猪PPAR基因多态性与脂肪性状相关的初步研究.江苏农业科学,2004(2): 60-62.
    雷明刚,吴珍芳,邓昌彦.猪品种间HSL基因外显子子PCR-RFLP的研究.华中农业大学学报, 2001, 20(1): 7-10.
    胡悦,李标,王继英,武英,魏述东,姜运良.猪背膘组织二脂酰甘油酰基转移酶基因(DGAT1和DGAT2)的发育性表达分析.农业生物技术学报,2010,18(5):905-910
    林万华,任军,丁能水.H-FABP基因型对二花脸猪相关性状影响的初步分析.畜牧兽医学报,2003, 34(4):318-324.
    刘海龙,江华,张菊,焦凯. DGAT1基因K378N多态性与2型糖尿病及糖尿病肾病的关系.第四军医大学学报;2005,21.
    吴珍芳,熊远著.猪HSL基因多态性研究及其部分DNA片段的测序,遗传学报, 2000, 27 (8): 686-690.
    徐秀容,高雪等.牛DGAT2基因第6内含子Msp- RFLPs和Taq -RFLPs及其与牛经济性状相关性研究.畜牧兽医学报, 2005, 36( 10) : 981-986.
    徐秀容.DGAT1和DGAT2基因多态性与牛部分经济性状相关性的研究.陕西:西北农林科技大学,2004.
    杨春华.猪DGAT基因的克隆、SNP检测及与生产性状的关联分析.华中农业大学,2008.
    杨海玲,曾勇庆,魏述东.莱芜猪脂肪代谢酶活性的发育性变化及其对肌内脂肪沉积的影响.畜牧兽医学报,2005, 36 (11): 1150-1154.
    袁峥嵘,柳小春,马海明.二脂酰甘油酰基转移酶2( DGAT2)基因研究进展.遗传学报,2008, 30( 3) :289-294.
    Y/T 822-2004,种猪生产性能测定规程.
    张沅.家畜育种学.北京:中国农业出版社,2001年10月.
    张争锋,陈宏,李秋玲,雷初朝,张春雷,薛恺,王轶敏,王新庄.南阳牛DGAT2基因多态性及其与生长性状相关性研究.北京:第十次全国畜禽遗传标记研讨会论文集,2006, 421?425.
    张振波,雷明刚,邓昌彦,熊远著.猪LPL基因内含子3的克隆、测序及多态性研究.畜
    牧兽医学报,2005, 36(6): 627-630.
    朱春梅,曹斌云,颜泉梅,杨莎,安小鹏.西农萨能奶山羊DGAT2基因第5内含子多态性与产奶性状的关联分析.中国农业大学学报,2010, 15( 4) : 71-75.
    张海燕,姜学.猪肌内脂肪沉积的营养调控及候选基因的研究进展.中国畜牧杂志, 2009, 45(21).
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2): 281-297.
    Cases S, Stone S J, Zhou P, Yen E, Tow B, Lardizabal K D, Voelker T, Farese R V. Cloning of
    DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members. J Biol Chem, 2001, 276(42): 38870?38876.
    Cases S, Smith S J, Zheng Y W, Myers H M, Lear S R, Sande E, Novak S, Collins C, Welch C B, Lusis A J, Erickson S K, Farese R V Jr. Identification of a gene encoding an acyl CoA: diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc. Natl. Acad. Sci. USA, 1998, 95(22): 13018–13023.
    Chabanon H, Mickleburgh I, Hesketh J. Zipcodes and postage stamps: mRNA localization signals and their trans-acting binding proteins. Brief Funct Genomic Proteomic, 2004, 3(3): 240-256.
    Choi, C., D. Savage, A. Kulkarni, X. Yu, Z. Liu, K. Morino, S. Kim, A. Distefano, V. Samuel, S. Neschen, et al. Suppression of diacylglycerol acyltransferase-2 (DGAT2), but not
    DGAT1, with antisense oligonucleotides reverses diet-induced hepatic steatosis and insulin resistance. J. Biol. Chem, 2007, 282: 22678–22688.
    Coudreau, S. K., P. Tounian, G. Bonhomme, P. Froguel, J. P. Girardet, B. Guy-Grand, A. Basdevant, and K. Clement. Role of the DGAT gene C79T single-nucleotide polymorphism in French obese subjects. Obes. Res, 2003, 11: 1163–1167.
    Dean JL,Sully G,Wait R. Identification of a novel AU-rich element binding protein which is related to AUF1. Biochem J, 2002, 366(pt 3): 709-719.
    de Moor C H, Meijer H, Lissenden S. Mechanisms of translational control by the 3′-UTR in development and differentiation. Semin Cell Dev Biol, 2005, 16(1): 49-58.
    Fran?ois R. Jornayvaz, Andreas L. Birkenfeld, Michael J. Jurczak, Shoichi Kanda, Blas A. Guigni, Debbie C. Jiang, Dongyan Zhang, Hui-Young Lee, Varman T. Samuel, and Gerald I. Shulman. Hepatic insulin resistance in mice with hepatic overexpression of diacylglycerol acyltransferase 2.Proc Natl Acad Sci U S A, 2011 April 5; 108(14): 5748–5752.
    Friedel, S., K. Reichwald, A. Scherag, H. Brumm, A. Wermter, H. Fries, K. Koberwitz, M. Wabitsch, T. Meitinger, M. Platzer, et al. Mutation screen and association studies in the diacylglycerol O-acyltransferase homolog 2 gene (DGAT2), a positional candidate gene for early onset obesity on chromosome 11q13. BMC Genet, 2007, 8: 17.
    Ganji, S., S. Tavintharan, D. Zhu, Y. Xing, V. Kamanna, and M. Kashyap. Niacin noncompetitively inhibits DGAT2 but not DGAT1 activity in HepG2 cells. J. Lipid Res, 2004, 45: 1835–1845.
    Gerbens F, Rettenberger G, Lenstra J A. Characterization, chromosomal localization, and genetic variation of the porcine heart fatty acid-binding protein gene. Mammalian Genome, 1997, 8(5):328-332
    Gerbens F,ErpA J M van.Hardars F L.Effect of genetic Variants of the heart fatty acid-binding protein gene on intramuscular fat and performance traits in pigs.J. Anim. Sci.,1999, 77(4):846-852
    Gerbens F.de Koning D J,Harders F L.The effect of adipocyte and heart fatty acid-binding protein genes on intramuscular fat and backfat content in Meishan crossbred pig. J. Anim. Sci., 2000, 78:552-559
    Ginzinger D G, Clee S M, Dallongeville J, Lewis M E, Henderson H E, Bauje E, Rogers Q R, Jensen D R, Eckel R H, Dyer R, Innis S, Jones B, Fruchart J C, Hayden M R. Lipid andlipoprotein analysis of cats with lipoprotein lipase deficiency. Eur J Clin Invest. 1999, 29(1):17-26
    Giorgio Grillo, Antonio Turi, Flavio Licciulli, Flavio Mignone, Sabino Liuni, Sandro Banfi, Vincenzo Alessandro Gennarino, David S. Horner, Giulio Pavesi, Ernesto Picardi, and Graziano Pesole;UTRdb and UTRsite (RELEASE 2010): a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs;Nucleic Acids Res. 2010 January; 38(Database issue): D75–D80.
    Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. NAR 2008 36(Database Issue):D154-D158.
    Harris CA, Haas JT, Streeper RS, Stone SJ, Kumari M, Yang K, Han X, Brownell N, Gross RW, Zechner R, Farese RV Jr. DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes.J Lipid Res, 2011, 52(4):657-67.
    Hesketh J E, Campbell G P, Piechaczk M. Targeting of c-myc andβ-globin coding sequences to cytoskeletal bound polysomes by c-myc 3′untranslated region. BiochemJ, 1994, 298(1): 143-148.
    Ingrid M W, Stephen A L. Erythroid cell-specific mRNA stability elements in theα-globin 3′nontranslated region. Molecular and Cellular Biology, 1995, 15(5): 2457-2465.
    Josem I, Jose C. Internal-ribosome-entry-site functional activity of the 3′untranslated region of the mRNA for theβsubunit of mitochondrial H+-ATP synthase. Biochem J, 2000, 346 (3): 849-855.
    Kaupe, B., A. Winter, R. Fries, and G. Erhardt. DGAT1 polymorphism in Bos indicus and Bos Taurus cattle breeds. J. Dairy Res, 2004, 71: 182–187.
    Kuersten S, Goodwin E B. The power of the 3′-UTR: translational control and development. Nat Rev Genet, 2003, 4(8): 626-637.
    Lardizabal K D, Mai J T, Wagner N W, Wyrick A, Voelker T, Hawkins DJ. DGAT2 is a new diacylglycerol acyltransferase gene family. Purification, cloning, and expression in insect cells of two polypeptides from Mortierella ramanniana with diacylglycerol acyltransferase activity. Biol Chem, 2001, 276 (42): 38862?38869.
    Laroia G, Cuesta R, Brewer G, Schneider RJ. Control of mRNA decay by heat shock-ubiquitin-proteasome pathway. Science, 1999, 284 (5413): 499-502.
    Levin, M. C., M. Monetti, M. J. Watt, M. P. Sajan, R. D. Stevens, J. R. Bain, C. B. Newgard, R. V. Farese, Sr., and R. V. Farese, Jr. Increased lipid accumulation and insulin resistance in transgenic mice expressing DGAT2 in glycolytic (type II) muscle. Am. J. Physiol.Endocrinol. Metab, 2007, 293: E1772–E1781.
    Lan Ying. The relationship research between diacylglycerol acyltransferse 2 and TAG synthesis and secretion in fatty liver of goose. Sichuan: Sichuan Agricultural University, 2006.
    Lee Y B, Kauffman R G. Celluarity and lipogenic enzyme activities in porcine intramucular adipose tissue. Anim Sci, 1974, 38 (3): 538-544.
    Man, W. C., M. Miyazaki, K. Chu, and J. Ntambi. Colocalization of SCD1 and DGAT2: implying preference for endogenous monounsaturated fatty acids in triglyceride synthesis. J. Lipid Res, 2006, 47: 1928–1939.
    Maryam Ahmadian, Robin E Duncan, Kathy Jaworski, Eszter Sarkadi-Nagy, and Hei Sook Sul. Triacylglycerol metabolism in adipose tissue. Future Lipidol, 2007 April; 2(2): 229–237.
    Matsuda, D., and H. Tomoda. DGAT inhibitors for obesity. Curr. Opin. Investig. Drugs, 2007.8: 836–841.
    Meegalla RL, Billheimer J T, Cheng D. Concerted elevation of acyl-coenzyme A: diacylglycerol acyltransferase (DGAT) activity through independent stimulation of mRNA expression of DGAT1 and DGAT2 by carbohydrate and insulin. Biochem Biophys Res Commun, 2002,298 (3): 317?323.
    Mersman H J , Pond W G, Yen J T. Use of carbohydrate and fat as energy source by obese and lean swine. J Anim Sci, 1984, 58: 894-902.
    Michael Kertesz, Nicola Iovino, Ulrich Unnerstall, Ulrike Gaul & Eran Segal. The role of site accessibility in microRNA target recognition. Nature Genetics, 2007, 39, 1278– 1284.
    Millar, J., S. Stone, U. Tietge, B. Tow, J. Billheimer, J. Wong, R. Hamilton, R. V. Farese, Jr., and D. Rader. Short-term overexpression of DGAT1 or DGAT2 increases hepatic triglyceride but not VLDL triglyceride or apoB production. J. Lipid Res, 2006, 47: 2297–2305.
    Monetti, M., M. C. Levin, M. J. Watt, M. P. Sajan, S. Marmor, B. K. Hubbard, R. D. Stevens,J. R. Bain, C. B. Newgard, R. V. Farese, Sr., et al. Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver. Cell Metab, 2007, 6: 69–78.
    Morales J, Perez J F, Martin-Orue S M, Fondevila M, Gasa J. Large bowel fermentation of maize or sorghum-acorndiets fed as a different source of carbohydrates to Landrace and Iberian pigs. Brit. J. Nutr., 2002, 88: 489-98.
    Mourot J, Kouba M. Development of intra- and intermuscular adipose tissue in growing Large White and Meishan pigs. Rep.Nutr. Dev. 1999, 39: 125-32.
    Nechtelberger D,Pires V.Solkner J, Stur, Brem G, Mueller M, Mueller S. Intramuscular fat content and genetic variants at fatty acid-binding protein loci in Austrian pig. J. Anim. Sci., 2001, 79(11):2 798-2 804
    Nkrumah.J D, Li C,Yu J,Hansen C,Keisler D H.and Moor S S. Polymorphisms in the bovine Ob gene promoter associated with serum obgene concentration,growth,feed intake,feed inbehavior,and measures of carcass merit.J.Anim Sic.2005,83:20-28.
    Ram?′rez Rosario M, Morcuende David, Cava Ramo′n. Fatty acid composition and adipogenic enzyme activity of muscle and adipose tissue, as affected by Iberian×Duroc pig genotype. Food Chem., 2007, 104:500-509.
    Rastinejad F, Blau H M. Genetic complementation reveals a novel regulatory role for 3′untranslated regions in growth and differentiation. Cell, 1993, 72(6): 903-917.
    Sambrook J, Russell D W著,黄培堂译.分子克隆试验指南(第三版).北京:科学出版社,2002.
    Scot J. Stone, Malin C. Levin, Ping Zhou, Jiayi Han, Tobias C. Walther, and Robert V. Farese, Jr.The Endoplasmic Reticulum Enzyme DGAT2 Is Found in Mitochondria-associated Membranes and Has a Mitochondrial Targeting Signal That Promotes Its Association with Mitochondria. J Biol Chem, 2009 February 20; 284(8): 5352–5361.
    Smith, S. J., S. Cases, D. R. Jensen, H. C. Chen, E. Sande, B. Tow, D. A. Sanan, J. Raber, R. H. Eckel, and R. V. Farese, Jr. Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking DGAT. Nat. Genet, 2000, 25: 87–90.
    Stachowiak M, Mackowski M, Madeja Z, Szydlowski M., Buszka A., Kaczmarek P., Rubis B., Mackowiak P., Nowak K. W.and Switonski M. Polymorphism of the Porcine LeptinGene Promoter and Analysis of Its Association with Gene Expression and Fatness Traits. Biochem.Genet. 2007, 45: 245-253.
    Stella M, Si H C, Juergen B. Mutations in the 3′untranslated region of GATA4 as molecular hotspots for congenital heart disease (CHD). BMC Medical Genetics, 2007, 8: 38.
    Stone S J, Myers H M, Watkins S M, Brown B E, Feingold K R, Elias P M, Farese R V Jr. Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. J Biol Chem, 2004, 279(12):11767-76.
    Stone S J, Levin M C, Farese R V. Membrane topology and identification of key functional amino acid residues of murine acyl-CoA: diacylglycerol acyltransferase-2. Biol Chem, 2006, 281 (52): 40273?40282.
    Suzuki K Tobe IL Aoyama M, Sakamoto K OhsugiM, Kamei N, Nemoto S, Inoue A, Ito Y, Uchida S, Hara K Yamauchi T, Kubota N, To rauchi Y, Kadowaki T. Expression of DGAT2 in white adipose tissue is regulated by central leptin action.J Biol Chem,2005,280(5):333 1-3337.
    Turkish A&Henneberty A L,Cromley D,Padamsee M,Oelkers P,BazziH,Christiano A M,Billheimer J Z Sturley S.Identification of two novel human acyl-CoA wax alcohol acyltransferases:members of the diacylglycerol acyltransferase 2 (DGAT2) gene superfamily.The Journal of Biological Chemistry, 2005, 280(15): 14755—14764.
    Vaziri ND,Kim CH,Dang B,Zhan CD,Liang K. Down-regulation of hepatic acyl-CoA:diglycerol acyltransferase in chronic renal failure.Am J Physiol Renal Physiol, 2004, 287(1):90_94.
    Veerkamp J H, Maatman.R G H J. Cytoplasmic fatty acid binding proteins: their structure and genes. Progress in Lipid Research, 1995,34:17-52.
    Vidal O, Varona L, Oliver M A, Noguera J L, Sa`nchez A, Amills M. Malic enzyme 1 genotype is associated with backfat thickness and meat quality traits in pigs. Anim
    Genet., 2005, 37:28-32. Wakimoto K, Chiba H, Michibata H, Seishima M, Kawasaki S, Okubo K, Mitsui H, Torii H,
    Imai Y. A novel diacylglycerol acyltransferase (DGAT2) is decreased in human psoriatic skin and increased in diabetic mice. Biochem Biophys Res Commun, 2003, 310(2): 296?302.
    Wilkie GS, Dickson KS, Gray NK. Regulation of mRNA translation by 5'- and 3'-UTR-binding factors.Trends Biochem Sci. 2003 Apr;28(4):182-8.
    Winter A, Van E M, Binindaemonds O R, Habermann F A, Fries R. Genomic organization of the DGAT2/MOGAT gene family in cattle (Bos taurus) and other mammals.Cytogenet Genome Res, 2003, 102(1-4): 42?47.
    Xiao J, Yang B, Lin H, Lu Y, Luo X, Wang Z. Novel approaches for gene-specific interference via manipulating actions of microRNAs: examination on the pacemaker channel genes HCN2 and HCN4. J Cell Physiol, 2007, 212(2): 285-292
    Yen, C. L., S. J. Stone, S. Koliwad, C. Harris, and R. V. Farese, Jr. Thematicreview series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res, 2008, 49:2283-2301.
    Yu Y H,Ginsberg H N. The role of acyl-CoA:diacylglyccrol acyltransfcrase(DGAT)in energymetabolism.Ann Med,2004, 36(4):252—261.
    Yu, X., S. Murray, S. Pandey, S. Booten, D. Bao, X. Song, S. Kelly, S. Chen, R. McKay, B. P. Monia. Antisense oligonucleotide reduction of DGAT2 expression improves hepatic steatosis and hyperlipidemia in obese mice. Hepatology, 2005, 42: 362–371.
    Zheng, P., W. Allen, K. Roesler, M. Williams, S. Zhang, J. Li, K.Glassman, J. Ranch, D. Nubel, W. Solawetz, et al. 2008. A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat. Genet. 40: 367–372.
    Zhu S, Yoon K, Sterneck E, Johnson PF, Smart RC.. CCAAT/enhancer binding protein-beta is a mediator of keratinocyte survival and skin tumorigenesis involving oncogenic Ras signaling. Proc Natl Acad Sci USA, 2002, 99(1): 207-212.
    Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res, 2003, 31 (13): 3406-3415.
    Zuker, M, Jacobson, A. B. Using Reliability Information to Annotate RNA Secondary Structures. RNA, 1998, 4, 669-679.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700