用户名: 密码: 验证码:
α-法尼烯合酶过表达对转基因烟草生长发育的影响及其基因启动子的克隆与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,在分离和鉴定挥发性萜类合成酶基因及其表达调控和功能特性方面取得了很大的进展,萜类代谢工程已经引起了人们的广泛重视。但是直到现在只对少数几种酶进行了重点研究。
     α-法尼烯合酶是倍半萜α-法尼烯合成途径中的最终酶。到目前为止,对α-法尼烯及α-法尼烯合酶的研究主要集中于其表达调节与α-法尼烯和虎皮病发生的关系及机制探讨上,关于在植物中过表达α-法尼烯合酶是否影响其它萜类物质的产生及植物生物学特性的研究还未见报道。本研究以已经获得的过表达α-法尼烯合酶的转基因烟草(NC89)T3代纯合体为实验材料,对转基因与野生型植株不同的生长特性及其分子机理进行了研究。利用TAIL-PCR法克隆了该基因的启动子序列,并对其功能进行了初步分析。为研究倍半萜代谢工程对植物生长特性的影响及α-法尼烯合酶基因的表达调控因素提供实验依据。研究结果和主要结论如下:
     (1)α-AFS过表达影响了转基因烟草的生长特性和激素含量
     将转基因烟草T3代纯合体与野生型烟草同时播种,同样条件培养后发现,在生长期的前30天,二者无明显差异,但到45天以后,转基因植株生长速率逐渐快于野生型,到60天差异明显,主要表现为株高明显增高,茎节间距离加大,茎变细,叶片数增加,最后出现花蕾和开花时间早于野生型植株50多天。
     对相同温室条件下相同发育时期的烟草,选取4叶(无差异),8叶、12叶、14~15叶(刚出现花蕾)、16~17叶(开花)五个时期,分别利用ELISA法测其GAs、ABA和IAA含量,发现在发育中前期,转基因和野生型植株激素差异不显著,但到花蕾期和开花期,二者差异显著,前者GAs、ABA和IAA含量分别比后者高102.28%,109.50%,257.37%(花蕾期)和115.75%,223.53%和289.64%(开花期),说明α-AFS基因过表达改变了激素水平,进而影响了转基因植株的株高、开花时间等生长发育特性。
     (2)α-AFS过表达影响了转基因烟草MVA和MEP途径中关键酶及开花分子标记基因的表达
     对MVA途径的NtHMGR2和NtFPS及MEP途径的NtDXS和NtDXR主要关键酶基因进行qPCR定量分析表明,过表达α-AFS使NtHMGR2表达量从幼苗到开花期逐渐增高,而NtFPS的表达量是先升后降的趋势,在发育中期达到最高,直到最后又低于野生型。NtDXS表达量在4叶和8叶期高于野生型,后来低于野生型并一直呈下降趋势,NtDXR表达量在4叶期略高于野生型,其它时期都比野生型低。
     GAs是MEP途径的下游产物,对GAs合成途径相关酶基因表达进行qPCR分析表明,NtGA20ox1在叶片中表达随着生长发育逐渐上升,12叶期时,在三个转基因株系中的表达量已超过野生型植株,相对表达量是野生型的4.87倍,2.40倍和2.46倍,花蕾期和开花期虽有下降但也高于野生型植株。NtGA20ox2表达量在4叶、8叶和12叶期表达量比野生型总体略高,但是到花蕾期和开花期,总体表达量上升较大,尤其是T3-3和T3-5两个株系远高于野生型。NtGA2ox1、NtGA2ox2、NtGA2ox3和NtGA2ox5在幼苗期表达最高,此后呈下降趋势。
     利用半定量PCR对烟草中开花分子标记基因检测表明,转基因烟草中NtMADS4的表达时期明显早于野生型,NtMADS11表达在转基因植株T3-1、T3-5中表达早于野生型,而T3-3与野生型差异不大。
     (3)α-AFS过表达影响转基因烟草植株其它萜类、生物碱、类固醇等物质的合成
     利用GC-MS对固相微萃取顶空收集的烟草挥发物和正己烷提取的物质进行分析表明,转基因和野生型烟草均未检出α-法尼烯,但是转基因植株中检测到另一种倍半萜β-石竹烯的含量是野生型的6倍,转基因植株中还有少量的β-石竹烯氧化产物和穿心莲内酯,而野生型烟草植株未检出。在转基因植株中还发现一种新的二萜物质香紫苏醇。HPLC分析表明,转基因烟草植株中保留时间约10min处物质含量高于野生型,但具体是何种物质还有待于进一步分析。
     干叶中生物碱含量检测发现,转基因植株的生物碱含量高于野生型植株,而总类固醇含量低于野生型。
     (4)α-AFS过表达改变了转基因烟草的抗胁迫能力
     对转基因烟草进行离体自然衰老、MV、NaCl、45C胁迫处理发现,转基因植株叶圆片抗衰老能力高于野生型叶片,但对MV胁迫比野生型敏感。NaCl处理中,种子萌发差异不大,但在100mM NaCl处理中转基因烟草幼苗抗胁迫能力高于野生型幼苗,但到了浓度NaCl达150mM后,二者差异不明显。
     高温处理转基因植株的净光合速率受影响程度比野生型大,但二者Fv/Fm变化趋势比较相近。转基因植株的相对电导率和伤害度明显低于野生型植株。
     (5)克隆了α-AFS基因启动子并进行功能分析
     利用TAIL-PCR方法从青香蕉苹果中克隆了α-AFS基因启动子序列,在线分析表明,该序列具有许多明显的TATA框和CAAT框,同时还具有与激素相关的元件,在ATG下游分别有一个参与热胁迫反应的HSE元件和厌氧诱导的ARE元件等重要顺式作用元件。将启动子分段克隆与GUS报告基因构建融合表达载体转化烟草,转基因烟草GUS活性分析表明,该启动子能够使GUS基因表达,且表达活性因片段长度不同而有差异。利用GA、ABA、SA、MeJA、乙烯利(ethephon)和45C热激处理后对GUS酶活性进行检测表明GA、MeJA、乙烯利处理增强了启动子活性,而SA和ABA处理反之。热激处理对含有HSE的片段2-1较明显,但对其它片段不明显。
In recent years, the isolation and identification of volatile terpenoids synthase genes andtheir expression regulation and function characteristics have made great progress, also,terpenoids metabolic engineering has attracted widespread attention. But until now, onlyseveral kinds of enzymes have been studied in detail.
     α-Farnesene synthase is the final enzyme in the sesquiterpere α-farnesene synthesispathway. Until now, studies on α-farnesene synthase mainly focus on the mechanism ofsuperficial scald production and its relationship with α-farnesene synthase gene expression.Overexpression of α-farnesene synthase in plants, which can influence the production of otherterpenes and plant biological properties, has not been reported.
     In this study, we studied the difference of growth characters between transgenic plantwhich overexpressed α-farnesene synthase gene from apple tree (Malus×domestica) with35Spromter and wild-type tobaccos, and their molecular mechanisms using homozygous T3generation of transgenic tobacco (NC89). We also isolated the promoter sequence ofα-farnesene synthase gene on genomic DNA from apple by TAIL-PCR method andpreliminarily analyzed its functions. The results will contribute to studies on the influence ofsesquiterpene metabolism engineering on the plant growth and the factors of α-farnesenesynthase gene regulation. The main results and conclusions in this thesis are presented asfollows:
     (1) α-AFS overexpression has affected the growth characteristics of transgenic tobaccoand hormone levels
     T3generation homozygotes of transgenic and wild type tobacco were cultivated in sameconditions. There was no significant difference in morphology after the early30days betweentransgenic and wild-type plants. However, the transgenic plants growth fast after45days, andplant morphology such as plant height, stem internodes, leaf number between transgenic andwild type was significant in difference until60days later, and the flower buds emerging andflowering time of transgenic plant was50days earlier than that of wild type plants.
     We measured the GAs, ABA and IAA contents at the4leaves,8leaves,12leaves,14leaves and16leaves growth stages by ELISA, and found that in the early development, the hormone levels did not show significant difference in the transgenic and wild-type plants, butin the bud and flowering period, the GAs, ABA and IAA contents in transgenic plants were102.28%,109.50%,257.37%(buds), and115.75%,223.53%and289.64%(blooming) higherthan those in wild-type, which indicated that overexpression of α-AFS gene changed thehormone levels, and then influenced the plant height, flowering time characteristics oftransgenic plants.
     (2) α-AFS overexpression affected the expression levels of key enzymes in MVA and MEPpathways and the flowering-related genes in transgenic tobacco
     We estimated the transcription levels of the key enzymes NtHMGR2, NtFPS, NtDXS andNtDXR of MVA and MEP pathway by qPCR. The results showed that overexpression ofα-AFS improved the expression level of NtHMGR2gradually from seedling to floweringperiod, while the expression of NtFPS was lower at4and8leaves stages and higher at12leaves stage than wild-type, and then decreased until the flowering time. Transgenic plantsexhibited higher NtDXS expression level from4to8leaf stage, but lower level than the wildtype after8leaf stage, showing a downward trend. NtDXR expression level of transgenic plantwas slightly higher than that of wild-type only at4leaves stage, and was lower at other fourstages.
     GAs is the downstream product of MEP pathway. The expression levels of the enzymegenes related to the GAs synthesis were analysized by qPCR, the results showed that theNtGA20ox1expression level improved gradually with the development, and at the12leavesstage, the expression levels in all three transgenic plants were4.87,2.40and2.46times towild-type, respectively. Although the NtGA20ox1expression level decreased in budding andflowering period, it was still higher than that in wild-type plants. The expression levels ofNtGA20ox2increased markedly in transgenic plants at the bud and flowering period,especially the T3-3and T3-5strains. NtGA2ox1, NtGA2ox2, NtGA2ox3and NtGA2ox5showedhigher expression level in seedling stage, and then began to decline until flowering.
     The expression pattern of flowering-related genes in tobacco were detected bysemi-quantitative PCR, the results showed that the expression of NtMADS4in T3-1, T3-3andT3-5and NtMADS11in T3-1, T3-5were all significantly earlier than those in wild-type plants,but T3-3line didn’t show significant difference in expression level comparws to wild-typeplants.
     (3) α-AFS overexpression affected the synthesis of other terpenoids, alkaloid and sterols intransgenic tobacco.
     The extractives of transgenic and wild-type lines were analysed by GC-MS, and the results showed that no α-farnesene was detected in all lines, but in transgenic plants, the level ofβ-caryophyllene was increased6fold, trace caryophyllene oxide, andrographolide, and a newditerpene sclareol were also detected. HPLC analysis showed compounds levels were variousbetween transgenic and wild-type tobacco, and what kinds of those compounds are stillunknown.
     We also found that the alkaloid content of dry leaves was higher but the content of totalsterols was lower in the transgenic plant than the wild-type.
     (4) α-AFS overexpression improved the stress resistance of transgenic tobacco
     Under treatment with natural senescence, MV, NaCl,45C, compared to wild-type, thenatural senescence resistance ability of leaf discs from transgenic tobacco was higher, butmore sensitive to20μM MV stress, the seed germination rate was no visible difference underNaCl stress, but the seedlings of transgenic plants grew better on the MS mediumsupplemented with100mM NaCl, but there was no obvious difference between them with150mM NaCl stress. Under45C stress, the Pn decreased markedly in the transgenic plantscompared with25C, but the value was similar to the wild type, and had lower relativeconductivity and injury degree than wild-type.
     (5) The isolation and function analysis of the α-AFS gene promoter
     We isolated the α-AFS gene promoter sequence from the ‘white winter pearmain’ apple(Malus x domestica)by TAIL-PCR method, and the online analysis showed that thesequence has many obvious TATA box and CAAT box, the element associated with hormone,and HSE element involved in thermal stress reaction, anaerobic induced element and otherimportant cis-acting elements.
     The promoter sequence fragment was inserted into the upstream of GUS reporter gene andintroduced into tobacco. GUS activity analysis showed that the promoter can induce GUSgene expression, and the expression activity was different in various length of promotersequence. We treated the transgenic tobacco, which was transformed with the whole promotersequence, with GA, ABA and SA, MeJA, ethephon (ethephon) and45C heat shock, and theresults showed that GA, MeJA, ethephon treatment enhanced the GUS activity, but the SAand ABA treatment exhibited reverse results. Heat shock treatment improved GUS activitywhen promoter sequence contained the HSE element (sequence2-1), but didn’t for otherseuquences.
引文
李萌。苹果α-法尼烯合成酶基因的克隆与表达特性研究。山东农业大学硕士论文,2005
    赵世杰,史国安,董新纯。植物生理学实验指导。中国农业科学技术出版社,2002,130~131
    路静,赵华燕,何奕昆,宋艳茹。高等植物启动子及其应用研究进展。自然科学进展,2004,08:17~23
    周晓红,陈晓光,张晓东,王亚楠,李林,习佳飞,胡建军。番茄果实特异性E8启动子的基因克隆与序列分析。第一军医大学学报,2003,01:25~28
    黄真池,卢向阳,曾富华,叶耀华,刘媛,贺炜华。受病原物诱导的植物启动子PPPs在转基因辣椒中的活性。湖南农业大学学报,2008,34(3):270~273
    苏宁。番茄DR8基因启动子的克隆及其调控初探。重庆大学硕士论文,2007
    张晓宁。盐藻耐盐相关基因的克隆、功能分析与高效启动子的分离鉴定。博士学位论文,2002,53~67
    韩志勇,王新其,沈革志。反向PCR克隆转基因水稻的外源基因旁侧序列。上海农业学报,2001,17(2):27~32
    黄君健,李杰之,林坚,蒋晓山,高朝晖,黄翠芬。人端粒酶催化亚基hTERT基因启动子的克隆。生物技术通讯,1999,03:167~170
    王新国,张国华。用衔接头PCR克隆新的胡萝卜Ⅱ型转化酶基因启动子。中国生物化学与分子生物学报,2001,17(1):61~65
    方卫国,张永军,马金成。用YADE法克隆球孢白僵菌类枯草杆菌蛋白酶基因CDEP-J的启动子及启动子序列分析。菌物系统,2003,22(2):252~258
    应革,武威,何朝族。TAIL-PCR方法快速分离Xcc致病相关基因序列。生物工程学报,2002,02:182~186
    陈军营,孙佩,王德勤,陈新建。一种改良的克隆小麦GLP3基因启动子的TAIL-PCR技术。植物生理学通讯,2007,04:754~758
    张俊莲,王蒂,张金文,陈正华。用绿色荧光蛋白和洋葱表皮细胞检测拟南芥rd29A基因启动子活性的方法。植物生理学通讯,2005,41(6):815~819
    刘振林,曹华雯,夏新莉,尹伟伦,戴思兰。甘菊BADH基因启动子的克隆与瞬时表达分析。园艺学报,2008,12:1787~1794
    尹梦回,董静,李先碧,侯磊,罗明,李德谋,裴炎,肖月华。烟草绒毡层特异启动子pTA29在棉花中的表达特性。作物学报,2008,12:2092~2098
    殷全玉,杨铁钊,郭宝银,黄进慧。紫外分光光度法测定烟草中的游离烟碱。中国烟草科学,2008,29(6):20~22
    孙瑞申,范进烈。烟碱在紫外分光光度法中的吸光值测定和计算公式问题。烟草科技,1982,2:14~16
    Abel C., Clauss M., Schaub A., Gershenzon J., Tholl D.. Floral and insect-induced volatileformation in Arabidopsis lyrata ssp. petraea, a perennial, outcrossing relative of A.thaliana. Planta,2009,230:1~11
    Aharoni A., Giri A.P., Verstappen F.W.A., Bertea C.M., Sevenier R., Sun Z., Jongsma M.A.,Schwab W., Bouwmeester H.J.. Gain and loss of fruit flavor compounds produced by wildand cultivated strawberry species. The Plant Cell Online,2004,16:3110~3131
    Aharoni A., Jongsma M.A., Bouwmeester H.J.. Volatile science? Metabolic engineering ofterpenoids in plants. Trends in plant science,2005,10:594~602
    Ahumada I., Cairó A., Hemmerlin A., González V., Pateraki I., Bach T.J., Rodríguez-Concepción M., Campos N. and Boronat, A.. Characterisation of the gene family encodingacetoacetyl-CoA thiolase in Arabidopsis. Funct. Plant Biol.,2008,35:1100~1111
    Arimura G., Matsui K., Takabayashi J.. Chemical and molecular ecology of herbivore-inducedplant volatiles: proximate factors and their ultimate functions. Plant and cell physiology,2009,50:911~923
    Arimura G., Ozawa R., Kugimiya S., Takabayashi J., Bohlmann J.. Herbivore-induced defenseresponse in a model legume. Two-spotted spider mites induce emission of (E)-β-ocimeneand transcript accumulation of (E)-β-ocimene synthase in Lotus japonicus. PlantPhysiology,2004,135:1976~1983
    Arimura G., Ozawa R., Shimoda T., Nishioka T., Boland W., Takabayashi J..Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature,2000,406:512~515
    Bach T.J.. Some new aspects of isoprenoid biosynthesis in plants-a review. Lipids,1995,30:191~202
    Balkema-Boomstra A., Zijlstra S., Verstappen F., Inggamer H., Mercke P., Jongsma M.,Bouwmeester H.. Role of cucurbitacin C in resistance to spider mite (Tetranychus urticae)in cucumber (Cucumis sativus L.). Journal of chemical ecology,2003,29:225~235
    Barnola L.F., Cede o A., Hasegawa M.. Intraindividual variations of volatile terpene contentsin Pinus caribaea needles and its possible relationship to Atta laevigata herbivory.Biochemical systematics and ecology,1997,25:707~716
    Bartram S., Jux A., Gleixner G., Boland W.. Dynamic pathway allocation in early terpenoidbiosynthesis of stress-induced lima bean leaves. Phytochemistry,2006,67,1661~1672
    Bate N., Twell D.. Functional architecture of a late pollen promoter: pollen-specifictranscription is developmentally regulated by multiple stage-specific and co-dependentactivator elements. Plant molecular biology,1998,37:859~869
    Benfey P.N., Ren L. and Chua N H.. Tissue-specific expression from CaMV35S enhancersubdomains in early stages of plant development. The EMBO Journal,1990,(9):1677~1684
    Bertea C., Freije J., Van der Woude H., Verstappen F., Perk L., Marquez V., De Kraker J.,Posthumus M., Jansen B., De Groot A.. Identification of intermediates and enzymesinvolved in the early steps of artemisinin biosynthesis in Artemisia annua. Planta medica,2005,71:40
    Bhatia S.P., McGinty, D., Letizia C.S., Api A.M.. Fragrance material review on vetiverol.Food and Chemical Toxicology,2008,46, S297~S301
    Bich o H., Borg-Karlson A.K., Araújo J., Mustaparta H.. Identification of plant odoursactivating receptor neurones in the weevil Pissodes notatus F.(Coleoptera, Curculionidae).Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and BehavioralPhysiology,2003,189:203~212
    Bleeker P.M., Diergaarde P.J., Ament K., Guerra J., Weidner M., Schütz S., de Both M.T.J.,Haring M.A., Schuurink R.C.. The role of specific tomato volatiles in tomato-whiteflyinteraction. Plant Physiology,2009,151:925~935
    Bohlmann J., Meyer-Gauen G. and Croteau R.. Plant terpenoid synthases: molecular biologyand phylogenetic analysis. Proc. Natl. Acad. Sci. USA,1998,95:4126~4133
    Bouvier F., Suire C., Harlingue A., Backhaus R.A. and Camara B.. Molecular cloning ofgeranyl diphosphate synthase and compartmentation of monoterpene synthesis in plantcells. Plant J.,2000,24:241~252
    Burke C.C., Wildung M.R. and Croteau R.. Geranyl diphosphate synthase: cloning,expression, and characterization of this prenyltransferase as a heterodimer. Proc. Natl.Acad. Sci. USA,1999,96:13062~13067
    Castrocillo P.J. and Carde R.T.. Environmental regulation of female calling and male responseperiodicities in the codling moth (Laspeyresia pomonella). J Insect Physiol.,1979,25:659~667
    Chappell J., Wolf F., Proulx J., Cuellar R., Saunders C.. Is the reaction catalyzed by3-hydroxy-3-methylglutaryl coenzyme A reductase a rate-limiting step for isoprenoidbiosynthesis in plants? Plant Physiology,1995,109:1337~1343
    Chen F., Ro D.K., Petri J., Gershenzon J., Bohlmann J., Pichersky E., Tholl D..Characterization of a root-specific Arabidopsis terpene synthase responsible for theformation of the volatile monoterpene1,8-cineole. Plant Physiology,2004,135:1956~1966
    Chiang H.H., Hwang I., Goodman H.M.. Isolation of the Arabidopsis GA4locus. The PlantCell Online,1995,7:195~201
    Christensen A.H., Sharrock R.A. and Quail P.H.. Maize polyubiquitin genes: structure,thermal perturbation of expression and transcript splicing, and promoter activity followingtransfer to protoplasts by electroporation. Plant molecular biology,1992,(18):675~689
    Christianson D.W.. Unearthing the roots of the terpenome. Current opinion in chemicalbiology,2008,12:141~150
    Curtis M.D., Grossniklaus U.. A gateway cloning vector set for high-throughput functionalanalysis of genes in planta. Plant Physiology,2003,133:462~469
    Davidovich-Rikanati R., Lewinsohn E., Bar E., Iijima Y., Pichersky E., Sitrit Y..Overexpression of the lemon basil α-zingiberene synthase gene increases both mono-andsesquiterpene contents in tomato fruit. Plant J.,2008,56:228~238
    Defilippi B.G., Whitaker B.D., Hess-Pierce B.M., Kader A.A.. Development and control ofscald on wonderful pomegranates during long-term storage. Postharvest biology andtechnology,2006,41:234~243
    Degenhardt J., Gershenzon J., Baldwin I.T., Kessler A.. Attracting friends to feast on foes:engineering terpene emission to make crop plants more attractive to herbivore enemies.Current opinion in biotechnology,2003,14:169~176
    Degenhardt J., Hiltpold I., K llner T.G., Frey M., Gierl A., Gershenzon J., Hibbard B.E.,Ellersieck M.R., Turlings T.C.J.. Restoring a maize root signal that attracts insect-killingnematodes to control a major pest. Proceedings of the National Academy of Sciences,2009,106:13213~13218
    Degenhardt J.è., Gershenzon J.. Demonstration and characterization of (E)-nerolidol synthasefrom maize: a herbivore-inducible terpene synthase participating in (3E)-4,8-dimethyl-1,3,7-nonatriene biosynthesis. Planta,2000,210:815~822
    Delphia C.M., Mescher M.C., De Moraes C.M.. Induction of plant volatiles by herbivoreswith different feeding habits and the effects of induced defenses on host–plant selectionby thrips. Journal of Chemical Ecology,2007,33,997~1012
    Del Giudice L., Massardo D.R., Pontieri P., Bertea C.M., Mombello D., Carata E., TrediciS.M., Talà A., Mucciarelli M., Groudeva V.I.. The microbial community of Vetiver rootand its involvement into essential oil biogenesis. Environmental microbiology,2008,10:2824~2841
    Denbow C.J., Lang S. and Cramer C.L.. The N-terminal domain of tomato3-hydroxy-3methylglutaryl-CoA reductases: sequence, microsomal targeting and glycosylation. J. Biol.Chem.,1996,271:9710~9715
    Dudareva N., Martin D., Kish C.M., Kolosova N., Gorenstein N., F ldt J., Miller B.,Bohlmann J..(E)-β-ocimene and myrcene synthase genes of floral scent biosynthesis insnapdragon: function and expression of three terpene synthase genes of a new terpenesynthase subfamily. The Plant Cell Online,2003,15:1227~1241
    Dudareva N., Negre F., Nagegowda D.A., Orlova I.. Plant volatiles: recent advances andfuture perspectives. Critical Reviews in Plant Sciences,2006,25:417~440
    Dudareva N., Andersson S., Orlova.I, Gatto N., Reichelt M., Rhodes D., Boland W.,Gershenzon J.. The nonmevalonate pathway supports both monoterpene and sesquiterpeneformation in snapdragon flowers. Proc Natl Acad Sci USA,2005,102:933~938
    Erbilgin N., Raffa K.F.. Modulation of predator attraction to pheromones of two prey speciesby stereochemistry of plant volatiles. Oecologia,2001,127:444~453
    F ldt J., Arimura G., Gershenzon J., Takabayashi J., Bohlmann J.. Functional identification ofAtTPS03as (E)--ocimene synthase: a monoterpene synthase catalyzing jasmonate-andwound-induced volatile formation in Arabidopsis thaliana. Planta,2003,216:745~751
    Galili G., Galili S., Lewinsohn E., Tadmor Y.. Genetic, molecular, and genomic approaches toimprove the value of plant foods and feeds. Critical Reviews in Plant Sciences,2002,21:167~204
    Gambliel H., Croteau R.. Pinene cyclase-I and cyclase-II–two enzymes from Sage (Salviaofficinalis) which catalyze stereospecific cyclizations of geranyl pyrophosphate tomonoterpene olefins of opposite configuration. J. Biol. Chem.,1984,259:740~748
    Gapper N.E., Bai J.H., Whitaker B.D.. Inhibition of ethylene-induced α-farnesene synthasegene PcAFS1expression in ‘d’anjou’ pears with1-MCP reduces synthesis and oxidationof α-farnesene and delays development of superficial scald. Postharvest Biology andTechnology,2006,41:225~233
    Gershenzon J. and Kreis W.. Biochemistry of terpenoids: monoterpenes, sesquiterpenes,diterpenes, sterols, cardiac glycosides and steroid saponins in: Biochemistry of plantsecondary metabolism (Wink, M., Ed.),1999, pp.222~299, CRC Press, Boca Raton, FL.
    Gittins J.R., Pellny T.K., Hiles E.R., Rosa C., Biricolti S. and James D.J.. Transgeneexpression driven by heterologous ribulose-l,5-bisphosphate carboxylase/oxygenasesmall-subunit gene promoters in the vegetative tissues of apple (Malus pumila mill.).Planta,2000,210:232~240
    Godard K.A., White R., Bohlmann J.. Monoterpene-induced molecular responses inArabidopsis thaliana. Phytochemistry,2008,69:1838~1849
    Gomez S.K., Cox M.M., Bede J.C., Inoue K., Alborn H.T., Tumlinson J. H., Korth K. L..Lepidopteran herbivory and oral factors induce transcripts encoding novel terpenesynthases in Medicago truncatula. Arch Insect Biochem Physiol.,2005,58(2):114~127
    Green S., Ellen N.F., Adam M., Lesley L. B., Janine M. C., Daryl D. R., Elspeth MacRae..Unusual features of a recombinant apple α-farnesene synthase. Phytochemistry,2007,68:176~188
    Guerrieri E., Digilio M.C.. Aphid-plant interactions: a review. Journal of Plant Interactions,2008,3,223~232
    Guo H., Chen X., Zhang H.. Characterization and activity enhancement of the phloem-specific pumpkin PP2gene promoter. Transgenic Rasearch,2004,13:559~566
    Haudenschild C, Croteau R.. Molecular engineering of monoterpene production. Geneticengineering; principles and methods,1998,20
    Hedden P., Phillips A.L.. Gibberellin metabolism: new insights revealed by the genes. Trendsin plant science,2000,5:523~530
    Hemmerlin A., Hoeffler J.F., Meyer O., Tritsch D., Kagan I.A., Grosdemange-Billiard C.,Rohmer M., Bach T.J.. Cross-talk between the cytosolic mevalonate and the plastidialmethylerythritol phosphate pathways in tobacco bright yellow-2cells. J Biol Chem.,2003,278:26666~26676
    Hsiao Y. Y., Jeng M. F., Tsai W. C., Chuang Y. C., Li C. Y., Wu T. S., Kuoh C. S., Chen W.H.and Chen, H.H.. A novel homodimeric geranyl diphosphate synthase from the orchidPhalaenopsis bellina lacking a DD(X)2-4D motif. Plant J.,2008,55:719~733
    Hsieh M.H., Chang C.Y., Hsu S.J. and Chen J.J.. Chloroplast localization of methylerythritol4-phosphate pathway enzymes and regulation of mitochondrial genes in ispD and ispEalbino mutants in Arabidopsis. Plant Mol. Biol.,2008,66:663~673.
    Huelin F.E., Murray K.E.. Alpha-farnesene in the natural coating of apples. Nature,1966,210:1260~1261
    Ibrahim M.A., Stewart-Jones A., Pulkkinen J., Poppy G.M., Holopainen J.K.. The influence ofdifferent nutrient levels on insect-induced plant volatiles in Bt and conventional oilseedrape plants. Plant Biology,2008,10,97~107
    Imbiscuso G., Trotta, A., Maffei M., Bossi S.. Herbivory induces a ROS burst and the releaseof volatile organic compounds in the fern Pteris vittata L. Journal of Plant Interactions,2009,4,15~22
    Jang S., An K., Lee S., An G.. Characterization of tobacco MADS-box genes involved infloral initiation. Plant and cell physiology,2002,43:230~238
    Janmaat A.F., Kogel W.J., Woltering E.J.. Enhanced fumigant toxicity of β-cymene againstFrankliniella occidentalis by simultaneous application of elevated levels of carbon dioxide.Pest management science,2002,58:167~173
    Jin H., Nikolau B.J.. Genetic, biochemical and physiological studies of acetyl-CoAmetabolism via condensation in: Current Advances in The Biochemistry and Cell Biologyof Plant Lipids (Benning, C. and Ohlrogge, J.,Eds.),2007, p.177, Aardvark GlobalPublishing Company, Salt Lake City, UT.
    Jordan E.T., Hatfield P.M., Hondred D., Talon M., Zeevaart J.A., Vierstra R.D.. PhytochromeA overexpression in transgenic tobacco (correlation of dwarf phenotype with highconcentrations of phytochrome in vascular tissue and attenuated gibberellin levels). Plantphysiology,1995,107:797~805
    Joshi C.P.. An inspection of the domain between putative TATA box and translation startsitein79plant genes. Nucleic Aeids Res.,1987,15:6643~6653
    Jung C., Müller A.E.. Flowering time control and applications in plant breeding. Trends inplant science,2009,14:563
    Kappers I.F., Aharoni A., Van Herpen T.W.J.M., Luckerhoff L.L.P., Dicke M., BouwmeesterH.J.. Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis.Science Signalling,2005,309:2070
    Kasuga M., Liu Q., Miura S., Yamaguchi-Shinozaki K., Shinozaki K.. Improving plantdrought, salt, and freezing tolerance by gene transfer of a single stress-inducibletranscription factor. Nature biotechnology,1999,17:287~291
    Kellogg B.A., Poulter C.D.. Chain elongation in the isoprenoid biosynthetic pathway. Curr.Opin. Chem. Biol.,1997,1:570~578
    Kleinhentz M., Jactel H., Menassieu P.. Terpene attractant candidates of Dioryctriasylvestrella in maritime pine (Pinus pinaster) oleoresin, needles, liber, and headspacesamples. Journal of chemical ecology,1999,25:2741~2756
    Kim M.J., Kim H., Shin J.S.. Seed-specific expression of sesame microsomal oleic aciddesaturase is controlled by combinant orial properties between negative cis-regulatoryelements in the SeFAD2promoter and enhancers in the5′-UTR intron. Molecular Geneticsand Genomics,2006,276:351~368
    K pke D., Schr der R., Fischer H.M., Gershenzon J., Hilker M., Schmidt A.. Does eggdeposition by herbivorous pine sawflies affect transcription of sesquiterpene synthases inpine? Planta,2008,228(3):427~38
    Kumpatla S.P., Chandrasekharan M.B., Iyer L.M.. Genome intruder scanning andmodulation systems and transgene sileneing. Trend Plant sci,1998,3:97~104
    Leivar P., González V.M., Castel S., Trelease R.N., López-Iglesias C., Arró M., Boronat A.,Campos N., Ferrer A. and Fernàndez-Busquets X.. Subcellular localization of Arabidopsis3-hydroxy-3-methylglutarylcoenzyme A reductase. Plant Physiol.,2005,137:57~69
    Li H.Y., Li Y., Wei W.. SA induction of a grapevine class Ⅲ chitinase gene VCH3promoterin transgenic tobacco vascular tissue. Journal of Integrative Plant Biology,2004,46(2):148~153
    Lin Z.J., Qiu S.X., Wufuer A., Shum L.. Simultaneous determination of glycyrrhizin, a markercomponent in radix Glycyrrhizae, and its major metabolite glycyrrhetic acid in humanplasma by LC-MS/MS. Journal of chromatography. B, Analytical technologies in thebiomedical and life sciences,2005,814:201
    Liu Y.G., Whittier R.F.. Thermal asymmetric interlaced PCR: automatable amplification andsequencing of insert end fragments from P1and YAC clones for chromosome walking.Genomics,1995,25:674~681
    Liu Y.G., Huang N.. Efficient amplification of insert end sequences from bacterial artificialchromosome clones by thermal asym-metric interlaced PCR. Plant Molecular BiologyReporter,1998,16(2):175~181
    Liu Y.G., Norihiro M., Teruko O., Robert F.W.. Efficient isolation and mapping of Arabidopsisthaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. The PlantJournal,1995,8(3):457~463
    Lois L.M., Rodríguez-Concepción M., Gallego F., Campos N. and Boronat A.. Carotenoidbiosynthesis during tomato fruit development: regulatory role of1-deoxy-D-xylulose5-phosphate synthase. Plant J.,2000,22:503~513
    Lumbreras V., Campos N. and Boronat A.. The use of an alternative promoter in theArabidopsis thaliana HMG1gene generates an mRNA that encodes a novel3-hydroxy-3methylglutaryl coenzyme A reductase isoform with an extended N-terminal region. PlantJ.,1995,8:541~549
    Maffei M.. Vetiveria, the genus Vetiveria. Taylor&Francis, London,2002
    Pophof B., Stange G., Abrell L.. Volatile organic compounds as signals in a plant-herbivoresystem: electrophysiological responses in olfactory sensilla of the moth Cactoblastiscactorum. Chemical Senses,2005,30,51~68
    Martin D.M., F ldt J., Bohlmann J.. Functional characterization of nine Norway Spruce TPSgenes and evolution of gymnosperm terpene synthases of the TPS-d subfamily. PlantPhysiol.,2004,135(4):1908~1927
    Masferrer A., Arró M., Manzano D., Schaller H., Fernández-Busquets X., Moncaleán P.,Fernández B., Cunillera N., Boronat A., Ferrer A.. Overexpression of Arabidopsis thalianafarnesyl diphosphate synthase (FPS1S) in transgenic Arabidopsis induces a celldeath/senescence‐like response and reduced cytokinin levels. The Plant Journal,2002,30:123~132
    Mayer C.J., Vilcinskas A., Gross J.. Pathogen-induced release of plant allomone manipulatesvector insect behavior. Journal of chemical ecology,2008,34:1518~1522
    Mayer C.J., Vilcinskas A, Gross J.. Phytopathogen lures its insect vector by altering host plantodor. Journal of chemical ecology,2008,34:1045~1049
    McCaskill D., Croteau R.. Some caveats for bioengineering terpenoid metabolism in plants.Trends in Biotechnology,1998,16:349~355
    McElroy D., Zhang W., Cao J. and Wu R.. Isolation of an efficient actin promoter for use inrice transformation. The Plant Cell,1990,(2):163~171
    Mercke P., Kappers I.F., Verstappen F.W.A., Vorst O., Dicke M., Bouwmeester H.J..Combined transcript and metabolite analysis reveals genes involved in spider miteinduced volatile formation in cucumber plants. Plant Physiology,2004,135:2012~2024
    Merret R., Cirioni J.R., Bach T.J. and Hemmerlin A.. A serine involved in actin-dependentsubcellular localization of a stress-induced tobacco BY-2hydroxymethylglutaryl-CoAreductase isoform. FEBS Lett.,2007,581,5295~5299
    Miller R.L., Bills D.D., Buttery R.G.. Volatile components from Bartlett and Bradford pearleaves. J Agric Food Chem.,1989,37(6):1476~1479
    Murray K.E., Huelin F.E.. Davenport J.B.. Occurrence of farnesene in the natural coating ofapples. Nature,1964,204:80
    Nagegowda D.A. and Dudareva N.. Plant biochemistry and biotechnology of flavorcompounds and essential oils in: Medicinal Plant Biotechnology. From Basic Research toIndustrial Applications (Kayser, O. and Quax, W.J., Eds.),2007, pp.469~492
    Nagegowda D. A., Ramalingam S., Hemmerlin A., Bach T.J. and Chye M.L.. Brassica junceaHMG-CoA synthase: localization of mRNA and protein. Planta,2005,221:844~856
    Nagegowda D.A., Rhodes D., Dudareva N.. The role of methyl-erythritol-phosphate pathwayin rhythmic emission of volatiles in: The Chloroplast: Basics and Application (Rebeiz,C.A. et al., Eds.),2010, pp.139~153, Springer Press
    Naomi SHIRASAWA-SEO, Ichiro MITSUHARA, Shigeo NAKAMURA, Taka MURAKAMI,Takayoshi IWAI, Yoko NISHIZAWA, Tadaaki HIBI, Yuko OHASHI.. ConstitutivePromoters Available for Transgene Expression Instead of CaMV35S RNA Promoter:Arabidopsis Promoters of Tryptophan Synthase Protein β Subunlt and Phytochrome B.Plant Biotechnotogy,2002,19(1):19~26
    Neve R.L., West R.W., Rodriguez R.L.. Eukaryotic DNA fragments which act as promotersfor a plasmid gene. Nature,1979,277(5694):324~325
    Newman J.D., Chappell J.. Isoprenoid biosynthesis in plants: carbon partitioning within thecytoplasmic pathway. Critical reviews in biochemistry and molecular biology,1999,34:95~106
    Nitz I., Berkefeld H., Puzio P.S., Grundler F.M.W.. Pyk10, a seedling and root specific geneand promoter from Arabidopsis thaliana. Plant Sci.,2001,161:337
    Odell J.T.,Nagy F.,Chua N.H.. Identification of DNA sequences required for activityof the cauliflower mosaic virus35S promoter. Nature,1985,313:810~812
    Olszewski N., Sun T.P., Gubler F.. Gibberellin signaling biosynthesis, catabolism, andresponse pathways. The Plant Cell Online,2002,14: S61~S80
    Orlova I., Nagegowda D.A., Kish C.M., Gutensohn M., Maeda H., Varbanova M., Fridman E.,Yamaguchi S., Hanada A., Kamiya Y., Krichevsky A., Citovsky V., Pichersky E. andDudareva N.. The small subunit of snapdragon geranyl diphosphate synthase modifies thechain length specificity of tobacco geranylgeranyl diphosphate synthase in planta. PlantCell,2009,21:4002~4017
    Park I.K., Lee S.G., Choi D.H., Park J.D., Ahn Y.J.. Insecticidal activities of constituentsidentified in the essential oil from leaves of Chamaecyparis obtusa against Callosobruchuschinensis (L.) and Sitophilus oryzae (L.). Journal of Stored Products Research,2003,39:375~384
    Park H.C., Kim M.L., Kang Y.H.. Pathogen-and NaCl-induced expression of the SCaM-4promoter ismediated in part by a GT-1box that interactswith a GT-1-like transcrip tionfactor. Plant Physiol,2004,135:2150~2161
    Paul W.P., James H.T.. De novo biosynthesis of volatiles induced by insect herbivory in cottonplants. Plant Physiol.,1997,114:1161~1167
    Pechous S.W., Watkins C.B., Whitaker B.D.. Expression of alpha-farnesene synthase geneAFS1in relation to levels of alpha-farnesene and conjugated trienols in peel tissue ofscald-susceptible ‘Law Rome’ and scald-resistant ‘Idared’ apple fruit. Postharvest Biol.Technol.,2005,35:125~132
    Peng J.L., Bao Z.L., Li.P., Chen G.Y., Wang J.S., Dong H.S.. HanpinXoo and its functionaldomains activate pathogen-inducible plant promoters in Arabidopsis. Acta Botanica Sinica,2004,46(9):1083~1090
    Peralta-Yahya P.P., Ouellet M., Chan R., Mukhopadhyay A., Keasling J.D., Lee T.S..Identification and microbial production of a terpene-based advanced biofuel. Naturecommunications,2011,2:483
    Phillips A.L., Ward D.A., Uknes S., Appleford N.E., Lange T., Huttly A.K., Gaskin P., GraebeJ.E., Hedden P.. Isolation and expression of three gibberellin20-oxidase cDNA clonesfrom Arabidopsis. Plant Physiology,1995,108:1049~1057
    Pichersky E., Gershenzon J.. The formation and function of plant volatiles: perfumes forpollinator attraction and defense. Current opinion in plant biology,2002,5:237~243
    Pichersky E., Raguso R.A., Lewinsohn E., Croteau R.. Floral scent production in Clarkia(Onagraceae)(I. Localization and developmental modulation of monoterpene emissionand linalool synthase activity). Plant Physiology,1994,106:1533~1540
    Powell G., Hardie J., Pickett J.A.. Laboratory evaluation of antifeedant compounds forinhibiting settling by cereal aphids. Entomologia experimentalis et applicata,2003,84:189~193
    Prashar Y., Weissman S.M.. Analysis of differential gene expression by display of3’ endrestriction fragments of cDNA. Proceeding of the Nationa Academy of Sciences of theUnited States of America,1996,93(2):659~663
    Rodriguez-Concepcion M.. The MEP pathway: A new target for the development ofherbicides, antibiotics and antimalarial drugs. Current pharmaceutical design,2004,10:2391~2400
    Rohdich F., Zepeck F., Adam P., Hecht S., Kaiser J., Laupitz R., Gr wert T., Amslinger S.,Eisenreich W., Bacher A., Arigoni D.. The deoxyxylulose phosphate pathway ofisoprenoid biosynthesis: studies on the mechanisms of the reactions catalyzed by IspG andIspH protein. Proc. Natl. Acad. Sci. USA,2003,100:1586~1591
    Rohmer M., Knani M., Simonin P., Sutter B., Sahm H.. soprenoid biosynthesis in bacteria: anovel pathway for the early steps leading to isopentenyl diphosphate. Biochemical Journal,1993,295:517
    Rupasinghe H.P.V., Paliyath G., Murr D.P.. Biosynthesis of alpha-farnesene and its relation tosuperficial scald development in‘Delicious’ apples. Journal of the American Society forHorticultural Science,1998,123(5):882~886
    Rupasinghe H.P.V., Murr D.P., Paliyath G., Skog L.. Inhibitory effect of1-MCP on ripeningand superficial scald development in ‘McIntosh’ and ‘Delicious apples. Hort. Sci.Biotechnol.,2000,75:271~276
    Rupasinghe H.P.V., Paligath G., Muri D.P.. Sesquiterpene Synthase: Partial purification,characterization, and activity in relation to superficial scald development in apples. JAmer Soc Hort Sci.,2000,125:111~119
    Sa Q., Wang Y., Li W., Zhang L., Sun Y.. The promoter of an antifungal protein gene fromGastrodia elata confers tissue-specific and funGUS-inducible expression patterns andresponds to both salicylic acid and jasmonic acid. Plant Cell Rep.,2003,22(1):79~84
    Sallaud C., Rontein D., Onillon S., Jabès F., Duffé P., Giacalone C., Thoraval S., Escoffier C.,Herbette G., Leonhardt N., Causse M. and Tissier A.. A novel pathway for sesquiterpenebiosynthesis from Z,Z-farnesyl pyrophosphate in the wild tomato Solanum habrochaites.Plant Cell,2009,21:301~317
    Schmidt-Büsser D., Von Arx M., Guerin P.M.. Host plant volatiles serve to increase theresponse of male European grape berry moths, Eupoecilia ambiguella, to their sexpheromone. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, andBehavioral Physiology,2009,195:853~864
    Schnitzler J.P., Zimmer I., Bachl A., Arend M., Fromm J. and Fischbach R.J.. Biochemicalproperties of isoprene synthase in poplar (Populus x canescens). Planta,2005,222:777~786
    Sharkey T.D., Wiberley A.E., Donohue A.R.. Isoprene emission from plants: why and how.Ann. Bot.,2008,101:5~18
    Shen B., Zheng Z., Dooner H.K.. A maize sesquiterpene cyclase gene induced by insectherbivory and volicitin: characterization of wild-type and mutant alleles. Proc Natl AcadSci USA,2000,97:14807~14812
    Shyamala V., Ferro-Luzzi A.G.. Single Specific Primer-Polymerase Chain Reaction (SSP-PCR)and Genome Walking. Methods Mol Biol.1993,15:339~48
    Singh M., Bhalla P.L., Xu H., Singh M.B.. Isolation and characterization of a flowering plantmale gametic cell-specific promoter. FEBS Lett,2003,542:47obotník J., Hanus R., Kalinová B., Piskorski R., Cva ka J., Bourguignon T., Roisin Y..(E,E)-α-Farnesene, an alarm pheromone of the termite Prorhinotermes canalifrons. Journal ofchemical ecology,2008,34:478~486
    Stamopoulos D., Damos P., Karagianidou G.. Bioactivity of five monoterpenoid vapours toTribolium confusum (du Val)(Coleoptera: Tenebrionidae). Journal of Stored ProductsResearch,2007,43:571~577
    Takumi S., Koike A., Nakata M., Kume S., Ohno R. and Nakamura C.. Cold-specific andlight-stimulated expression of a wheat (Triticum aestivum L.) Cor gene Wcor15encodinga chloroplast-targeted protein. Journal of Experimental Botany,2003,54:2265~2274
    Terauchi R., Kahl G.. Rapid isolation of promoter sequences by TAIL-PCR: The5′-fankingregions of Pal and Pgi genes from yams (Dioscorea). Mol Gen Genet,2000,263:554~560
    Tholl D., Kish C.M., Orlova I., Sherman D., Gershenzon J., Pichersky E. and Dudareva N..Formation of monoterpenes in Antirrhinum majus and Clarkia breweri flowers involvesheterodimeric geranyl diphosphate synthases. Plant Cell,2004,16:977~992
    Tholl D.. Terpene synthases and the regulation, diversity and biological roles of terpenemetabolism. Curr. Opin. Plant Biol.,2006,9:297~304
    Thomas S.G., Phillips A.L., Hedden P.. Molecular cloning and functional expression ofgibberellin2-oxidases, multifunctional enzymes involved in gibberellin deactivation.Proceedings of the National Academy of Sciences,1999,96:4698~4703
    Trindade L.M., Horvath B., Bachem C., Jacobsen E., Visser R.G.F.. Isolation and functionalcharacterization of a stolon specific promoter from potato (Solanum t uberosum L.).Gene,2003,303:77
    Tritsch D., Hemmerlin A., Bach T.J., Rohmer M.. Plant isoprenoid biosynthesis via the MEPpathway: in vivo IPP/DMAPP ratio produced by (E)-4-hydroxy-3-methylbut-2-enyldiphosphate reductase in tobacco BY-2cell cultures. FEBS Lett.,2010,584:129~134
    Tunc I., Erler F.. Repellency and repellent stability of essential oil constituents againstTribolium confusum. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz,2003,110:394~400
    Turlings T.C.J., Lengwiler U.B., Bernasconi M.L., Wechsler D.. Timing of induced volatileemissions in maize seeding. Planta,1998,207(1):146~152
    Vidal A.M., Gisbert C., Talón M., Primo-Millo E., López-Díaz I., García-Martínez J.L.. Theectopic overexpression of a citrus gibberellin20-oxidase enhances the non‐13‐hydroxylation pathway of gibberellin biosynthesis and induces an extremely elongatedphenotype in tobacco. Physiologia plantarum,2001,112:251~260
    Verheggen F.J., Arnaud L., Bartram S., Gohy M., Haubruge E.. Aphid and plant volatilesinduce oviposition in an aphidophagous hoverfly. Journal of chemical ecology,2008,34:301~307
    Vollack K.U., Dittrich B., Ferrer A., Boronat A.and Bach T. J.. Two radish genes for3-hydroxy-3-methylglutaryl-CoA reductase isozymes complement mevalonate auxotrophyin a yeast mutant and yield membrane-bound active enzyme. J. Plant Physiol.,1994,143:479~487
    Wallin K.F., Raffa K.F.. Feedback between individual host selection behavior and populationdynamics in an eruptive herbivore. Ecological Monographs,2004,74:101~116
    Wang C., Yoon S.H., Jang H.J., Chung Y.R., Kim J.Y., Choi E.S., Kim S.W.. Metabolicengineering of Escherichia coli for alpha-farnesene production. Metab Eng,2011,13:648~655
    Wang G. and Dixon R. A.. Heterodimeric geranyl(geranyl)diphosphate synthase from hop(Humulus lupulus) and the evolution of monoterpene biosynthesis. Proc. Natl. Acad. Sci.USA,2009,106:9914~9919
    Weber T. and Bach T.J.. Conversion of acetyl-coenzyme A into3-hydroxy-3-methyl-glutaryl-coenzyme A in radish seedlings. Evidence of a single monomeric protein catalyzing aFeII/quinone-stimulated double condensation reaction. Biochim. Biophys. Acta,1994,1211:85~96
    Webster B., Bruce T., Dufour S., Birkemeyer C. Birkett M, Hardie J., Pickett J.. Identificationof volatile compounds used in host location by the black bean aphid, Aphis fabae. Journalof chemical ecology,2008,34:1153~1161
    Wise M.L., Croteau R.. Comprehensive Natural Products Chemistry, Isoprenoids IncludingCaroteinoids and Steroids. Elsevier, Amsterdam,1999,2:97~135
    Wise M.L., Savage T.J., Katahira E., Croteau R.. Monoterpene synthases from common sage(Salvia officinalis)–cDNA isolation, characterization, and functional expression of(+)-sabinene synthase,1,8-cineole synthase, and (+)-bornyl diphosphate synthase. J. Biol.Chem.,1998,273:14891~14899
    Wu S., Schalk M., Clark A., Miles R.B., Coates R. and Chappell J.. Redirection of cytosolicor plastidic isoprenoid precursors elevates terpene production in plants. Nat. Biotechnol.,2006,24:1441~1447
    Xing S., Miao J., Li S., Qin G., Tang S., Li H., Gu H., Qu L.J.. Disruption of the1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) gene results in albino, dwarfand defects in trichome initiation and stomata closure in Arabidopsis. Cell research,2010,20:688~700
    Xu W., Yu Y., Ding J., Hua Z., Wang Y.. Characterization of a novel stilbene synthasepromoter involved in pathogen-and stress-inducible expression from Chinese wild Vitispseudoretieulata. Planta,2010,231:475~487
    Xu Y.L., Li L., Wu K., Peeters A., Gage D.A., Zeevaart J.. The GA5locus of Arabidopsisthaliana encodes a multifunctional gibberellin20-oxidase: molecular cloning andfunctional expression. Proceedings of the National Academy of Sciences,1995,92:6640~6644
    Yamaguchi-Shinozaki K, Shinozaki K. Characterization of the expression of adesiccation-responsive rd29gene of Arabidopsis thaliana and analysis of its promoter intransgenic plants. MOI Gen Genet,1993,236:331~340
    Yang T., Stoopen G., Yalpani N., Vervoort J., de Vos R., Voster A., Verstappen F.W.A.,Bouwmeester H.J., Jongsma M.A.. Metabolic engineering of geranic acid in maize toachieve fungal resistance is compromised by novel glycosylation patterns. MetabolicEngineering,2011,13:414~425
    Yu F., Utsumi R.. Diversity, regulation, and genetic manipulation of plant mono-andsesquiterpenoid biosynthesis. Cell Mol Life Sci,2009,66:3043~3052
    Yuen C.M.C., Tridjaja.. Chilling injury development of Tahitian lime, Emperor mandarin,Marsh grape fruit and Valencia orange. J Sci Food Agric,1995,67:335~339
    Zhang Q., Liu H.Z., Cao J.S.. Identification and preliminary analysis of a new PCP promoterfrom Brassica-rapa ssp. Chinensis.. Mol Biol Rep.,2007,10:1107~1114
    Zhu B.C.R., Henderson G., Chen, F., Fei H.X., Laine R.A.. Evaluation of vetiver oil and seveninsect-active essential oils against the Formosan subterranean termite. Journal ofChemical Ecology,2001,27,1617~1625

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700