用户名: 密码: 验证码:
Bacillus cereus X5的杀线活性及其生物有机肥对南方根结线虫的防治作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根结线虫是严重危害植物的土传病害之一,其侵染根系后形成大量的根结,而且植株表现生长矮小和叶片黄化等现象,导致植物对水分和养分的吸收困难,严重影响植物的正常生长和发育。因此,根结线虫对作物造成了巨大产量和经济的损失。作物连作是引起植物根结线虫病害发生的主要因素,但由于根结线虫寄主范围很广泛,其中包括绝大多数作物和杂草,一旦发生就很难通过轮作等其他途径防治。目前,在农业生产中防治根结线虫的方法主要是化学防治,但是对环境和人类自身造成了许多负面的影响,而且许多国家或地区已经对防治根结线虫的化学药品进入市场进行了严格限制。因此,寻找新的、环境友好型的生物防治方法是非常迫切和必要的。本文的主要研究内容和取得的试验结果如下:
     (1)根结线虫的富集、分离、纯化和鉴定试验。在温室中将易感染根结线虫的番茄品种种植在从田间采集的、且严重发生根结线虫病害的土壤中进行根结线虫的富集。结合贝尔曼漏斗法、湿筛法和植物组织捣碎法三种方法,从番茄根系中分离根结线虫;然后再次回接到健康土壤上生长的番茄根际以进一步纯化根结线虫;再从形态学上初步鉴定线虫的种类。通过根结线虫的富集和回接试验结果表明:与种植番茄之前的土壤相比,土壤中线虫的数量比原来增加了1.6-3.3倍;番茄根系的根结数量剧增,根结指数到达4级,而健康土壤中生长的番茄根系发达,植株生长健康且无根结现象。从番茄根系中分离根结线虫的雌线虫、二龄幼虫及其虫卵,从形态学角度初步鉴定为南方根结线虫(Meloidogyne incognita)。通过对根结线虫的大量富集、成功纯化和种类鉴定,了解了根结线虫对植物的危害程度,为以后的相关研究提供了宝贵的试验材料。为了进一步了解和认识根结线虫的胚胎发育过程,从番茄根系直接分离的虫卵和二龄幼虫并进行离体培养实验和显微观察。试验结果表明:在恒温25℃培养14天,观察到根结线虫虫卵胚胎发育阶段有:单胞期、双胞期、三胞期、四胞期、囊胚期、原肠期、一龄幼虫阶段、二龄幼虫第一次脱皮、二龄幼虫第二次脱皮和具有侵染能力的二龄幼虫。
     (2)生防菌的筛选试验。根据根结线虫体壁的主要成分是胶原蛋白构成这一特征出发,筛选能分泌胶原蛋白酶的目标菌株。首先采用稀释平板涂布方法从番茄根际土壤中初步筛选出具水解胶原蛋白作用的菌株,其次通过各菌株发酵上清液对根结线虫二龄幼虫的死亡率和虫卵孵化率抑制作用,再以拮抗菌悬浮液处理番茄根系,观察其对根结线虫侵染番茄根系的影响。通过以上试验筛选出了高效根际细菌菌株和认识菌株与根结线虫的作用模式。本实验筛选出了10株有较强水解胶原蛋白的细菌,其中菌株X5和BTG具有很强的明胶水解能力,二者的胶原酶活分别为40.5U.mL-1和37.3U.mL-1。将菌株X5和BTG发酵上清液处理二龄幼虫24h后的死亡率比对照(无菌上清液)处理的死亡率分别提高了73.1%和60.2%;菌株X5和BTG上清液处理14天后的虫卵孵化率比对照的孵化率分别降低了37.7%和25.6%。将菌株X5和BTG的培养液分别稀释成三种不同的浓度(分别为1、1/2和1/4发酵原液)进行培养,结果表明:随着浓度的降低,虫卵孵化率升高和二龄幼虫死亡率减低。菌株X5和BTG的菌悬液处理后的番茄根结数比对照(不加菌悬液)根结数分别降低了79.5%和64.8%。通过16S rDNA序列分析表明,菌株X5和BTG分别属于蜡状芽孢杆菌(Bacillus cereus)和苏云金芽孢杆菌(Bacillus thuringiensis)。通过比较各株细菌对二龄幼虫(J2)死亡率、虫卵孵化率及番茄根结数量的影响,菌株X5对根结线虫的防治效果优于菌株BTG。显微观察发现,菌株X5处理过的大部分虫卵内部结构受到破坏或者发生紊乱,而且虫卵液泡化程度较高。说明菌株X5不仅对根结线虫的二龄幼虫有致死的效果,同时对虫卵的孵化有较强的抑制作用。因此,选择菌株X5作为本研究的目标菌株。
     (3)胶原蛋白酶的特征与杀线活性。通过硫酸铵沉淀、凝胶层析和阳离子交换层析从菌株X5发酵液中分离纯化得到较纯的胶原蛋白酶。该酶表现出较强的水解胶原蛋白的效果,纯化后比活力由13.0U.mg-1提高至153.4U.mg-1,提纯倍数达11.8倍,发酵液中酶的回收率为9.3%。该酶的纯化产物在SDS-PAGE上得到单一条带,蛋白酶分子量约为45kDa左右。该酶对根结线虫有很强致死作用,二龄幼虫死亡率达到80%,虫卵孵化率降低到23.9%。同时,通过电镜扫描观察到该酶液能够破坏幼虫的表皮,虫卵表皮也受到破坏并且内部结构物质发生了紊乱现象。胶原蛋白酶酶学性质研究表明,该酶最适作用温度为35。C;在10℃-45℃范围内具有较好的热稳定性;最适合作用pH值为8.0,并且在pH7.0-10.0范围内胶原蛋白酶活性比较稳定。Mg2+、Zn2+、Fe2+和Ca2+对蛋白酶具有较强的激活作用,其中以Ca2+激活作用最大;而Cu2+、Ba2+、Fe3+和Mn2+对胶原蛋白活性有一定的抑制作用。苯甲基磺酰氟(PMSF)能够强烈抑制蛋白酶的活性,说明该蛋白酶属于丝氨酸蛋白酶家族。而乙二胺四乙酸(EDTA)对胶原蛋白酶的抑制作用很小。因此,从菌株X5发酵液中分离纯化出的胶原蛋白酶对根结线虫致死作用与分解线虫外表皮和降低虫卵孵化能力有关。
     (4)菌株X5在土壤和番茄根系上的定殖能力。通过电转化引入绿色荧光标记质粒pHAPⅡ得到稳定表达较强的荧光标记菌株X5-gfp,并利用冷冻切片方法和荧光显微镜,分别观察标记菌株在土壤中和番茄根系上的定殖情况,在室内离体培养条件下,检测其对二龄幼虫和虫卵孵化的影响。实验结果表明:菌株X5-gfp的质粒转接到20代和25代时粒稳定性分别为76.2%和60.5%,说明重组质粒在出发菌株体内可以较稳定的遗传。在同样的生长条件下,菌株X5-gfp的生长规律和形态特征都未发生改变,与出发菌株X5基本一致,说明其生长规律和形态特征没有受到外源质粒的影响。标记菌株对二龄幼虫的致死率为66.3%,二龄幼虫孵化抑制率为65.1%。观察到标记菌株在土体土、根际土和根表都有大量定殖,其数量分布趋势是根际>根表>土体。土体土中菌株X5-gfp数量在第7天达到6.6×108cfu·g-1.经过35天后,基于标记菌株X5-gfp的生物有机肥的处理明显减少番茄根系的根结数量,比对照处理的根结数量减少了63.1%。因此,通过GFP标记菌株证明菌株X5能够在番茄根系上和土壤中定殖,从而抑制或减轻了根结线虫对番茄根系危害。
     (5)由菌株X5和BTG发酵而成的生物有机肥料对番茄根结线虫的防治效果。通过温室盆栽试验,研究了施用生物有机肥60天后番茄植株生长、卵块和虫卵数量和根际土壤中根结线虫数量变化的影响。结果表明,与对照(未接种任何菌株的常规有机肥)相比,BIO、X5和BTG三种生物有机肥各自单一处理和二者复合(X5+BTG)处理施用后,地上部分和根系干重分别增加了0.5-0.9倍和0.7-0.9倍。每株卵块数和每卵块的虫卵数分别减少了24.4%-54.2%和21.8%-54.3%;根际土壤中根结线虫数量减少了18.6%-49.2%。三种生物有机肥复合(BIO+X5+BTG)施用,地上部分和根系干重分别增加了2.1倍和1.5倍;每株卵块数量和每卵块虫卵数量分别减少了67.2%和62.1%;根际土壤中线虫数量减少了50.7%。田间试验表明,单独施用菌株X5发酵的生物有机肥处理(X5)或施用混合微生物有机肥处理(BIO+X5+BTG)都能有效防治根结线虫,甜瓜根结指数分别比对照处理降低了77.6%和81.6%。温室和田间试验结果表明,施用功能菌生物有机肥有效减轻了根结线虫对番茄和甜瓜的危害;促进了番茄和甜瓜植株的生长,菌株X5在相关生物有机肥防治根结线虫中也可以起到的增效作用。
     (6)防治根结线虫病害的综合管理措施。在温室条件下,采用覆膜阳光消毒、有机物料生物熏蒸和接种菌株X5的方法对根结线虫的防治作用进行了研究,测定了番茄生物量、根结线虫侵染以及根际土壤和土体土壤中微生物数量的变化。结果表明,对线虫滋生土壤进行覆膜阳光消毒、生物熏蒸和接种拮抗菌的联合处理的效果最佳,优于单一处理。联合处理的总生物干重比对照(未进行任何处理)增加了1.8倍,每株卵块数和每卵块的虫卵数量减少了2倍和3.7倍,对根结线虫的防治效果达到82.7%,根际土壤和土体土壤的细菌和真菌数量显著增加,土壤中线虫的数量显著减少。菌株X5与阳光消毒和生物熏蒸措施相结合不仅能起到协同增强根结线虫防治效果,而且能够调控土壤微生物区系,保证作物健康生长。
Root-knot nematodes are very damaging soilborne pathogens that hurt root growth and development and subsequently block utilization of nutrients and water. The symptoms of root infection by root-knot nematodes can be always observed as color of leaves changed from green to yellow and huge numbers of root-knots and stunted plant growth as well as decreased yields. Economic and crop loss has been reported all over the world in every year. Continuous cropping system is a main reason for incidence of root-knot nematode. However, once a crop has been infected, the control by crop rotation is very difficult because a wide of plants including most common crops and weeds can serve as hosts of root-knot nematode. Several chemical nematicides can effectively control root-knot nematode, but their use is strictly limited and even banned in the world for they cause serious pollution of environments and greatly damage to human health. Therefore, exploration of new and environment-friendly bio-control alternatives is very urgently needed. The main contents and results in this paper are listed as follows:
     (1) Experiments on enrichment, isolation, purification and identification of pathogenic root-knot nematode. Root-knot nematodes were enriched in greenhouse by growing a susceptible tomato variety in soil from heavily field by root-knot nematode infected. Root-knot nematodes species were isolated from roots by combination of the Baermann funnel, sieving and tissuse-mashed methods. The healthy soil was re-inoculated with the isolation purify the root-knot nematodes, which was then identified by morphological characteristics under microcopy. Both the enrichment and re-inoculation experiments showed that the number of root-knot nematode in soil was increased by range from1.6to3.3times as compared with the infected field soil and the root-knots increased with a4scale of galling index grade while roots of tomato grown in healthy soil without root-knot nematodeor inoculation of root-knot nematode were not infected. The females, second-stage juveniles and eggs of nematodes were isolated from infected roots. The nematode was eventually identified as Meloidogyne incognita species according to its morphological characteristics. Thus, the all results indicated that the obtained root-knot nematodes could grievously caused damage to tomato plants and be used for the next experiments in future. The eggs embryo development of root-knot nematode were then observed under microscope for14days at25℃. The results showed that eggs embryo development stages included single-cell stage, two-cell stage, three-cell stage, four-cell stage, blastula, gastrula stage, first stage juvenile, first molt of second-stage of juvenile, second molt of second-stage of juvenile, and second-stage of juvenile after molt.
     (2) Screening bio-control agents. Collagen is main component of root-knot nematode cuticle, so based on this theis the rhizosphere bacteria that had ability to produce collagenase are isolated from soil. Our protocol included:firstly to isolate collagenase-producing bacteria from rhizosphere soil of tomato by dilution-plate method, to test the effect of culture filtrate of strains on nematocidal activity and eggs hatching under in vitro experiment, and then to investigate effect of bacterial suspensions on root-knot nematodes infection of tomato in greenhouse. By this procedure, we could screened high effective biocontrol rhizosphere bacterial strains and understood the action mold of the interaction between the bacterial strains and root-knot nematodes. Ten bacterial strains with strong ability to hydrolyze collagen were isolated. Among these strains, strain X5and strain BTG were best with high collagenase activities of40.5U·mL-1and37.3U·mL-1, respectively. Compared with the control treatment of only water, supernatants of strain X5and strain BTG increased J2mortality rates by73.1%and60.2%, respectively, after24h of incubation, while decreased hatching rates of nematode eggs by37.7%and25.6%, respectively after14days of incubation. As the concentration of supernatants of both strain X5and strain BTG was decreased in the order from1,1/2, to1/4of the initial fermentation liquid, the mortality of J2was decreased while hatching rates of eggs were increase In greenhouse, inoculation of root-knot nematodes diseased soil with cell suspensions of strain X5and strain BTG reduced the number of tomato root-knots in soil by79.5%and64.8%, respectively, as compared with the non-inoculation control. Analysis of16S rDNA sequences showed strain X5and and strain BTG belong to Bacillus cereus and Bacillus thuringiensis, respectively. Comparison of the effect of the two strains on the J2mortality, eggs hatching rates and root-knots numbers showed that strain X5was more effective in inhibition root-knot nematodes than strain BGT, indicating that X5had potential as a bio-control agent. Microscopically observation showed that the inner structural protoplast of most eggs were destroyed, disordered and vacuolatedafter addition of the supernatant of strain X5. The vacuolation rate decreased with the embryo development from eggs to J2. Thus, the strain X5had ability of not only killing the J2but also destroying the eggs of root-knot nematodes.
     (3) The character of collagenase and its nematocidal activity. The collagenase was purified from fermentation production of strain X5through three steps procedure involving ammonium sulfate precipitation, gel-filtration-Sephadex G100column and anion-exchange chromatography. The purified enzyme exhibited the strongly collagen hydrolyzing activity on plates. The initial specific activity of the protease was13.0U·mg-1, but the final of that was153.4U·mg-1. This suggested that the purification efficiency was increased by11.8times. The recovery rate was9.3%of fermentation liquid. The molecular mass of the protease was45kDa, as determined by SDS-PAGE. As comparison with controls, the mortality of J2of root-knot nematodes reached to80%and the egg hatching rate decreased to23.9%after treated with purified collagenase enzyme. Analysis with scanning electron microscopy showed that both the cuticle of J2and the eggs surface were damaged and the protoplasm of eggs was disordered after addition of the enzyme. The characterization of the purified collagenase indicated that optimal pH, optimum temperature, pH stability, and thermal stability for its activity were pH8.0,35℃, pH7.0-10.0, and10℃-40℃, respectively. Existence of metal ions Mg2+、Zn2+、Fe2+and Ca2+increased positively enzyme activity, while addition of Cu2+、Ba2+、Fe+and Mn2+inhibited the enzyme activity. It was found that Ca2+ion could strongly activate enzyme activity. The enzyme became almost inactive after addition of phenylmethanesulfonyl fluoride (PMSF), implied that the protease is a serine protease. However, ethylenediaminetetraacetic acid (EDTA) had little inhibition on the collagenase activity. It is concluded that this enzyme from strain X5had nematocidal activity to kill nematodes through degradation of their cuticle and reduction of egg hatchability.
     (4) The ability of strain X5to colonize in soil and roots. The plasmid Phapii GFP with Pseudomonas promoter and GFP segment was transformed into strain X5by electroporation and we gained labeled strain X5-gfp. X5-gfp colonized on tomato root and in soil were obversed by using fluorescent microscope and freeze-slice up methods, while mortality of J2and egg hatching rate of RKN were tested in vitro. After X5-gfp grew for20to25generations, the stability of plasmid was in the range from76%to60.5%, suggesting that the plasmid could retain rather stably in strain X5-gfp. The growth curve and physiology characteristic of labeled strain X5-gfp were not changed, while the mortality of J2increased by66.3%and the egg hatching rate was reduced by65.1%after treated with culture filtrates of strain X5-gfp. Observation by fluorescence confocal microscopy showed that the population of strain X5-gfp in bulk soil, rhizosphere and rhizoplane was increased in order as follows:rhizosphere> rhizoplane> bulk soil. The population of strain X5-gfp in bulk soil was6.6×108cfu·g-1after inoculated7days. The galling number of tomato reduced by63.1%after35days of growth as compared with the control. Thus, strain X5could protect plant from infection by RKN through effective colonization of tomato roots and soil.
     (5) Effect of bio-organic fertilizers fortified with strain X5and strain BTG or both. Or both with a bio-organic product (BIO) on control root-knot nematodes of tomato in greenhouse pot experiments. The height of tomato plant, egg masses per plant and egges per egg mass were assayed, and the total number of nematodes and micro-organism (bacteria, fungi and actinomycetes) in the rhizospherer soil of tomato plant were counted50days after application of bio-organic fertilizers. As compared with the control, application of the X5or the BTG bio-organic fertilizer or the compound (X5+BTG) bio-organic fertilizer increased the dry weight of shoot by0.5-0.9times, and dry weight of root by0.7-0.9times. Egg masses per plant and eggs per egg mass also reduced by24.4-54.2%and21.8-54.3%, respectively. The total number nematodes in rhizosphere soil of tomato reduced by18.6-49.2%. However, application of the compound bio-organic fertilizer (BIO+X5+BTG) gained best results as the dry weight of shoot and root of tomato plant increased by2.1and1.5times, respectively, and egg masses per plant, egges per egg masses and nematodes of rhizosphere soil reduced by67.2%,62.1%and50.7%, respectively, as compared with the control. The field experiment indicated that application of the bio-organic fertilizer enhanced by strain X5(treatment X5) or the mixed bio-organic fertilizer (treatment BIO+X5+BTG) could effectively control the root-knot nematodesof muskmelon through reduction of the galling index of muskmelon by77.6%and81.6%, respectively, as compared with the control. These result indicated that the functional bio-organic fertilizers could control root-knot nematodes disease and promote tomato growth. Thus, strain X5might play an important role in the related bio-organic fertilizers.
     (6) Integrated root-knot nematodes control management. Greenhouse experiments were conducted to evaluate the effect of film-covered solarization of soil, biofumigation with organic materials and inoculation with antagonistic organisms on control root-knot nematodes of tomato. Plant biomass, root-knot nematodes in soil and plant, and microbial community in bulk and rhizosphere soil were determined. Results showed that combination of film-covered solarization of soil, biofumigation with organic materials and inoculation with antagonists gained the best biological control efficiency than all other treatments. When compared with no treated control, the combined treatment increased total biomass of tomato by1.8times, decreased egg masses of root-knot nematodes per plant and eggs in root by2times and3.7times, respectively, and gained82.7%of biological control efficiency on root-knot nematodes. The combined treatment also significantly increased numbers of bacteria and fungi, and significantly decreased numbers of nematode in both in rhizosphere and bulk soil as compared with those of the control. Therefore, application of strain X5with biofumgation and solarization could realize the synergistic effect of these bio-control measurements in efficiectly control of root-knot nematodes and regulate soil microbiological composition to safeguard plant growth in goof health.
引文
Abou-Jawdah Y, Melki K, Hafez SL, et al. Alternatives to methyl bromide for root-knot nematode management on cucumber in Lebanon [J]. Nematropica,2000,30:41-45
    Abbasi PA, Riga E, Conn KL, et al. Effect of neem cake soil amendment on reduction of damping-off severity and population densities of plant-parasitic nematodes and soilborne plant pathogens [J]. Canadian Journal of Plant Pathology,2005,27:38-45
    Ahman J, EKB, Rask L, et al. Sequence analysis and regulation of a gene encoding a cuticle-degrading serine protease from the nematophagous fungus A rthrobotrys oligospora [J]. Microbiology,1996, 142:1605-1616
    Akhtar M. Nematicidal potential of the neem tree Azadirachta indica (A. Juss) [J]. Integrated Pest Manage Reviews,2000,5:57-66
    Akhtar M, Mahmood I. Control of plant-parasitic nematodes with organic and inorganic amendments in agricultural soil. Applied Soil Ecology,1996,4:243-247
    Amanda WG, Mark WF, Joel GB, et al. Transport and survival of GFP-tagged root-colonizing microbes: Implications for rhizodegradation [J]. European Journal of Soil Biology,2007,43:224-232
    Alamgir K, Keith L. Helena KM. Nevalainen. Effects of Paecilomyces lilacinus protease and chitinase on the eggshell structures and hatching of Meloidogyne javanica juveniles [J]. Biological Control, 2004,31:346-352
    Anastasiadis IA, Giannakou IO, Prophetou-Athanasiadou DA. The combined effect of the application of a biocontrol agent Paecilomyces lilacinus, with various practices for the control of root-knot nematodes [J]. Crop Protection,2008,27:352-361
    Bais HP, Weir TL, Perry LG, et al. The role of root exudates in rhizosphere interactions with plants and other organisms [J]. Annual Review of Plant Biology,2006,57:233-266
    Baldwin JG, Luc M. Current problem taxonomy [J]. Nematologica,1995,41:357-358
    Barker KR. Nematode extractions and bioassays [A]. In:Barker KR, Carter CC, Sasser JN. (Eds.), An advanced treatise on Meloidogyne, Methodology [C]. Raleigh, North Carolina, USA:Noah Carolina State University.1985,19-35
    Baum TJ, Hiatt A, Parrott WA, et al. Expression in tobacco of a functional monoclonal antibody specific to stylet secretions of the root-knot nematode [J]. Molecular Plant-Microbe Interactions,1996,9: 382-387
    Bello A, Lopez-Perez JA, Garcia-alvarez A. Biofumigation and nematode control in the Mediterranean region [J]. Nematology monographs and perspectives,2004,2:133-149
    Bellostas N, Soensen JC. Soensen H. Profiling glucosinolates in vegetative and reproductive tissues of four Brassica species of the U-triangle for their biofumigation potential [J]. Journal of the Science of Food Agriculture,2007,87:1586-1594
    Bending G, Lincoln S. Characterisation of volatile sulphur containing compounds produced during decomposition of Brassica juncea tissues in soil [J]. Soil Biology and Biochemistry,1999,31: 695-703
    Benizri E, Baudoin E, Guckert A. Root colonization by inoculated plant growth rhizobacteria [J]. Biocontrol Science and Technology,2001,11:557-574
    Benjamin D. Crover CB. Comparison of comptible and imcompstible response of potatoto Meloidogyne incongnita [J]. Journal of Nematology,1987,19:218-221
    Bertrand N, Caroline L, Richard RB. GFP technology for the study of biocontrol agents in tritrophic interactions:A case study with Pseudozyma flocculosa [J]. Journal of Microbiological Methods, 2007,68:275-281
    Bird AF, McClure MA. The tylenchid(Nematoda) egg shell:structure, composition and permeability [J]. Parasitology,1976,72:19-28
    Bignone FA. Structural Complexity of Early Embryos:A Study on the Nematode Caenorhabditis elegans [J]. Journal of Biological Physics,2001,27:257-283
    Bjorkman M, Klingen I, Birch ANE, et al. Phytochemicals of Brassicaceae in plant protection and human health influences of climate, environment and agronomic practice [J]. Hytochemistry,2011, 72:538-556
    Bloemers GF, Hodda M. Lambshead PJD, et al. The effects of forest disturbance on diversity of tropical soil nematodes [J]. Oecologia,1997,111:575-582
    Blok WJ, Lamers JG, Termorshuizen AJ, et al. Control of soilborne plant pathogens by incorporating fresh organic amendments followed by tarping [J]. Phytopathology,2000,90:253-259
    Blok VC, Phillips MS, McNieo JW. Genetic variation in tropical Meloidogyne spp. AS shown by RAPDs [J]. Fundamental and Applied Nematology,1997,26:324-328
    Browning M, Dawson C, Alm SR, et al. Differential effects of butyric acid on nematodes from four trophic groups [J]. Applied Soil Ecology,2004,27:47-54
    Browning M, Wallace DB, Dawson C, et al. Potential of butyric acid for control of soil-borne fungal pathogens and nematodes affecting strawberries [J]. Soil Biology and Biochemistry,2006,38: 401-404
    Brussaard L, Kuyper TW, Goede RGM. On the relationships between nematodes, mycorrhizal fungi and plants:functional composition of species and plant performance [J]. Plant and Soil,2001,232: 155-165
    Bronwyn ER, Maria K, Susanne B, et al. Biofilm formation in plant-microbe associations [J]. Current Opinion in Microbiology,2004,7:602-609
    Burgwyn B, Nagel B, Ryerse J, et al. Heterodera glycines:eggshell ultrastructure and histochemical localization of chitinous components [J]. Experimental Parasitology,2003,104:47-53
    Burkett-Cadena M, Kokalis-Burelle N, Lawrence KS, et al. Suppressiveness of root-knot nematodes mediated by rhizobacteria [J]. Biological Control,2008,47:55-59
    Cadena MB, Burelle NK, Lawrence KS. Suppressiveness of root-knot nematodes mediated by rhizobacteria [J]. Biological Control,2008,47:55-59
    Calvert GM, Talaska G, Mueller CA, et al. Genotoxicity in workers exposed to methyl bromide [J]. Mutation Research,1998,417:115-128
    Cao Y, Zhang ZH, Ling N, et al. Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots [J]. Biology and Fertility of Soils,2011,47:495-506
    Carrick L, Berk R S. Purification and characterization of a collagenolytic enzyme from Pseudomonas aeruginosa [J]. Biochimica et Biophyaica Acta,1975,391:422-434
    Cenis JL. Identifieation of four major Meloidogyne spp.by random amplified polymorphic DNA (RAPD-PCR) [J]. Phytopathology,1993,83:76-80
    Celeste R, Wang TY, Hussey RS. Identification and characterization on the Meloidogyne incognita coll cuticle collagen gene [J]. Molecular and Biochemical Parasitology,1996,83:121-124
    Conn KL, Tenuta M, Lazarovits G. Liquid swine manure can kill Verticillium dahliae microsclerotia in soil by volatile fatty acid, nitrous acid, and/or ammonia toxicity [J]. Phytopathology,2005,95: 28-35
    Daddabbo T, Miccolis V, Basile M. Sociology, Organic Farming, Climate Change and Soil Science [M]. Sustainable Agriculture Reviews,2010 (1st edition),217-274
    Dababat AA, Sikora RA. Induced resistance by the mutualistic endophyte, Fusarium oxysporum 162, toward Meloidogyne incognita on tomato [J]. Biocontrol Science and Technology,2007,17: 969-975
    Deadman M, A1 Hasani H, A1 Sadi A. Solarization and biofumigation reduce Pythium aphanidermatum induced damping-off and enhace vegetative growth of greenhouse cucumber in Oman [J]. Journal of Plant Pathology,2006,88:335-337
    Desaeger JR, Rao MR, Bridge J. Nematodes and other soilborne pathogens in agroforestry. In:M. van Noordwijk, G.Cadisch and CK. Ong (Eds.) Below-Ground Interactions in Tropical Agroecosystems: Concepts and Models with Multiple Plant Components, CABI, Wallingford.2004,263-283
    De JR, Won SJ, Dong PR, et al. Effect of chitin compost and broth on biological control of Meloidogyne incognita on tomato (Lycopersicon esculentum Mill.) [J]. Nematology,2005,7:125-132
    Dieter H, Stephan H. Extracellular protease of Pseudomonas fluorescens CHAO, a biocontrol factor with activity against the root-knot nematode Meloidogyne incognita [J]. Applied and enviromental microbiology,2005,5646-5649
    Docherty PA, Snider MD. Effect of hypertonic and sodium-free medium on transport of a membrane glycoprotein along the secretory pathway in cultured mammalian cells [J]. Journal of Cell Physiology,1991,146:34-42
    Duponnoins R, Founoune HBAA, Plenchette C, et al. Ectomycorrhization of Acacia holosericea A. Cunn. Ex G. Don by Pisolithus spp. in Senegal:effect on plant growth and on the root-knot nematode Meloidogyne javanica [J]. Annals of Forest Sciences,2000,57:345-350
    Duponnoins R, Cadet P. Interactions of Meloidogyne javanica and Glomus sp. On growth and nitrogen fixation of Acacia [J]. Nematology,1994,4:228-233
    Duponnois R, Chotte JL, Sall S. The effect of organic amendments on the interactions between a nematophagous fungus Arthrobotrys oligospora and the root-knot nematode, Meloidogyne mayaguensis parasitizing tomato plants [J]. Biology and Fertility of Soils,2001,34:1-6
    Ehling-Schulz M, Fricker M, Scherer S. Identification of emetic toxin producing Bacillus cereus strains by a novel molecular assay. FEMS Microbiology Letters,2004,232:189-195
    Einhard S. Unusual cleavage and gastrulation in a freshwater nematode:developmental and phylogenetic implications [J]. Development Genes Evolution,2005,215:103-108
    El-Sherif AG, Refaei AR, El-Nagar ME, et al. The role of eggs inoculum level of Meloidogyne incognita on their reproduction and host reaction [J]. African Journal of Agricultural Research,2007,2: 159-163
    Fdz-Polanco F, Villaverde S, Garcia PA. Temperature effect on nitrifying bacteria activity in biofilters: activation and free ammonia inhibition [J]. Water Science Technology,1994,30:121-130
    Ferris H, Bongers T, Degoeds RGM. A framework for soil food web diagnostics:extension of the nematode faunal analysis concept [J]. Applied Soil Ecology,2001,18:13-29
    Frankenhuyzen KV. Insecticidal activity of Bacillus thuringiensis crystal proteins [J]. Journal of Invertebrate Pathology,2009,101:1-16
    Gamliel A, Austerweil M, Kritzman G. Non-chemical approach to soilborne pest management-organic amendments [J]. Crop Protection,2000,19:847-853
    Gamliel A, Stapleton JJ. Characterization of antifungal volatile compounds evolved from solarized soil amended with cabbage residues [J]. Phytopathology,1993,83:899-905
    Gan ZW, Yang JK, Tao N, et al. Cloning of the gene Lecanicillium psalliotae chitinase Lpchil and identification of its potential role in the biocontrol of root-knot nematode Meloidogyne incognita [J]. Applied Microbiol and Biotechnology,2007,76:1309-1317
    Gotlieb D, Oka Y, Ben-Daniel B, et al. Dry mycelium of Penicillium chrysogenum protects cucumber and tomato plants against the root-knot nematode Meloidogyne javanica [J]. Phytoparasitica,2003, 31:217-225
    Hashem M, Abo-Elyousr KA. Management of the root-knot nematode Meloidogyne incognita on tomato with combinations of different biocontrol organisms [J]. Crop Protection,2011,30:285-292
    Hassink J, Bouwman LA, Zwart KB, et al. Relationships between habitable pore space, soil biota and mineralization rates in grassland soils [J]. Soil Biology and Biochemistry,1993,25:47-55
    Hallmann J, Rodriguez K R, Kloepper JW. Chitin-mediated changes in bacterial communities of the soil, rhizosphere and within roots of cotton in relation to nematode control [J]. Soil Biology and Biochemistry,1999,31:551-560
    Henderson DR, Riga E, Ramirez RA. Mustard biofumigation disrupts biological control by Steinernema spp. nematodes in the soil [J]. Biological Control,2009,48:316-322
    Hoitink HAJ, Stone AG, Han DY. Suppression of diseases by composts. HortScience,1997,32:184-187
    Hoitink HAJ, Boehm MJ. Biocontrol within the contex of soil microbial communities:a substrate-dependent phenomenon [J]. Annual Review of Phytopathology,1999,37:427-446
    Huang XW, Niu QH, Zhou W. Bacillus nematocida sp. nov., a novel bacterial strain with nematotoxic activity isolated from soil in Yunnan, China [J]. Systematic and Applied Microbiology,2005,28: 323-327
    Huang Y, Xu CK, Ma L, et al. Characterisation of volatiles produced from Bacillus megaterium YFM3.25 and their nematicidal activity against Meloidogyne incognita [J]. European Journal of Plant Pathology,2010,126:417-422
    Hussey RS, Janssen GJW. Root-knot nematodes:Meloidogyne species [J]. Plant Resistance to Parasitic Nematodes,20002,43-70
    Hussey RS, Grundler FMW. The physiology and biochemistry of free-living and plant-parasitic nematodes [J]. Nematode parasitism of plants,1998,213-243
    Igwegbe ECK. Integration of soil solarization with chemical, biological and cultural control for the management of soilborne diseases of vegetables [J]. Plant and Soil,2003,253:493-506
    Ijoyah MO, Koutatouka M. Effect of soil solarization using plastic mulch in controlling root-knot nematode(Meloidogyne spp.) infestation and yield of lettuce at Anse Boileau, Seychelles [J]. African Journal of Biotechnology,2009,8:6787-6790
    Jaffee BA, Ferris H, Scow KM. Nematode-trapping fungi in organic and conventional cropping systems [J]. Phytopathology,1998,88:344-350
    Jepson SB. Identification of root-knot nematodes(Meloidogyne species) berystwyth:CAB International, 1987,45-191
    Jin DR, Sun JW, Park RD, et al. Effect of chitin compost and broth on biological control of Meloidogyne incognita on tomato(Lycopersicon esculentum Mill.) [J]. Nematology,2004,7:125-132
    Joo GJ, Kim YM, Lee IJ. Growth promotion of red pepper plug seedlings and the production of gibberellins by Bacillus cereus, Bacillus macroides and Bacilluspumilus [J]. Biotechnology Letters, 2004,26:487-491
    Jos MR, Timothy CP, Christian S, et al. The rhizosphere:a playground and battlefield for soilborne pathogens and beneficial microorganisms [J]. Plant and Soil,2009,321:341-361
    Joseph B, Ranjan PR, Lawrence R. Characterization of plant growth promoting rhizobacteria associated with chickpea(Cicer arietinum L.) [J]. International Journal of Plant Production,2007,1:141-152
    Jung WJ, Jung SJ, An KN, et al. Effect of chitinase producing Peanibacillus illinoosensis KJA-424 on egg hatching of root-knot nematode(Meloidogyne incognita) [J]. Journal of Microbiology and Biotechnology,2002,12:856-871
    Jung WJ, Kuk JH, Kim KY, et al. Purification and characterization of chitinas e from Paenibacillus illinoisensis KJA-424 [J]. Journal of Microbiology and Biotechnology,2005,15:274-280
    Kevany BM, Rasko DA, Thomas MG. Characterization of the complete Zwittermicin A biosynthesis gene cluster from Bacillus cereus. Applied and Environmental Microbiology,2009,75:1144-1155
    Khan A, Williams KL, Nevalainen HKM. Effects of Paecilomyces lilacinus protease and chitinase on the eggshell structures and hatching of Meloidogyne javanica juveniles [J]. Biological Control, 2004,31:346-352
    Khan Z, Kim YH. The predatory nematode, Mononchoides fortidens (Nematoda:Diplogasterida), suppresses the root-knot nematode, Meloidogyne arenaria, in potted Weld soil [J]. Biological Control,2005,35:78-82
    Khan Z, Kim YH, Kim SG, et al. Observations on the suppression of root-knot nematode (Meloidogyne arenaria) on tomato by incorporation of cyanobacterial powder(Oscillatoria chlorina) into potting Weld soil [J]. Bioresource Technology,2007,98:69-73
    Koenning SR, Overstreet C, Noling JW. Survey of crop losses in response to phytoparasitic nematodes in the United States for 1994 [J]. Journal of Nematology,1999,31:587-618
    Kloepper JW. A review of issues related to measuring colonization of plant roots by bacteria [J]. Candian Journal of Microbiology,1992,38:667-672
    Kokalis BN, Martinez ON, Rodriguez KR, et al. Development of multi-component transplant mixes for suppression of Meloidogyne incognita on tomato (Lycopersicon esculentum) [J]. Journal of Nematology,2002,34:362-369
    Kokalis BN, Vavrina CS, Reddy MS, et al. Amendment of muskmelon transplant media with plant growth-promoting rhizobacteria:effects on seedling quality, disease, and nematode resistance [J]. Hortechnology,2003,13:476-482
    Koltai H, Chejanovsky N, Raccah B, et al. The first isolated collagen gene of the root-knot nematode Meloidogynejavanica is developmentally regulated [J]. Gene,1997,196:191-199
    Kubo C, Ushio S, Katase M, et al. Analysis of factors involved in sterilization effect by soil reduction [J]. Japanese Journal of Phytopathology,2005,71:281-282
    Lazarovits G, Tenuta M, Conn KL. Utilization of high nitrogen and swine manure amendments for control of soil-borne diseases:efficacy and mode of action [J]. Acta Horticulturae,2000,532:59-64
    Lazzeri L, Curto G, Leoni O, et al. Effects of glucosinolates and their enzymatic hydrolysis products via myrosinase on the root-knot nematode Meloidogyne incognita (Kofoid et White) Chitw [J]. Journal of Agriculture and Food Chemistry,2004,52:6703-6707
    Lazzeri L, Leoni O, Manici LM. Biocidal plant dried pellets for biofumigation [J]. Industrial Crop Products,2004b,20:59-65
    Li B, Xie GL, Soad A, et al. Suppression of Meloidogyne javanica by antagonistic and plant growth-promoting rhizobacteria [J]. Journal of Zhejiang University Science,2005, 6B (6):496-501
    Li XQ, Tan A, Voegtline M, et al. Expression of Cry5B protein from Bacillus thuringiensis in plant roots confers resistance to root-knot nematode [J]. Biological Control,2008,47:97-102
    Lobna M, Zawam H. Efficacy of some biocontrol agents on reproduction and development of Meloidogyne incognita Infecting tomato [J]. Journal of American Science,2010,6:495-509
    Lopez-llorca LV, Carbonell T, Gomez-vidal G. Degradation of insect cuticle by Paecilomyces farinosus proteases [J]. Mycological Progress,2002,1:249-256
    Lugtenberg B, Kamilova F. Plant-growth-promoting rhizobacteria [J]. Annual Review of Microbiology, 2009,63:541-556
    Mahran A, Tenuta M, Hanson M, et al. Mortality of Pratylenchus penetrans by volatile fatty acids from liquid hog manure [J]. Journal of Nematology,2008,40:119-126
    Marban-Mendoza N, Dicklow MB, Zuckerman BM. Evaluation of control of Meloidogyne incognita and Nacobbus aberrans on tomato by two leguminous plants [J]. Revue Nematology,1989,12:409-412
    Margarita R, Carlos G, Maria TH, et al. Effects of biosolar ization as methyl bromide alternative for Meloidogne incognita control on quality of soil under pepper [J]. Biology and Fertility of Soils, 2008,45:37-44
    Mateille T, Cadet P, Fargette M. Control and mangement of plant parasitic nematode communities in a soil conservation approach [J]. Nematode mangement and soil conservation,2008,79-97
    Matthiessen JN, Kirkegaard JA. Biofumigation and enhanced biodegradation:opportunity and challenge in soilborne pest and disease management [J]. Critical Reviews in Plant Sciences,2006,25: 235-265
    Merkel J R, Dreisbach J H. Purification and characterization of a marine bacterial collagenase [J]. Biochemistry,1978,17:2857-2863
    McBride RG, Mikkelsen RL, Barker KR. The role of low molecular weight organic acids from decomposing rye in inhibiting root-knot nematode populations in soil [J]. Applied Soil Ecology, 2002,15:243-251
    McElderry CF, Browning M, Amador JA. Effect of short-chain fatty acids and soil atmosphere on Tylenchorhynchus [J]. Journal of Nematology,2005,37:71-77
    McLeod RW, Kirkegaard JA, Steele CC. Invasion, development, growth and egg-laying by Meloidogyne javanica in Brassicaceae crops [J]. Nematology,2001,3:463-472
    McLeod RW, Steele CC. Effects of Brassica leaf green manures and crops on activity and reproduction of Meloidogyne javanica [J]. Nematology,1999,1:613-624
    Mekete T, Hallmann J, Kiewnick S, et al. Endophytic bacteria from Ethiopian coffee plants and their potential to antagonise Meloidogyne incognita [J]. Nematology,2009,11:117-127
    Min YY, Sato E, Shirakashi T, et al. Suppressive effect of anaerobically digested slurry on the root lesion nematode Pratylenchus penetrans and its potential mechanisms [J]. Janpanese Journal of Nematology,2007,37:93-100
    Minton NA, Baujard P. Nematode parasites of peanut [J]. Plant parasitic nematodes in subtropical and tropica agriculture,1990,285-320
    Monfort WS, Csinos AS, Desaeger J. Evaluating Brassica species as an alternative control measure for Root-knot nematode (M. incognita) in Georgia vegetable plasticulture [J]. Crop Protection,2007, 26:1359-1368
    Momma N, Yamamoto K, Simandi P, et al. Role of organic acids in the mechanisms of biological soil disinfestations (BSD) [J]. Plant Pathology,2006,72:247-252
    Mozgovaya IN, Byzov BA, Ryabchenko NF, et al. Nematicidal effects of the entomopathogenic bacteria Bacillus thuringiensis in soil [J]. Pedobiologia,2002,46:558-572
    Ndiaye M, Termorshuizen AJ, Van Bruggen AHC. Combined effects of solarization and organic amendment on charcoal rot caused by Macrophomina phaseolina in the sahel [J]. Phytoparasitica, 2007,35 (4):392-400 Niu QH, Huang XW, Tian BY, et al. Bacillus sp. B16 kills nematodes with a serine protease identified as a pathogenic factor [J]. Applied Microbiology and Biotechnology, 2006,69:722-730
    Noling JW, Becker JO. The challenge of research and extension to define and implement alternatives to methyl bromide [J]. Journal of Nematology,1994,26 (4S):573-586
    Oka Y. Mechanisms of nematode suppression by organic soil amendments [J]. Applied Soil Ecology, 2010,44:101-115
    Oka Y, Koltai H, Bar-Eyal M, et al. New strategies for the control of plant-parasitic nematodes [J]. Pest Management Science,2000,56:983-988
    Oka Y, Nacar S, Putievsky E, et al. Nematicidal activity of essential oils and their components against the root-knot nematode [J]. Phytopathology,2000,90:710-715
    Oka Y, Pivonia S. Use of ammonia-releasing compounds for control of the root-knot nematode Meloidogyne javanica [J]. Nematology,2002,4:65-71
    Oka Y, Pivonia S. Effect of a nitrification inhibitor on nematicidal activity of organic and inorganic ammonia-releasing compounds against the root-knot nematode Meloidogyne javanica [J]. Nematology,2003,5:505-513
    Oka Y, Tkachi N, Shuker S, et al. Laboratory studies on the enhancement of nematicidal activity of ammonia-releasing fertilizers by alkaline amendments [J]. Nematology,2006,8:335-346
    Oka Y, Tkachi N, Shuker S, et al. Field studies on the enhancement of nematicidal activity of ammonia-releasing fertilisers by alkaline amendments [J]. Nematology,2006,8:881-893
    Oka Y, Tkachi N, Mor M. Phosphite inhibits development of the nematodes Heterodera avenae and Meloidogyne marylandi in cereals [J]. Phytopathology,2007,97:396-404
    Oka Y, Tkachi N, Shuker S, et al. Enhanced nematicidal activity of organic and inorganic ammonia-releasing amendments using neem extracts [J]. Journal of Nematology,2007,39:9-16
    Oka Y, Shapira N, Fine P. Control of root-knot nematodes in organic farming system by organic amendments and soil solarization [J]. Crop Protetion,2007,26:1556-1565
    Oka Y, Yermiyahu U. Nematode-suppressive effects of composts against the root-knot nematode Meloidogyne javanica on tomato [J]. Nematology,2002,4:891-898
    Omirou M, Rousidou C, Bekris F. The impact of biofumigation and chemical fumigation methods on the structure and function of the soil microbial community [J]. Microbiology Ecology,2011,61: 201-213
    Orhan E, Omay D, Guvenilir Y. Partial purification and characterization ofprotease enzyme from Bacillus subtilis and Bacillus cereus[J]. Applied Biochemistry and Biotechnology,2005,121: 183-194
    Otobe K, Itou K, Mizukubo T. Micro-moulded substrates for the analysis of structure-dependent behaviour of nematodes [J]. Nematology,2004,6:73-77
    Perry RN, Aumann J. Behavior and sensory responses. In:Perry RN, Wright DJ (eds) The physiology and biochemistry of free-living and plant-parasitic nematodes [J]. CABI Publishing, Wallingford, UK,1998:75-102
    Perchat S, Buisson C, Chaufaux J. Bacillus cereus produces several nonproteinaceous insecticidal exotoxins [J]. Journal of Invertebrate Pathology,2005,90:131-133
    Pliego C, Kanematsu S, Ruano-Rosa D, et al. GFP sheds light on the infection process of avocado roots by Rosellinia necatrix [J]. Fungal Genetics and Biology,2009,46:137-145
    Ploeg AT, Stapleton JJ. Glasshouse studies on the effects of time, temperature and amendment of soil with broccoli plant residues on the infestation of melon plants by Meloidogyne incognita and M. javanica [J]. Nematology,2001,3:855-861
    Potter MJ, Davies K, Rathjen AJ. Suppressive impact of glucosinolates in Brassica vegetative tissues on root lesion nematode Pratylenchus neglectus [J]. Journal of Chemical Ecology,1998,24:67-80
    Poudel DD, Ferris H, Klonsky K, et al. Sacramento Valley. Outlook Agriculture,2000,30:109-116
    Piedra BA, Garcia-alvarez A, Diez-Rojo MA, et al. Use of pepper crop residues for the control of root-knot nematodes [J]. Bioresource Technology,2007,98:2846-2851
    Rahman L, Somer T. Suppression of root-knot nematode (Meloidogyne javanica) after incorporation of Indian mustard cv. Nemfix as green manure and seed meal in vineyards[J]. Australasian of Plant Pathology,2005,34:77-83
    Regaieg H, Ciancio A, Raouani NH, et al. Effects of culture filtrates from the nematophagous fugus Verticillum leptobactrum on viability of the root-knot nematode Meloidogyne incognita [J]. World Journal of Microbiology and Biotechnology,2010,26:2285-2289
    Reitz M, Rudolph K, Schroder I, et al. Lipopolysaccharides of rhizobium etli strain Gl2 act in potato roots as an inducing agent of systemic resistance to infection by the cyst nematode Globodera pallida [J]. Applied and Environmental Microbiology,2000,66:3515-3518
    Riegel C, Noe JP. Chicken litter soil amendment effects on soilborne microbes and Meloidogyne incognita on cotton [J]. Plant Disease,2000,84:1275-1281
    Roberts PA. Current status of the availability, development and use of host plant resistance to nematodes [J]. Journal of Nematology,1992,24:213-227
    Roberts PA. Conceptual and practical aspects of variability in root-knot nematodes related to host plantresistance [J]. Annual Review of Phytopathology,1995,33:199-221
    Rosso MN, Favery B, Piotte C, et al. Isolation of a cDNA encoding a β-1,4-endoglucanase in the root-knot nematode Meloidogyne incognita and expression analysis during plant parasitism [J]. Molecular Plant-Microbe Interactions,1999,12:585-591
    Ryoji S, Daigo A, Atsuhiko K, et al. Effects of fungal culture filtrates of Verticillium lecanii (Lecanicillium spp.) hybrid strains on Heterodera glycines eggs and juveniles [J]. Journal of Invertebrate Pathology,2008,97:291-297
    Sahebani N, Hadavi N. Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum [J]. Soil Biology and Biochemical,2008,40:2016-2020
    Sano Z, Nakasono K. Differences in survival time of Meloidogyne incognita juveniles inside and outside of soil aggregates in an Andosol [J]. Soil Micro-organism,1997,49:1-7
    Sela S, Schickler H, Chet I, et al. Purification and characterization of a Bacillus cereus collagenolytic/proteolytic enzyme and its effect on Meloidogyne javanica cuticular proteins [J]. European Journal of Plant Pathology,1998,104:59-67
    Shevchenko GV, Kalinina YM, Kordyum EL. Interrelation between microtubules and microfilaments in the elongation zone of Arabidopsis root under clinorotation [J]. Advances in Space Research,2007, 39:1171-1175
    Stapleton JJ. Feasiability of sprayable polymer mulches for soil solarization and soil sealing applications [J]. Phytopathology,1990,80:89-92
    Stapleton JJ. Soil solarization in various agricultural production systems [J]. Crop Protection,2000,19: 837-841
    Stapleton JJ, Duncan RA. Soil disinfestation with cruciferous amendments and sublethal heating:effects on Meloidogyne incognita, Sclerotium rolfsii and Pythium ultimum [J]. Plant Pathology,1998,47: 737-742
    Stephane C, Christophe C, Angela S. Plant growth-promoting bacteria in the rhizo-and endosphere of plants:Their role, colonization, mechanisms involved and prospects for utilization [J]. Soil Biology and Biochemistry,2010,42:669-678
    Stirling GR, Stirling AM. The potential of Brassica green manure crops for controlling root-knot nematode(Meloidogyne javanica) on horticultural crops in a subtropical environment [J]. Australian Journal of Experimental Agriculture,2003,43:623-630
    Stirling GR. Biological control of plant parasitic nematodes [M],1991,282-284
    Stirling G, Nicol J. Advisory services for nematode pests-operational guidelines [J].2002,99:36-97
    Siddiqui ZA, Baghel G, Akhtar MS. Biocontrol of Meloidogyne javanica by rhizobium and plant growth-promoting rhizobacteria on lentil [J]. World Journal of Microbiology and Biotechnology, 2007,23:435-441
    Siddiqui ZA. Effects of plant growth promoting bacteria and composed organic fertilizers on the reproduction of Meloidogyne incognita and tomato growth [J]. Bioresource Technology,2004,95: 223-227
    Sijmons PC, Atkinson HJ, Wyss U. Parasitic strategies of root nematodes and associated host cell responses [J]. Annual Review of Phytopathology,1994,32:235-259
    Sikora RA, Pocasangre L, Zum Felde A, et al. Mutualistic endophytic fungi and in-planta suppressiveness to plant parasitic nematodes [J]. Biology Control,2008,46:15-23
    Sunil SA, Justin ChunTL, Yang Z, et al. Stereological assessment of extracellular polymeric substances, exo-enzymes, and specific bacterial strains in bioaggregates using fluorescence experiments [J]. Biotechnology Advances,2010,28:255-280
    Taba S, Tomoyose M, Moromizato Z. Control mechanism associated with rice bran-amended soil for root-knot nematode, Meloidogyne incognita [J]. International Journal of Nematology,2006,16: 126-133
    Tahseem Q, Shamim J, Irfan A. Observations on the embryonic and post-embryonic development of Diploscapter orientalis (Nematoda:Rhabditida) [J]. Revue Nematology,1991,14:251-260
    Tenuta M, Lazarovits G. Ammonia and nitrous acid from nitrogenous amendments kill the microsclerotia of Verticillium dahliae [J]. Phytopathology,2002,92:255-264
    Tenuta M, Conn KL, Lazarovits G. Volatile fatty acids in liquid swine manure can kill microsclerotia of Verticillium dahliae [J]. Phytopathology,2002,92:548-552
    Tian HL, Riggs RD, Crippen DL. Control of soybean cyst nematode by chitinolytic bacteria with chitin substrate [J]. Journal of Nematology,2000,32:370-376
    Timper P, Gates R N, Bouton JH. Response of Pratylenchus spp. in tall fescue infected with different strains of the fungal endophyte Neotyphodium coenophialum [J]. Nematology,2005,7:105-110
    TikhonovVE, Lopez-Llorca LV, Salinas J, et al. Purification and characterization of chitinases from the nematophagous fungi Verticillium chlam ydosporium and V. Suchlasporium [J]. Fungal Genetics and Biology,2002,35:67-78
    Tosi S, Annovazzi L, Tosi I, et al. Collagenase production in an Antarctic strain of Arthrobotrys tortor Jarowaja [J]. Mycopathologia,2001,153:157-162
    Treonis AM, Austin EE, Buyer JS. Effects of organic amendment and tillage on soil microorganisms and microfauna [J]. Applied Soil Ecology,2010,46:103-110
    Trudigill DL. Seminar:host and plant temperature effects on nematode development rates and nematode ecology [J]. Nematologica,1995,41:398-404
    Uesugi Y, Arima J, Usuki H. Two bacterial collagenolytic serine proteases have different topological specificities [J]. Biochemica et Biophysica Acta,2008,1784:716-726
    Van Nguyen N, Kim YJ, Oh KT, et al. The role of chitinase from Lecanicillium antillanum B-3 in parasitism to root-knot nematode Meloidogyne incognita eggs [J]. Biocontrol Science and Technology,2007,17:1047-1058
    Vianene NM, Abawi GS. Hirsutella rhossiliensis and Verticillium chlamydosporium as biocontrol agents of the root-knot nematode Meloidogyne hapla on lettuce [J]. Journal of Nematology,2000,32: 85-100
    Vieille C, Zeikus JG. Hyperthermophilic enzymes:sources, uses and molecular mechanisms for thermostability [J]. Microbiology and Molecular Biology Reviews,2001,65:1-43
    Viketoft M. Soil nematode communities in grasslands effects of plant species:identity and diversity. Ph.D. Thesis. Swedish University of Agricultural Sciences, Uppsala,2007,12-13
    Villacieros M, Power B, Sanchez-Contreras M, et al. Colonization behavior of pseudomonas fluorescens and Sinorhizobium meliloti in the alfalfa (Medicago sativa) rhizosphere [J]. Plant and Soil,2003, 251:47-54
    Wachira PM, Kimenju JW, Okoth SA. Stimulation of nematode-destroying fungi by organic amendments applied in management of plant-parasitic nematode [J]. Asian Journal of Plant Science, 2009,8:153-159
    Walker TS, Bais HP, Grotewold E, et al. Root exudation and rhizosphere biology [J]. Plant Physiology, 2003,132:44-51
    Wang B, Wu WP, Liu XZ. Purification and characterization of a neutral serine protease with nematicidal activity from Hirsutella rhossiliensis [J]. Mycopathologia,2007,163:169-176
    Wang KH, McSorley R, Kokalis-Burelle N. Effects of cover cropping, solarization, and soil fumigation on nematode communities [J]. Plant Soil,2006,286:229-243
    Wharton D. Nematode eggshells [J]. Parasitology,1980,81:447-463
    White TJ, Pasternak JJ. Ascaris lumbricoides:zonal localization of immunoreactive collagen in the cuticle [J]. Experimental Parasitology,1988,66:225-230
    Whitehead AG. Sedentary endorarasites of roots and tubers (Meloidogyne and Nacobbus) [J]. In:Plant Nematode Control. CAB International, Wallingford, UK,1998,209-260
    Wilson MK, Abergel RJ, Raymond KN,et al.Siderophores of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Biochemical and Biophysical Research Communications,2006,348: 320-325
    Wrather JA, Anderson TR, Arsyad DM, et al. Soybean disease loss estimates for the top ten soybean-Producing countries in1998 [J]. Candian Journal of Plant Pathology,2001,23:115-121
    Xiao J, Zhu J, Chen S, et al. A novel use of anaerobically digested liquid swine manure to potentially control soybean cyst nematode [J]. Journl of Environmental Science and Health,2007,42:749-757
    Yang JK, Tian BY, Liang LM, et al. Extracellular enzymes and the pathogenesis of nematophagous fungi [J]. Applied Microbiology and Biotechnology,2007 a,75:21-31
    Yang JK, Liang LM, Zhang Y, et al. Purification and cloning of a novel serine protease from the nematode-trapping fungus Dactylellina varietas and its potential roles in infection against nematodes [J]. Applied Microbiology and Biotechnology,2007b,75:557-565
    Yao LX, Li GL, Tu SH, et al. Salinity of animal manure and potential risk of secondary soil salinization through successive manure application [J]. Science of the Total Environment,2007,383:106-114
    Yeates GW, Bongers T, Degoede RGM, et al. Feeding habits in soil nematode families and genera-an outline for soil ecologists [J]. Journal of Nematology,1993,25:315-331
    Yeates GW. Nematodes as soil indicators:functional and biodiversity aspects [J]. Biology and Fertility of Soils,2003,37:199-210
    Yucel S, Ozarslandan A, Colak A. Effect of solarization and fumigant applications on soilborne pathogens and root-knot nematodes in greenhouse-grown tomato in Turkey [J]. Phytoparasitica, 2007,35:450-456
    Zasada IA, Ferris H. Nematode suppression with brassicaceous amendments:application based upon glucosinolate profiles [J]. Soil Biology and Biochemistry,2004,36:1017-1024
    Zasada IA, Ferris H. Sensitivity of M .javanica and Tylenchulus semipenetrans to isothiocyanates in laboratory assays [J]. Phytopathology,2003,93:747-750
    Zhang N, Wu K, He X, et al. A new bioorganic fertilizer can effectively control banana wilt by strong colonization with Bacillus subtilis N11 [J]. Plant and Soil,2011,344:87-97
    布坎男R.E.,吉本斯N.E.等编著.伯杰细菌手册[M],1984(第八版),科学出版社
    车建美,刘波,蓝江林.短短芽孢杆菌JK22的GFP标记及其抑菌作用[J].中国生物防治,2010a,26(2):230-234
    车建美,刘波,张彦等.青枯病生防菌蜡状芽孢杆菌(ANTI-8098A)的绿色荧光蛋白基因(gfp)转导及其生物学特性的变化[J].农业生物技术学报,2010b,18(2):337-345
    陈立杰,段玉玺.植物寄生线虫虫种资源的分类鉴定[J].中国寄生虫学与寄生虫病杂志,2006,S(1)24:29-33
    曹素芳,邹雅新,马娟等.生物熏蒸对南方根结线虫存活的室内测定[J].华北农学报,2009,24(增刊):270-274
    蔡燕飞,廖宗文,章家恩等.生态有机肥对番茄青枯病及土壤微生物多样性的影响[J].应用生态学报,2003,14(3)B:349-353
    东秀珠,蔡妙英等编著.常见细菌系统鉴定手册[M],2001,科学出版社
    范成明,刘建英,吴毅歆等.具有生物熏蒸能力的几种植物材料的筛选[J].云南农业大学学报,2007,22(5):654-658
    符美英,陈绵才,肖彤斌等.根结线虫与寄主植物互作机理的研究进展[J].热带农业科学,2008,2(3):73-77
    付艳平,褚世海,王明祖.筛选根际促生细菌防治蔬菜根结线虫病[J].云南农业大学学报,1999,S1(14):66-69
    方中达.植病研究方法(第三版)[M].中国农业出版,1996,306-311
    冯志新.植物线虫学[M].北京:中国农业出版社,2000,95-98
    郭荣君,刘杏忠,杨怀文.应用根际细菌防治植物寄生线虫的研究[J].中国生物防治,1996,12(3):134-137
    郭素枝,章淑玲,陈玉芬等.甘薯茎线虫的扫描电镜制样方法[J].福建农林大学学报(自然科学版),2005,34(1):43-45
    郝变青,马利平,乔雄梧.GFP标记的植物促生菌B96-Ⅱ-gfp的定殖能力研究[J].中国生态农业学报,2010,18(4):861-865
    胡可,李华兴,卢维盛等.生物有机肥对土壤微生物活性的影响[J].中国生态农业学报,2010,18(2):303-306
    何胜洋,葛起新.植物线虫的寄生真菌简介[J].植物保护学报,1987,14(1):29-32
    海棠,彭德良,曾昭海等.耕作制度对甘薯地土壤线虫群落结构的影响[J].中国农业科学,2008,41(6):1851-1857
    黄文坤,张桂娟,张超等.生物熏蒸结合阳光消毒治理温室根结线虫技术[J].植物保护,2010,1(32):139-142
    何欣,郝文雅,杨兴明等.生物有机肥对香蕉植株生长和香蕉枯萎病防治的研究[J].植物营养与肥料学报,2010,16(4):978-985
    黄耀师,梁震,李丽.我国植物线虫研究和防治进展[J].农药,2000,39(2):11-13
    何自福,殷友琴.分子生物学技术在植物线虫鉴定中的应用[J].华南农业大学学报,1996,17(2):112-116
    靳鸿蔚,刘桂兰,王耿等.一株胶原酶产生菌的筛选及系统发育分析[J].华侨大学学报:自然科学版,2008,29(3):387-390
    金敏,王忠彦,胡承等.产胶原蛋白酶地衣芽孢杆菌的分离,筛选及发酵条件研究[J].四川大学学报,2000,37(5):764-767
    刘丽莉,马美湖,余秀芳,等.胶原蛋白酶产生菌的筛选及酶的分离纯化[J].生物工程学报,2010,,26(2):194-200
    刘倩,葛建军,刘振平等.植物线虫分子检测方法的研究发展[J].东北农业大学学报,2009,40(]1):125-128
    廖金铃,蒋韩,孙龙华等.中国南方地区作物根结线虫种和小种的鉴定[J].华中农业大学学报,2003,22(6):544-548
    刘丽莉,马美湖,余秀芳等.胶原蛋白酶产生菌的筛选及酶的分离纯化[J].生物工程学报,2010,26(2):194-200
    李明社,李世东,缪作清等.生物熏蒸用于植物土传病害治理的研究[J].中国生物防治,2006,22(4):296-302
    李蕾,刘奇志,王玉柱等.线虫扫描电镜样品制备技术的比较[J].电子显微学报,2008,27(3):255-260
    凌宁,王秋君,杨兴明等.根际施用微生物有机肥防治连作西瓜枯萎病研究[J].植物营养与肥料学报,2009,15(5):1136-1141
    刘培磊.中国根结线虫全体的同工酶表型和线粒体DNA多态性分析.硕士论文,2002
    李世东,李明社,缪作清等.生物熏蒸用于治理蔬菜根结线虫病的研究[J].植物保护,2007,33(4):68-71
    刘维志.植物病原线虫学[M].北京:中国农业出版社,2000,192-217
    毛爱军,柴敏,于拴仓等.番茄抗根结线虫接种鉴定技术及其应用[J].西北农业学报,2005,14(4):140-144
    孟庆鹏,龙海,徐建华.南方、爪哇和花生根结线虫的快速灵敏的PCR鉴定方法[J].植物病理学报,2004,34(3):204-210
    彭好文,黎起秦,蒙姣荣.PCR技术在植物病害研究中的应用[J].广西农业科学,2006,37(6):682-685
    彭祎,谭悠久,黄永春.GFP标记的多粘芽孢杆菌1114在番茄根际的定殖[J].中国生物防治,2010,26(3):307-311
    任召珍,郑媛,孙谧等.海洋侧孢短芽孢杆菌Lh21抗菌活性物质的分离及特性研究[J].微生物学报,2007,47(6):997-1001
    沈德龙,曹风明,李力.我国生物有机肥的发展现状及展望[J].中国土壤与肥料,2007(6):1-5
    邵铁梅,宋福平,李卓夫等.产Zwittermicin A的苏云金芽孢杆菌菌株的筛选及抗性基因zmaR的克隆与表达.中国农业科学,2005,38(9):1811-1816
    孙佳佳,王红英,钱斯日古楞等.产胶原蛋白酶枯草芽孢杆菌的筛选[J].大连工业大学学报,2010,29(4):248-250
    时立波,王振华,吴海燕等.连作年限对番茄根围土壤根结线虫二龄幼虫与自由生活线虫数量的影响[J].植物病理学报,2010,40(1):81-89
    孙玉秋,许艳丽,李春杰等.作物轮作系统对土壤中大豆胞囊线虫胞囊量和单胞囊卵量的影响[J].农业系统科学与综合研究,2011a,27(2);248-252
    孙玉秋,许艳丽,李春杰等.作物轮作系统对大豆胞幼虫寄生真菌的影响[J].大豆科学,2011b,30(2):277-280
    孙强,闫建芳,刘秋等.放线菌菌株MY02的鉴定及发酵液中抗真菌活性组分的分离[J].植物保护,2007,33(5):71-74
    韦兵,唐欣昀.假单胞菌JK45菌株lux基因标记及在土壤中的存活[J].农业环境科学学报,2006,25(6):1524-1528
    吴沛桥,巴晓革,胡海等.绿色荧光蛋白GFP的研究进展及应用[J].生物医学工程研究,2009,28(1):83-86
    汪来发,杨宝君,李传道.根结线虫寄生真菌调查[J].菌物系统,2001,20(2):264-267
    王年,石金开,孔凡玉等.烟草品种资源对根结线虫抗病性鉴定[J].植物病理学报,2000,30(1):82-86
    吴瑞,张树珍.绿色荧光蛋白及其在植物分子生物学中的应用[J].分子植物育种,2005,2:240-244
    王涛,乔卫花,李玉奇等.轮作和微生物菌肥对黄瓜连作土壤理化性状及生物活性的影响[J].土壤通报,2011,42(3):578-583
    王新荣,谢辉.DNA重组技术在植物寄生线虫分类上的应用及其发展趋势[J].植物检疫,2001,15(4):232-234
    王英国,王军华,权春善等.解淀粉芽孢杆菌抗菌活性物质的分离纯化及抑菌活性研究[J].中国生物工程杂志,2007,27(12):41-45
    武扬,郑经武,商晗武等.根结线虫分类和鉴定途径及进展[J].浙江农业学报,2005,17(2):106-110
    谢辉,冯志新.植物线虫的分类现状[J].植物病理学报,2000,30(1):1-6
    徐建华,魏大为,詹裕定等.江苏省大棚蔬菜寄生线虫的种类和发生[J].南京农业大学学报,1994,17(1):47-51
    杨宝君.十五种根结线虫病害的病原鉴定[J].植物病理学报,1981,4(2):107-111
    杨光矗,谢君,徐宁等.具胶原蛋白酶活性铜绿假单胞菌的筛选[J].微生物学通报,2004,31(5):43-48
    杨树军,夏振远,李天飞等.两种生防菌株对南方根结线虫卵孵化的影响[J].西南农业大学报,2001,23(3):247-248
    喻盛甫,王扬,胡先奇等.4种常见根结线虫基因组DNA的RAPD分析[J].植物病理学报,1998, 28(4):359-365
    于鹏飞,武侠,张成敏等.产生几丁质酶的食线虫真菌绿粘帚霉Gliocladium virens CFCC80915对南方根结线虫卵孵化的影响[J].植物病理学报,2008,38(5):496-500
    殷幼平,袁训娥,李强等.生防菌枯草芽孢杆菌CQBS03的绿色荧光蛋白基因标记及其在柑橘叶片上的定殖[J].中国农业科学,2010,43(17):3555-3563
    殷友琴,杨宝君,王秋丽.30种作物根结线虫病的病原鉴定[J].华南农业大学学报,1994,15(1):22-26
    姚震声,陈中义,陈志谊等.绿色荧光蛋白基因标记野生型生防枯草芽孢杆菌的研究[J].生物工程学报,2003,19(5):551-556
    赵斌,何绍江.微生物学实验[M].北京:科学出版社,2002
    郑经武,方中达.植物线虫分类和鉴定研究的新进展[J].植物保护,1996,2:33-35
    周莉娟,郑伟文,谢联辉.线虫拮抗菌BC2000的分子鉴定及其GFP标记菌的生物学特性[J].福建农林大学学报(自然科学版),2005,34(4):430-433
    周琴,孙明,周俊初,等.绿色荧光蛋白基因gfp在苏云金芽胞杆菌中表达的初步研究[J].中国农业科学,2003,36(8):981-984
    张敏,王正银.生物有机肥料与农业可持续发展[J].磷肥与复肥,2006,21(2):58-59
    张昕,张炳欣,喻景权等.生防菌ZJY21及ZJY2116的GFP标记及其在黄瓜根围的生态适应性[J].应用生态学报,2005,16(11):2144-2148
    张霞,张杰,李国勋等.绿色荧光蛋白标记荧光假单胞菌P303及其生存能力检测[J].植物保护学报,2005,32(3):280-287
    张绍松,李成云,周晓罡 等.番茄根结线虫分离和苗期接种方法研究[J].西南农业学报,2008,21(3):659-663

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700