用户名: 密码: 验证码:
铝合金整体叶轮数控铣削加工增效关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝合金整体叶轮是小型发动机上的关键部件。近年来,随着国防工业和国民经济的发展,市场对该类零件的需求急剧增长;因此,如何实现该类零件的高效生产已成为工业界和学术界共同关注的课题。本文从叶片加工工艺及其参数优化以及五轴数控铣削加工应用的角度,对铝合金整体叶轮加工增效的关键技术开展理论、试验及仿真研究,旨在实现该类零件加工效率的大幅度提升。
     本文完成的主要工作及取得的成果如下:
     1.对五轴数控加工过程中的误差产生原因进行了分析,给出了行距和步距的确定标准。通过刀具矢量控制算法,实现了无干涉的加工路径规划。使用UG软件进行数控编程,采取建立驱动面的侧刃驱动方式,内外公差设置为0.001mm,叶缘头处设置刀轴最大更改值为3o,获得了满意的刀轨程序并生成了五轴数控加工程序,并得到试验验证。
     2.设计了专用测力工装,采用Kistler测力系统,对叶片四轴和五轴加工过程中动态切削力的分布进行了实验研究。结果表明,四轴和五轴加工过程中的切削合力均随切削速度的提高呈现先上升后下降的趋势;但四轴加工过程中,切削力波动较大,易引起切削不稳;而五轴加工过程中,切削力相对平稳,且在叶背和叶盆区域,其切削合力值基本不变,没有四轴切削时的冲击现象。
     3.对数控铣削过程中叶片模态的变化进行了实验和仿真研究。结果表明,叶片有两阶模态,其模态频率随材料的去除呈现先增大后减小的趋势,但振型变化不大。在Altinas的理论基础上,考察了毛坯材料去除对Lobes图的影响,建立了三维Lobes图,并通过切削试验验证了该Lobes图的正确性,从而为无振动加工参数选择奠定了基础。
     4.对五轴数控铣削后叶片表面质量进行了试验研究。结果表明,叶片表面粗糙度值随每齿进给量的减小而减小,并随切削速度的提高而降低;叶片表面纹理随每齿进给量的减少,先后呈现蜂窝状、长矩形、正方形、扁矩形,最后到垄沟状;叶片表面三维形貌也反映了相同的变化趋势;叶片表层硬度比基体高,最大硬化程度达到22.5%;叶片表面变质层深度范围为5μm~10μm,无裂纹等缺陷。
     5.对叶片四轴和五轴数控加工进行了对比。结果表明,四轴加工有50%左右的无效切削路径,而五轴加工基本没有;在相同的加工参数下,五轴加工时间比四轴加工时间短;四轴和五轴加工的进给速度都存在上限,但五轴的上限值比四轴的高。优化了叶片的加工路线,更换了开槽和铣叶形的机床,用编制的五轴数控程序替代原四轴数控程序,从而使叶轮的精加工效率提高了50%。最后,设计并实现了整体叶轮加工参数推荐系统。
As the key part of mini-type turbine engines,the demand for Al-alloy integral impeller has been increasing in recent years along with the development of economy and our national defense. However, how to increase the production efficiency of Al-alloy integral impeller has been a major problem of industry and academia. From the perspective of optimization of manufacture parameter and application of 5-axises milling, this paper aims to do research on key technology to increase NC milling efficiency of Al-alloy impeller. Based on the theoretical analysis and experiments, the manufacture efficiency of this type of integral impeller was increased a lot.
     Main works and achievements of this paper were shown as follows:
     1. The cause of error of the 5-axises machining process was analyzed. The standard of feed distance and pick distance was given out based on it. A un-interfere tool path was obtained via tool vector control algorithm. 5-axises NC program was produced by UG. A drive surface was built. Swarf Drive method was used while NC program was built. The tool change value was set 3 degree at the edge of blade. A VERICUT simulation and an experiment were done. A qualified blade was obtained.
     2. A private clamp was designed and produced. Kistler dynamometer was used to measure the cutting force of 4-aixses and 5-aixses blade machining process. Results showed that cutting force fluctuation was bigger while blade was machined with 4-axises. Cutting forces of 5-axises were comparatively smooth. Resultant cutting forces of both taken on a tendency increased first and then decreased with cutting speed increased.
     3. The change of blade modal was investigated by experiment and FEA simulation while material removal. Two grade modals in the area could be detected by sensor. The frequency of modal went up at first, and then went down with the material removal. Modal shape was not change with the removal. Based on the theory of Altinas, the influence of stock removal to the Lobes was researched and 3-D Lobes were built. Some cutting experiments were done to validate the 3-D Lobes.
     4. Surface roughness Ra decreased with the decrease of feed and with the increase of cutting speed. Surface texture changed with feed. It looked like a honeycomb at first and then a rectangle later, with the decrease of feed. Longitude mark vanished with the decrease of feed, at last. Surface topography reflected the same tendency. Surface hardness was higher than base. The max value of work hardening capacity was 22.5%. The thickness of affected layer was between 5μm and 10μm that measured under SEM had the same tendency of hardness. There was no defect in the layer.
     5. Compared with 4-axises, there were natural advantages when 5-axises machining was used. There was almost no invalid path while cutting with 5-axises compared with 50% invalid while milling with 4-axises. 5-axises milling is more efficient than 4-axises under the same cutting parameters. What’s more, the upper limits of 5-axises is higher than 4-axises machining. Manufacture route was optimized to improve the machining efficiency. The machine of fluting and blade surface milling was changed. 5-axises NC program replaced 4-axises at same time. The manufacture efficiency of integral impeller was increased 50% under the synthesis action of these works. The expert system of cutting parameter on machining Al integral impeller was designed and realized.
引文
[1]贾健明,杨继平,薛亮.整体叶轮的多轴数控加工技术[J].航天制造技术, 2002, (6): 3~8
    [2]蒋英兰,王大镇.叶轮数控加工发展现状及一种新的数控加工方法介绍[J].集美大学学报, 2002,7(2):149~153
    [3]李群,陈五一.基于UG的发动机整体叶轮三维造型研究[J].设计与研究, 2005, (9):5~10
    [4]郝小忠,程筱胜,何磊.整体叶轮CAD/CAM技术应用研究与实现[J].中国制造业信息化,2007,36(1):48-50
    [5]任军学,张定华等.整体叶盘数控加工技术研究[J].航空学报, 2004, 25 (2):205~208
    [6] Mingjun Feng, Can Zhao, Xuehui Wang. Application of HSM in Impeller process[c]. ICIRA2008 PartII, Berlin Germany: springer, 2008:1030~1037
    [7]蕊阳.机床工业亟须发展五轴数控技术[J].机电新产品导报, 2003(Z1): 43~46
    [8]黄春峰.现代航空发动机整体叶盘及其制造技术[J].航空制造技术.2006, (04): 94~101
    [9]陈本柱.航空发动机冷加工工艺的现状与发展[J].航空制造技术,1995, (02): 33~37
    [10]张永俊,徐家文.数控展成电解加工整体叶轮的几何分析与编程[J].航空维修与工程, 1995, (1):13~14
    [11]植田勋.离心式压缩机三元叶轮加工程序[J].风机技术,1986, (6):49~51
    [12]三宅庆明,平田孝一.离心压缩机叶轮的三元加工[J].风机技术,1985, (6):33~39
    [13]川村修平等.叶轮数控加工编程的自动化[J].动力机械制造, 1989, (7):46~50
    [14]江瑞田.整体叶轮加工刀具轨迹规划及NC程序自动生成[D].[硕士学位论文],哈尔滨:哈尔滨工业大学, 2007
    [15] Thomas Schneider.用铣床直接加工涡轮叶片[J].世界制造技术与装备市场,2003, (2):20~23
    [16]瑞士GF阿奇夏米尔集团.高度自动化的叶轮加工.瑞士:阿奇夏米尔集团, 2007
    [17]徐常武.三元叶轮CAD/CAM一体化[J].风机技术,1987, (2):28~30
    [18]焦建斌,刘华明,韩向利.半开式叶轮数控加工工艺分析[J].制造技术与机床,1995, (6):15~18
    [19]王清辉,李光耀,周来水等.直纹面叶型整体叶轮五坐标数控编程算法研究[J].航空制造技术, 1998(1):15~16
    [20]李建广,赵航,袁哲俊.一种新的多坐标加工过程算法的研究[J].哈尔滨工业大学学报,1999,31(5):26~29
    [21] Ren B Y, Liu H M. Optimization of Cutter-location for 5-axis NC Machining Freeform Surface with a Flat End Cutter[J]. Journal of Harbin Institute Technology, l999, 6(4):30~33
    [22]孙春华,陈皓辉,刘华明.复杂曲面整体叶轮CAD/CAM技术研究[J].高技术通讯,2003, (6):51~53
    [23]于源,负敏,王小椿.整体叶轮五轴粗加工多级刀位规划的计算方法[J].西安交通大学学报,2002,36(1):39~42
    [24] Jxhyw.沈鼓研制成功三元闭式叶轮整体铣制技术[EB/OL]. http://news.jxhyw.cn/?action-viewnews-itemid-6732, 2007.10.18
    [25] Kim D S, Jun C S, Park S. Tool path generation for clean-up machining by a curve-based approach[J]. Computer-Aided Design, 2005, 37(9): 967~973
    [26] H Y Feng, H W Li. Constant Scallop-height Tool Path Generation for Three- axis Sculptured Surface Machining[J]. Computer-Aided Design, 2002, 34: 647~654
    [27] Christophe Tournier. Emmanuel Duc.Iso-scallop tool path generation in 5-axis milling[J]. Int J Adv Manuf Technol, 2005, 25: 867~875
    [28] Y W Hsueh, M H Hsueh. Automatic selection of cutter orientation for preventing the collision problem on a five-axis machining[J]. Int J Adv Manuf Technol, 2007, 32: 66~77
    [29]杨长祺.复杂曲面多轴加工的高精度、高效率数控编程系统研究[D]. [博士学位论文].重庆:重庆大学机械工程学院, 2004
    [30]杨长祺,秦大同,石万凯.自由曲面五轴等残余高度高精度加工的路径规划.[J].计算机辅助设计与图形学学报,2003,15(5):621-630
    [31]杨长祺,刘海江,贾维.多轴机床加工自由曲面的干涉避免与刀轴优化[J].同济大学学报,2007,35(11):1530~1534
    [32]孙全平,廖文和,盛亮.复杂多曲面高速铣3轴精加工刀轨优化算法[J].计算机辅助设计与图形学学报,2005,17(03): 486~490
    [33]孙全平.高速铣削数控编程基础算法的研究与实现[D]. [博士学位论文].南京:南京航空航天大学机电学院, 2005
    [34]孙全平,廖文和.叶轮曲面5轴高速铣削加工刀轨生成算法[J].东南大学学报. 2005,35(3):386~390
    [35]孙全平,廖文和.自识别加工残区的高速铣削刀轨生成算法研究[J].南京航空航天大学学报,2004,36(01):72~76
    [36]孙全平,廖文和.高速铣削刀轨优化技术的研究[J].机械科学与技术,2004,23(8): 922~926
    [37]单晨伟.叶片类零件螺旋铣削切触点轨迹规划问题研究.[D].[硕士学位论文].西安:西北工业大学, 2004
    [38]单晨伟,张定华,刘雄伟.组合曲面叶片的螺旋加工刀位轨迹生成[J].计算机集成制造系统,2008,14(11):2243~2247
    [39]张学超.闭式整体叶盘切触点规划及刀轴矢量控制[D]. [硕士学位论文].西安:西北工业大学, 2006
    [40] Yang M, Park H.The Prediction of cutting Force in Ball-End Milling[J]. International Journal of Machine Tools & Manufacture, 1991, 31(1): 45~54
    [41] Feng H Y, Menq C H. The Prediction of Cutting Forces in the Ball-End Milling Process-I, Model Formulation and Model Building Procedure[J]. International Journal of Machine Tools & Manufacture, 1994, 34(5): 697~710
    [42] Lee P, Altintas Y. Prediction of Ball-End Milling Forces from Orthogonal Cutting Data[J]. International Journal of Machine Tools & Manufacture, 1996, 36(9): 1059~1072
    [43] Imani B M. An improved process simulation system for ball-end milling of sculptured surfaces[J]. International Journal of Machine Tools & Manufacture, 1998, 38(9): 1089~1107
    [44] Lazoglu I. Sculpture surface machining: a generalized model of ball-end milling force system[J]. International Journal of Machine Tools & Manufacture, 2003, 43(5): 453~462
    [45] Lamikiz A, Lopez de Lacalle L N, Sanchez J A, et al. Cutting force estimation in sculptured surface milling[J]. International Journal of Machine Tools & Manufacture, 2004, 44(14): 1511~1526
    [46]李洪江.球头铣刀铣削力建模与仿真关键技术研究[D].[硕士学位论文].南京:南京航空航天大学,2006
    [47]张臣.数控铣削加工物理仿真关键技术研究[D].[博士学位论文].南京:南京航空航天大学,2006
    [48]刘志新.高速铣削过程动力学建模及其物理仿真研究[D].[博士学位论文].天津:天津大学,2006
    [49]贾方,易红,王兴松.金属切削颤振机理及其控制研究的新进展[J].中国制造业信息化,2006,35(1):67~71
    [50] Tlusty J, Simth S, Winfough W. Techniques for the use of long slender end mills in high-speed machining[J]. Annals of the CIRP, 1996, 45(1): 393~396
    [51] Y Altintas, E Shamoto. Analytical prediction of stability Lobes in ball end milling[J]. Journal of manufacturing science and engineering, 1999, 121: 586~592
    [52] Y Altintas.数控技术与制造自动化[M].罗学科译.北京:化学工业出版社,2002:76~82
    [53] S Smith. Power and stability limits in milling[J]. Annals of the CIRP, 2000, 49(1): 309~312
    [54] S Smith. The effect of tool length on stable metal removal rate in high speed milling[J]. Annals of the CIRP, 1998, 47(1): 307~310
    [55] S Smith and D Dvorak. Tool path strategies for high speed milling aluminum workpieces withthin webs[J]. Mechatronics, 1998, 8(4): 291~300
    [56] U Bravo, O Altuzarra, L N López de Lacalle. Stability limits ofmilling considering the flexibility of the workpiece and the machine[J]. International Journal of Machine Tools & Manufacture,2005, (45):1669~1680
    [57] S Ratchev, S Liu, W Huang and A A Becker. An advanced FEA based force induced error compensation strategy in milling[J].International Journal of Machine Tools and Manu facture, 2006, 46(5):542~551
    [58] S Ratchev, S Liu and A Becker. Error compensation strategyin milling flexible thinwall parts. [J].Journal of Materials Processing Technology, 2005,162-163 (15) : 673~681
    [59] S Ratchev, K Phuah, GLmmel and W Huang.An experimental investigation of fixture workpiece contact behaviour for the dynamic simulation of complex fixture workpiece systems[J]. Journal of Materials Processing Technology , 2005,164- 65 (15) :1597~1606
    [60] O Gonzalo,G Peigné. High speed machining simulation of thin walled components. Fifth International Conference on High Speed Machine , 2006, (14-16):525~536
    [61] Vincent Thevenot, Lionel Arnaud, Gilles Dessein, et al. Integration of dynamic behaviour variation in the stability Lobes method: 3D Lobes construction and application to thin-walled structure milling[J]. Int J Manuf Technol, 2006, 27: 638~644
    [62] Vincent Thevenot, Lionel Arnaud, Gilles Dessein, et al. Influence of material removal on the dynamic behavior of thin-walled structures in peripheral milling[J]. Machining Science and Technology, 2006, 10: 275~287
    [63]陈花玲,戴德沛.机床切削颤振的非线性理论研究[J].振动工程学报,1992,5(4): 13~16
    [64]刘志新.高速铣削过程动力学建模及其物理仿真研究[D].[博士学位论文].天津:天津大学,2006
    [65]刘安民,彭程.高速铣削时颤振的诊断和稳定加工区域的预报[J].机械工程学报, 2007,43(1):164~168
    [66]李亮.薄壁零件的加工振动分析与加工工艺研究[D].[硕士学位论文].南京:南京航空航天大学,2005
    [67] K.Y.Lee. Simulation of surface roughness and profile in high-speed end mill[J].Mater Process Thechnol.2001, (113): 410~415
    [68] Y.Mizugaki, M.Hao, K.Kikkawa.Geomitric generating mechanism of machined surface by ball-nosed end milling[J]. Ann.CIRP.2001,50(1):69~72
    [69] B.H.Kim,C.N.Chu.Texture prediction of milled surface using texture superposition method[J].Computer-Aidded Desgn.1999, (31):485~494
    [70]刘战强,万熠,艾兴.高速铣削过程中表面粗糙度变化规律试验研究[J].现代制造工程.2002,(3):8~10
    [71]王素玉,赵军,艾兴.高速切削表面粗糙度理论研究综述[J].机械工程师.2004(10):3~5
    [72]吕彦明,陈五一,陈鼎昌.球头刀铣削残留高度精确计算[J].中国机械工程. 2003,14(18):1550~1551
    [73] Sato M. Advanced machining technology for die and moulds-concept and examples of flush fine cutting[C]. Proceedings of the International Conference and Exhibition on Design and Production of Dies and Moulds, Turkey, 1997: 111~116.
    [74] Ng E.-G, Lee D.W, et,al. Experimental evaluation of cutter orientation when ball nose end milling[J]. Journal of Manufacturing Process, 2002, 2(2): 108
    [75] M. C. Kang, K. K. Kim, D. W. Lee. Characteristics of Inclined Planes According to the Variations of Cutting Direction in High-Speed Ball-End Milling[J]. Int J Adv Manuf Technol 2001 (17):323~329
    [76] Arinori Saito, Xiaoming Zhao. Control of surface pattern of mold generated by ball-end milling. Ichiro Inasaki, Initiatives of precision engineering at the beginning of a millennium[C]. Kluwer Academic Publishers, 2001, 92~96
    [77]赵晓明,胡德金,赵国伟. 5坐标数控加工中工件表面形貌的计算机仿真[J].上海交通大学学报, 2003.37(5): 690~694
    [78]王素玉.高速铣削加工表面质量研究[D].[博士学位论文].济南:山东大学, 2006
    [79]许鸿昊.拉伸装夹高速铣削钛合金的疲劳特性研究[D].[博士学位论文].南京:南京航空航天大学, 2008
    [80]吴大中.五轴联动数控加工非线性误差控制及后置处理[D].[硕士学位论文].上海:上海交通大学, 2007
    [81]刘雄伟.数控加工理论与编程技术[M].北京:机械工业出版社,2000,118~120
    [82] Yao-Wen Hsueh,Ming-Hsien Hsueh,Hsin-Chung Lien. Automatic selection of cutter orientation for preventingthe collision problem on a five-axis machining[J]. Int J Adv Manuf Technol, 2007, (32):66~77
    [83]杨方飞,阎楚良,林洪义.五轴数控加工叶片无干涉刀位轨迹的计算[J].农业机械学报, 2003,34(2):97~100
    [84] Xi-De Lai, Yun-Fei Zhou, JiZhou. Geometrical Errors Analysis and Control for 5-axis Machining of Large sculptured surfaces[J]. Int. J. of AdvManuf. Technol, 2003, 21(2): 110~118
    [85]马秋成,聂松辉,张高峰. UG-CAM篇[M].北京:机械工业出版社, 2005
    [86] Unigraphics Solutions Inc. UG CAM实用教程[M].北京:清华大学出版社,2003
    [87]麻春英.复杂曲面零件三维CAD模型构造方法的研究[D].[硕士学位论文].大连:大连理工大学, 2006
    [88] CG Tech.VERICUT6.1.2 Help.USA:CG Tech, 2008
    [89]李云龙,曹岸.数控机床加工仿真系统VERICUT[M].西安:西安交通大学出版社,2005
    [90]师汉民,谌刚,吴雅.机械振动系统-分析测试建模对策(上册)[M].武汉:华中科技大学出版社, 2001
    [91]郭继忠.模态分析理论与试验[M].北京:北京理工大学出版社, 2001
    [92]张锦,刘晓平.叶轮机振动模态分析理论及数值方法[M].北京:国防工业出版社, 2001
    [93]王莉.几种铝合金的力学性能及阻尼特性[J].轻合金加工技术, 2005, 33(12): 48~50
    [94]宋清华,艾兴,于水清.高速铣削稳定性与表面加工精度研究[J].制造技术与机床, 2008, (04): 40~43
    [95]邵蕴秋.ANSYS8.0有限元分析实例导航[M].北京:中国铁道出版社, 2004
    [96] Tobias, S.A. and Fishwick, W. A .Theory of Self Regenerative Chatter[J]. The Engineer, 1958, (205): 199~203
    [97] Tlusty, J. and Polacek, M. The Stability of Machine Tools Against Self Excited Vibrations in Machining[C]. Proceedings of the ASME International Research in Production Engineering, Pittsburgh,Pennsylvania, 1963: 465~474
    [98] Merrit, H.E. Theory of Self Excited Machine Tool Chatter[J]. Journal of Engineering for IndustryASME, 1965(17):447~454
    [99] Sridhar, R., Hohn, R.E., and Long, G.W. General Formulation of the Milling Process Equation[J]. Journal of Engineering for Industry ASME, 1968, (90):317~324
    [100] Sridhar, R., Hohn, R.E., and Long, G.W. A Stability Algorithm for the General Milling Process[J]. Journal of Engineering for Industry ASME, 1968, (90):330~334
    [101] Altintas, Y. and Budak, E. Analytical Prediction of Stability Lobes in Milling[J]. Annals of the CIRP, 1995,44(1):357~362
    [102] Arnaud, L. and Dessein, G. Application of the Stability Lobes Theory to Milling of Thin Workpiece. In Recent Advances in Integrated Design and Manufacturing in Mechanical Engineering, USA:Kluwer Academic Publishers, Norwell Massachusetts, 2003:271~280
    [103]王先逵.机械制造工艺学[M].北京:机械工业出版社, 1995
    [104] Bammert, K., and Woelk, G.-U.The Influence of Blading Surface Roughness on the Aerodynamic Behavior and Characteristic of an Axial Compressor[J].ASME J. Eng. Gas Turbines Power,1980, (102): 579~583
    [105] Semiu A. Gbadebo Tom P. Hynes, influence of Surface Roughness on Three-DimensionalSeparation in Axial Compressors [J].Transactions of the ASME, 2004(5): 471~481
    [106] Jenq-Shyong Chen, Yung-Kuo Huang, Mao-Son Chen, A study of the surface scallop generating mechanism in the ball-end milling process[J]. International Journal of Machine Tools & Manufacture, 2005, (45):1077~1084
    [107] (日)高奇昭.高速模腔加工技术-球头铣刀切削机理分析[J].模具技术,1985, (6):17~19
    [108] Seong Min Son, Han Seok Lim and Jung Hwan Ahn. Effects of the friction coefficient on the minimum cutting thickness in micro cutting.[J].International Journal of Machine Tools & Manufacture. 2005, (45):529~535
    [109]冯明军,赵灿,王旭峰,布光斌.铝合金叶轮高效加工工艺研究[J].制造技术与机床, 2008, (11):108~111

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700