用户名: 密码: 验证码:
亚热带典型生物质资源热裂解过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
亚热带生物质是取之不尽的天然资源,而且其废弃物产量非常大。传统的生物质废弃物利用方式能量利用率低,热裂解转化是一种高效的生物质废弃物高值化利用新技术。如何有效地利用热裂解技术由生物质原料制备生物油和活性炭成为研究的热门课题,而热裂解过程机理、动力学、装置及工艺是技术产业化应用的关键因素,本文为此以薯秆、竹材和桑枝秆等典型亚热带生物质废弃物为研究对象对其热解过程进行系统的研究。
     本文采用元素分析、工业分析、组分分析等方法,研究薯秆、竹材和桑枝秆原料的理化性质;采用热裂解-气质联用(Py-GC-MS)技术进行热裂解过程的反应分析,探讨反应机理及其差异;采用利用热重分析技术研究热裂解过程动力学;基于传统和现代模拟设计手段,自行研制了一套生物质废弃物热裂解装置,并利用该装置进行热裂解制备生物油试验,采用相应面法优化其过程工艺,同时以热裂解残炭为原料,采用磷酸活化法制备了活性炭。主要研究内容和结果如下:
     (1)研究了木薯秆、竹材和桑枝秆等原料的理化性质,结果表明,3种原料的固定碳和挥发份含量相差不大;碳、氢、氧三种元素总含量都在96%以上;纤维素、半纤维素和木质素总含量超过70%。同时,3种原料的混合物的纤维素、半纤维素和木质素含量分别为36.54%、25.58%和19.35%。
     (2)采用热裂解-气质联用(Py-GC-MS)技术进行热裂解反应分析。结果表明,皮层和芯层的混合物热裂解都获得酚类、酸类、烷烯烃类和醛酮类化合物,而芯层混合物热裂解还获得酯类和醇类化合物,另外多了9种产物;芯层混合物热裂解的糠醛含量高达16.50%,而皮层混合物热裂解产物的乙酸含量高达30.22%;亚热带生物质热裂解反应属于两步竞争反应机理,热裂解过程形成了中间产物-活性纤维素;纤维素含量的高低、木质素结构的差异和灰分含量的高低,决定了芯层和皮层物质热裂解机理的差异;紫丁香基结构单元的物质热裂解产物远远多于愈疮木基结构单元的物质,糠醛、香草醛、苯酚以及其它重要的酚类衍生物等分别来源于不同原料的热裂解。
     (3)测定混合物热裂解的热失重曲线,分析热裂解过程,进行数据处理并计算反应活化能和指前因子,确定热裂解反应动力学参数,建立了动力学模型。研究表明,热裂解过程分为四个阶段,随着升温速率提高,主反应区向高温区移动;反应的活化能为E=279.89KJ·mol-1,频率因子为A=1.12×1024s-1,其为成核和生长机理,反应级数n=3,动力学方程表示为Avrami-Erofeev方程,积分形式G(α)=[-In(1-α)].,微分形式f(α)=1/3(1-α)[-In(1-α)]2,升温速率的大小对活化能的影响不大,但对炭的产量有影响,较高升温速率对炭的生成有抑制作用。
     (4)根据热裂解过程原理,设计了热裂解装置的送料、反应、产物收集等主要系统,模拟了工艺流程、流化床反应器床内的颗粒速度分布、速度矢量及压力分布,并对自制的装置进行运行验证。结果表明,采用螺旋送料机和流化送料的方式,能够在0.2~1.0mm颗粒大小范围顺利送料,在0.5~4.5m·s-1流速范围内可选定一个优化的操作送料速度;采用调控颗粒拦截、旋风分离与滤网强化过滤以及球形冷凝空间,使高温气固分离效果进一步提高;在温度为450~1000℃,生物油收率达到62.29%;通过控制热裂解程度,可实现生物质液-固产物联产。
     (5)分别以木薯秆、竹材和桑枝秆为原料,进行制备生物油实验研究,并优化了过程工艺。结果表明,原料的纤维素、挥发分、灰分含量及其高分子结构特性对生物油产率有影响,桑枝秆热裂解的生物油产率最高;C、H、N、O等元素主要集中于生物油中;原料灰分高,二次反应促进了水的生成,对制备生物油不利;生物油产率先随温度的升高而上升,然后随温度的升高而下降;粒径对生物油的产率的影响较小,响应面法优化结果为:温度519.0℃C、气相停留时间2.1s、物料粒径0.18mm,生物油收率为58.17%。
     (6)采用调控液-固-气三者的比例的方法,获得了炭化效果较好的、比表面积达113.38m2·g-1的生物质热裂解炭材料,考察了磷酸浓度、浸渍比、活化时间和活化温度等因素对活性炭碘吸附值及产率的影响,探讨了孔结构形成机理,并表征了活性炭的结构。结果表明,热裂解残炭制备活性炭的最佳条件为取用70%-85%的磷酸、1.0的浸渍比、120min的活化时间、450℃的活化温度;活化过程中有磷酸盐或多磷酸盐桥、多聚磷酸混合物与炭的结构体的形成,对热裂解残炭的活化起着一定的作用;活性炭碘吸附值高达1389mg·g-1,比表面积为1421.38m2·g-1,孔径分布主要集中在18~60nm之间,以中孔结构为主。采用热裂解制炭-磷酸活化的活性炭制备新方法,可制备具有较高比表面积和较大中孔体积的活性炭,缩短了活性炭制备时间,提高了热裂解残炭的附加值。
Subtropical biomass is a kind of inexhaustible natural resource, and the amount of its waste production is very large, and the energy efficiency of the traditional method of utilizing biomass waste is very low. pyrolysis is a new technology on the highly efficient conversion and high-value utilization of biomass waste. The technology about how to effectively use pyrolysis to prepare bio-oil and activated carbon from biomass is a focus at present, and the mechanism, kinetics, devices and processes of involved in the pyrolysis process are the key factors in the application of the technology in industry. In the present thesis, the typical subtropical biomasses, such as the stalk of cassava, bamboo, and mulberry, were systematic research on its pyrolysis process.
     Elemental analysis, industry analysis, and component analysis methods were used to study the physical and chemical properties of the stalk of cassava, bamboo and mulberry; pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) technology was used to analyze the pyrolysis process, and to explore the reaction mechanism and the differences; the therma gravimetric analysis technique was used to study the kinetics of pyrolysis. Based on the traditional and modern simulation design tools, a set of biomass waste pyrolysis equipment was developed, and was used to prepare bio-oil by pyrolysis, and the conditions of the process were optimized by using the response surface method. Simultaneously, using the residue carbon of pyrolysis as raw material, activated carbon was prepared phosphoric acid activation. The main results are shown as follows:
     (1) The physicochemical properties of stalks of cassava, bamboo and mulberry stalk were studied. The results showed that the fixed carbon and volatile component in the three kinds of raw materials were almost the same:the total content of C, H, and O is more than96%, and the total content of cellulose, hemicellulose and lignin is more than70%. Meanwhile, the content of cellulose, hemicellulose and lignin in the mixture of the above three materials were36.54%,25.58%and19.35%, respectively.
     (2) Pyrolysis-gas chromatography-mass spectra (Py-GC-MS) technique was used to analyze the pyrolysis reaction. The results show that the main products of the mixture of the cortex and the core materials of the mulberry stalk were phenols, acids, alkyl hydrocarbon, aldehydes and ketones compounds, in which, the pyrolysis of the cortex mixture obtained alcohols and esters and9more products. And the content of furfuraldehyde was16.50%in the pyrolysis product of cortex mixture, and the content of acetic acid was30.22%in the pyrolysis product of cortex mixture. South subtropical biomass pyrolysis reaction attribute to a two-step reaction mechanism of competition, and the intermediate product-active cellulose was formatted in the pyrolysis process. The content of fiber, the difference of the lignin structure and ash content are related to the formation of pyrolysis products, which determines the difference of the pyrolysis mechanism of the core and the cortex materials. Innovatively, the content of the material with a syringyl structural units lysates far more than that of the guaiacyl structural units and furfural, vanillin, phenol and other phenolic derivatives are come from the pyrolysis of biomass of different materials.
     (3) By recording the TGA curve of the mixture, the pyrolysis process was analyzed, and to determine the kinetic parameters and model of the pyrolysis, the data was treated and the activation energy and pre-exponential factor were calculated. Kinetic studies of pyrolysis found that the pyrolysis process of the mixture of south subtropical biomass included4stages of dry, preheated-cracking, pyrolysis and calcination charring. With the increase of heating rate, the main reaction zone moves to the high temperature zone, the activation energy of the pyrolysis reaction is E=279.89kJ·mol-1, and the frequency factor is A=1.12×1024s-1, which is a mechanism of nucleation and growth, and the reaction order n=3, the kinetic equation is a Avrami-Erofeev equation with a integral form of G(a)=[-ln(1-α)]3and a differential form of f(α)=1/3(1-α)[-ln(1-α)]-2. The heating rate has little effect on the activation energy, but affected on the yield of carbon, and particularly high heating rate will inhibit the generation of carbon.
     (4) According to the mechanism of the pyrolysis process, the main system of feed, reaction, and product collection of the pyrolysis equipment was designed, and the process, distribution of the velocity of particle in the fluidized bed reactor, and the distribution of velocity vectors and pressure were simulated, and the self-developed equipment was verify in the operation. The results show that, when the feeding system of screw feeder and the fluidizing feed was employed, and the particles with a size of0.2~1.0mm can be smoothly feed, and an optimized operation feeding speed can be selected in0.5-4.5m·s-1. Regulation of the particles intercept, cyclonic separation, enhanced filtration by a filter, and cryogenic condensation of a spherical condensation space were used to improve the gas-solid separation at high temperature. At450~1000℃, the yield of bio-oil reached62.29%, And through controlling the pyrolysis level, the products of liquid-solid-generation of biomass can be realized.
     (5) stalks of cassava and mulberry, bamboo was used as raw materials to prepared bio-oil, and the process conditions were optimized. The results showed that the content of the cellulose, volatile components, ash and the characteristics of the polymer structure affect the yield of the bio-oil, and the yield of bio-oil was maximum by using mulberry stalk as raw material. After pyrolysis of the biomass, the elements of C, H, N, and O were sum up in the bio-oil. For the material with higher ash content, the secondary pyrolysis reaction promotes the generation of water, which is unfavorable for the preparation of bio-oil. The yield of bio-oil raised with the increasing of the pyrolysis temperature in the first stage, and then decreased in higher temperature, and the effect of particle size on the yield of bio-oil is smaller. The optimization pyrolysis conditions are as follows:the pyrolysis temperature is519.0℃, the residence time of gas is2.1s, and the particle size of the raw material is0.18mm, and the yield of bio-oil is58.17%.
     (6) Regulated the proportion of liquids, solids, and gases, a biomass charcoal material with better carbonization and a surface area of113.38m2/g was obtained from the pyrolysis residues. The effects of the concentration of phosphoric acid, impregnation ratio, activation time and activation temperature on the adsorption of iodine on the activated carbon and yield of activated carbon were studied, and the formation mechanism of pore structure was discussed by characterization of the structure of activated carbon. The results show that the optimal condition of the preparation of the activated carbon are the phosphate concentration range was70%to85%, the impregnation ratio was1.0and impregnated at℃80and activated at4502℃for120min. In the process of the carbon residue phosphorylation, there are the formation process of the generation of the phosphate or the phosphate bridge, and the generation of the structure of poly-phosphate mixture and charcoal, which plays a certain role in the activated of the carbon residue. The absorption iodine value and surface area of the prepared active carbon are1389mg·g-1and1421.38m2·g-1, respectively. The pore size distribution concentrated in the18~60nm. The pore is mainly of mesopore and porous. Using the new method of pyrolysis to prepare charcoal-phosphoric acid activation, activated carbon with a high specific surface area and pore volume can be prepared, and which reduced the preparation time and increased the addition-value of the pyrolysis carbon residue.
引文
[1]蒋剑春.生物质热化学转化行为特性和工程化研究[D].南京:中国林业科学研究院,2003
    [2]李晓明,崔明,顾红波.广西生物质资源状况及利用初探[J].河南农业科学,2011,40(4):27-29
    [3]欧阳梦云.全国政协委员陈章良——“梯形利用”变废为宝[N].2011
    [4]Jia Z S, Tang M C, Wu J M. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals[J]. Food Chemistry,1999,64(4): 555-559
    [5]梁贵秋,乐波灵,陆春霞,等.广西桑树资源综合利用的效益分柝[J].广西蚕业,2009(2):30-32
    [6]沈以红,朱见.桑树资源综合利用研究概述[J].蚕学通讯,2007(1):5-9
    [7]李滨.转锥式生物质闪速热解装置设计理论及仿真研究[D].东北林业大学,2008
    [8]陶光灿,谢光辉,熊韶峻.广西木薯茎秆资源的能源利用[J].中国工程科学,2011,13(2):107-112
    [9]王琦.生物质快速热裂解制取生物油及其后续应用研究[D].杭州:浙江大学,2008
    [10]袁振宏,吴创之,孙立.生物质能利用原理与技术[M].北京:化学工业出版社.2005
    [1 1]韦文添.木薯茎杆栽培金针菇技术[J].食用菌,2004(2):23-24
    [12]张翠丽,李轶冰,卜东升,等.牲畜粪便与麦秆混合厌氧发酵的产气量、发酵时间及最优温度[J].应用生态学报,2008(8):1817-1822
    [13]李光义,李勤奋,张晶元.木薯茎秆基质化的堆肥工艺及评价[J].农业工程学报,2011(1):320-325
    [14]郭艳,王垚,魏飞,等.生物质快速裂解液化技术的研究进展[J].化工进展,2001,20(8):13-17
    [15]李祖明,李鸿玉,厉重先,等.纤维素酶转化木质纤维素生物质生产乙醇的研究进展[J].农业工程技术:新能源产业,2008(2):26-29
    [16]Yang B, Wyman C E. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates[J]. Biotechnology and Bioengineering,2006,94(4): 611-617
    [17]Li W Z, Xu J, Wang J, et al. Studies of monosaccharide production through lignocellulosic waste hydrolysis using double acids[J]. Energy & fuels,2008,22(3): 2015-2021
    [18]毛长斌,倪永浩.生物质提炼的研究进展及在造纸工业上的应用[J].中国造纸,2008,27(7):63-69
    [19]Wingren A, Soderstrom J, Galbe M, et al. Process Considerations and Economic Evaluation of Two-Step Steam Pretreatment for Production of Fuel Ethanol from Softwood[J]. Biotechnology progress,2004,20(5):1421-1429
    [20]Panagiotou G, Olsson L. Effect of compounds released during pretreatment of wheat straw on microbial growth and enzymatic hydrolysis rates[J]. Biotechnology and Bioengineering,2007,96(2):250-258
    [21]黎先发,张颖,罗学刚.利用木质纤维素生产燃料酒精研究进展[J].现代化工,2009(1):20-26
    [22]Ryabova O B, Chmil O M, Sibirny A A. Xylose and cellobiose fermentation to ethanol by the thermotolerant methylotrophic yeast Hansenula polymorpha[J]. FEMS yeast research,2003,4(2):157-164
    [23]Shrestha P, Rasmussen M, Khanal S K, et al. Solid-substrate fermentation of corn fiber by Phanerochaete chrysosporium and subsequent fermentation of hydrolysate into ethanol[J]. Journal of Agricultural and Food Chemistry,2008,56(11):3918-3924
    [24]张百良,任天保,王许涛.纤维素乙醇的研究现状及其发展趋势[J].农业工程技术(新能源产业),2007,4:6
    [25]钱伯章.生物燃料——石油替代的一道亮丽风景[J].中国石油和化工经济分析,2006(16):34-40
    [26]郭廷杰.美,日利用纤维素生物质原料制燃料乙醇的技术开发[J].能源技术,2004,25(2):61-63
    [27]Phillips S D. Technoeconomic analysis of a lignocellulosic biomass indirect gasification process to make ethanol via mixed alcohols synthesis[J]. Industrial & Engineering Chemistry Research,2007,46(26):8887-8897
    [28]Datar R P, Shenkman R M, Cateni B G, et al. Fermentation of biomass-generated producer gas to ethanol[J]. Biotechnology and Bioengineering,2004,86(5):587-594
    [29]许英梅,张秋民.木醋液利用技术[M].北京:化学工业出版社.2008
    [30]崔昌龙,王伟,张楠.轻度炭化法制生物质成型燃料技术概述[J].黑龙江农业科学,2010(7):139-140
    [31]陈燕丹,黄明增,黄彪,等.红麻杆芯活性炭的制备及其孔结构[J].河南科技大学学报:自然科学版,2010,31(1):70-73
    [32]吴开金.竹节制备提金活性炭及其表征[J].林业科学,2009,45(12):124-128
    [33]崔春霞,司崇殿,郭庆杰.麦秸活性炭的制备及脱色性能[J].青岛科技大学学报:自然科学版,2010(1):4246
    [34]高建永.催化生物质加氢液化的实验研究[D].南宁:广西大学,2008
    [35]Demirbas A. Biomass resource facilities and biomass conversion processing for fuels and chemicals[J]. Energy conversion and Management,2001,42(11):1357-1378
    [36]Scholze B, Hanser C, Meier D. Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin):Part Ⅱ. GPC, carbonyl goups, and 13C-NMR[J]. Journal of Analytical and Applied Pyrolysis,2001,58:387-400
    [37]Pu S, Shiraishi N. Liquefaction of wood without a catalyst,1:Time course of wood liquefaction with phenols and effects of wood/phenol ratios [J]. Journal of the Japan Wood Research Society (Japan),1993,39(4):446-452
    [38]Davin L B, Lewis N G. Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignan and lignin biosynthesis[J]. Plant Physiology,2000,123(2):453-462
    [39]高星超,盛家荣,赵星华.甘蔗渣的研究进展[J].广西师范学院学报:自然科学版,2008,24(4):100-105
    [40]栾敬德,刘荣厚,武丽娟,等.生物质快速热裂解制取生物油的研究[J].农机化研究,2006(12):206-210
    [41]廖艳芬,王树荣,谭洪,等.生物质热裂解制取液体燃料技术的发展[J].能源工程,2002,2(1):5
    [42]Papadikis K, Gu S, Bridgwater A V, et al. Application of CFD to model fast pyrolysis of biomass[J]. Fuel Processing Technology,2009,90(4):504-512
    [43]杜洪双,常建民,王鹏起,等.木质生物质快速热解生物油产率影响因素分析[J].林业机械与木工设备,2007,35(3):16-20
    [44]Zhao X Q, Wang M, Liu H, et al. Effect of temperature and additives on the yields of products and microwave pyrolysis behaviors of wheat straw[J]. Journal of Analytical and Applied Pyrolysis,2013,100:49-55
    [45]Encinar J M, Beltran F J, Ramiro A, et al. Pyrolysis/gasification of agricultural residues by carbon dioxide in the presence of different additives:influence of variables[J]. Fuel Processing Technology,1998,55(3):219-233
    [46]Evans R J, Milne T A. Molecular characterization of the pyrolysis of biomass[J]. Energy & fuels,1987,1(2):123-137
    [47]刘荣厚.生物质热化学转换技术[M].北京:化学工业出版社.2005
    [48]应浩,蒋剑春.生物质气化技术及开发应用研究进展[J].林产化学与工业,2005,25(10):151-155
    [49]Li Y P, Wang T J, Yin X L, et al. 100t/a-Scale demonstration of direct dimethyl ether synthesis from corncob-drived syngas[J]. Renewable Energy,2010,35(3):583-587
    [50]Li Y P, Wang T J, Yin X L, et al. Design and operation of integrated pilot-scale dimethyl ether synthesis system via pyrolysis/gasification of corncob[J]. Fuel,2009,88(11): 2181-2187
    [51]孙立.生物质热解制氢机理和实验研究[D].天津:天津大学,2008
    [52]骆伟峰,王红林,陈砺,等.下吸式固定床气化木薯茎秆试验研究[J].广东化工2008(6):13-16+78
    [53]Van der Drift A, Boerrigter H, Coda B, et al. Entrained flow gasification of biomass[J]. Energy Centre of Netherlands,2004
    [54]Boerrigter H, Van Der Drift A. Large-scale production of Fischer-Tropsch diesel from biomass[J]. Schriftenreihe,,Nachwachsende Rohstoffe,2005,25:285-299
    [55]Chen H X, Liu N A, Fan W C. Two-step consecutive reaction model and kinetic parameters relevant to the decomposition of Chinese forest fuels[J]. Journal of Applied Polymer Science,2006,102:571-576
    [56]黄承洁,姬登祥,于凤文,等.生物质热解动力学研究进展[J].生物质化学工程,2010,44(1):39-43
    [57]刘倩.基于组分的生物质热裂解机理研究[D].杭州:浙江大学,2009
    [58]Home P A, Williams P T. Influence of temperature on the products from the flash pyrolysis of biomass[J]. Fuel,1996,75(9):1051-1059
    [59]Bradbury A G, Sakai Y, Shafizadeh F. A kinetic model for pyrolysis of celluIose[J]. Journal of Applied Polymer Science,1979,23(11):3271-3280
    [60]Antal M J J, Varhegyi G. Cellulose pyrolysis kinetics:the current state of knowledge[J]. Industrial & Engineering Chemistry Research,1995,34(3):703-717
    [61]廖艳芬.纤维素热裂解机理试验研究[D].杭州:浙江大学,2003
    [62]Arseneau D F. Competitive reactions in the thermal decomposition of cellulose[J]. Canadian Journal of Chemistry,1971,49(4):632-638
    [63]Mok W S L, Antal Jr M J. Effects of pressure on biomass pyrolysis. I. Cellulose pyrolysis products[J]. Thermochimica Acta,1983,68(2):155-164
    [64]Boutin O, Ferrer M, Lede J. Radiant flash pyrolysis of cellulose-Evidence for the formation of short life time intermediate liquid species[J]. Journal of Analytical and Applied Pyrolysis,1998,47(1):13-31
    [65]Boutin O, Ferrer M, Lede J. Flash pyrolysis of cellulose pellets submitted to a concentrated radiation:experiments and modelling[J]. Chemical Engineering Science, 2002,57(1):15-25
    [66]Lede J, Blanchard F, Boutin O. Radiant flash pyrolysis of cellulose pellets:products and mechanisms involved in transient and steady state conditions[J]. Fuel,2002,81(10): 1269-1279
    [67]Wooten J B, Seeman J I, Hajaligol M R. Observation and characterization of cellulose pyrolysis intermediates by 13C CPMAS NMR. A new mechanistic model [J]. Energy & fuels,2004,18(1):1-15
    [68]何翠薇,陈玉萍,覃洁萍,等.木薯茎杆及叶化学成分初步研究[J].时珍国医国药,2011(4):908-909
    [69]Williams P T, Besler S. The pyrolysis of rice husks in a thermogravimetric analyser and static batch reactor[J]. Fuel,1993,72(2):151-159
    [70]Koufopanos C A, Lucchesi A, Maschio G. Kinetic modelling of the pyrolysis of biomass and biomass components[J]. The Canadian Journal of Chemical Engineering, 1989,67(1):75-84
    [71]Di Blasi C, Lanzetta M. Intrinsic kinetics of isothermal xylan degradation in inert atmosphere[J]. Journal of Analytical and Applied Pyrolysis,1997,40:287-303
    [72]Beaumont O. Flash pyrolysis products from beech wood[J]. Wood and Fiber Science, 1985,17(2):228-239
    [73]Simkovic I, Varhegyi G, Antal M J, et al. Thermogravimetric/mass spectrometric characterization of the thermal decomposition of (4-O-methyl-D-glucurono)-D-xylan[J]. Journal of Applied Polymer Science,1988,36(3):721-728
    [74]谭洪.生物质热裂解机理试验研究[D].浙江:浙江大学,2005
    [75]Sharma R K, Wooten J B, Baliga V L, et al. Characterization of chars from pyrolysis of lignin[J]. Fuel,2004,83(11):1469-1482
    [76]Greenwood P F, Van Heemst J D H, Guthrie E A, et al. Laser micropyrolysis GC-MS of lignin[J]. Journal of Analytical and Applied Pyrolysis,2002,62(2):365-373
    [77]Jegers H E, Klein M T. Primary and secondary lignin pyrolysis reaction pathways[J]. Industrial & Engineering Chemistry Process Design and Development,1985,24(1): 173-183
    [78]Muller-Hagedorn M, Bockhorn H, Krebs L, et al. A comparative kinetic study on the pyrolysis of three different wood species[J]. Journal of Analytical and Applied Pyrolysis,2003,68:231-249
    [79]王树荣,郑赞,文丽华,等.半纤维素模化物热裂解动力学研究[J].燃烧科学与技术,2006(2):105-109
    [80]Orfao J J M, Antunes F J A, Figueiredo J L. Pyrolysis kinetics of lignocellulosic materials-three independent reactions model [J]. Fuel,1999,78(3):349-358
    [81]Stenseng M, Jensen A, Dam-Johansen K. Investigation of biomass pyrolysis by thermogravimetric analysis and differential scanning calorimetry[J]. Journal of Analytical and Applied Pyrolysis,2001,58:765-780
    [82]余春江,骆仲泱,方梦祥,等.一种改进的纤维素热解动力学模型[J].浙江大学学报(工学版),2002(5):39-45
    [83]Lanzetta M, Di Blasi C. Pyrolysis kinetics of wheat and corn straw[J]. Journal of Analytical and Applied Pyrolysis,1998,44(2):181-192
    [84]Guo J, Lua A C. Kinetic study on pyrolytic process of oil-palm solid waste using two-step consecutive reaction model[J]. Biomass and Bioenergy,2001,20(3):223-233
    [85]Miller R S, Bellan J. A generalized biomass pyrolysis model based on superimposed cellulose, hemicelluloseand liqnin kinetics[J]. Combustion science and technology, 1997,126(1-6):97-137
    [86]Janse A M C, Westerhout R W J, Prins W. Modelling of flash pyrolysis of a single wood particle[J]. Chemical Engineering and Processing:Process Intensification,2000,39(3): 239-252
    [87]文丽华,王树荣,骆仲泱,等.生物质的多组分热裂解动力学模型[J].浙江大学学报(工学版),2005(02):80-85
    [88]郭艳,魏飞,王垚,等.应用裂解气相色谱对生物质快速裂解规律的研究[J].太阳能学报,2001(3):280-285
    [89]蔡鹏瑶,黄光群,韩鲁佳.基于热重分析的生物质热解动力学研究进展.in创新农业工程科技推进现代农业发展——中国农业工程学会2011年学术年会.2011.中国重庆.
    [90]林木森,蒋剑春.竹材居里点快速热裂解研究[J].林产化学与工业,2007,27(6):27-30
    [91]Pattiya A, Titiloye J O, Bridgwater A V. Fast Pyrolysis of Agricultural Residues from Cassava Plantation for Bio-oil Production[J]. Carbon,2009,51:51.59
    [92]吴逸民,赵增立,吴文强,等.基于裂解气质联用分析的生物质逐级热解研究[J].燃料化学学报,2010,38(2):168-173
    [93]修双宁,易维明,李保明.生物质热裂解动力学的研究进展[J].生物质化学工程,2007,41(2):47-53
    [94]Elliott D C. Historical developments in hydroprocessing bio-oils[J]. Energy & fuels, 2007,21(3):1792-1815
    [95]朱锡锋.生物质热解原理与技术[M].北京:中国科学技术大学出版社.2006
    [96]张瑞芹.生物质衍生的燃料和化学物质[M].河南:郑州大学出版社.2004
    [97]胡力飞,梅文莉,吴娇,等.海南产木薯茎和叶挥发油的化学成分及其生物活性(英文)[J].热带作物学报,2010(1):126-130
    [98]Czernik S, Bridgwater A V. Overview of applications of biomass fast pyrolysis oil[J]. Energy & fuels,2004,18(2):590-598
    [99]Krumdieck S P, Daily J W. Evaluating the feasibility of biomass pyrolysis oil for spray combustion applications[J]. Combustion science and technology,1998,134(1-6): 351-365
    [100]Prins W. Technical and non-technical barriers for implementation of fast pyrolysis technologies[J]. Fast pyrolysis of biomass:a handbook,2003,3:207-216
    [101]Solantausta Y, Nylund N-O, Westerholm M, et al. Wood-pyrolysis oil as fuel in a diesel-powerplant[J]. Bioresource Technology,1993,46(1):177-188
    [102]王贤华.生物质流化床热解液化实验研究及应用[D].武汉:华中科技大学,2007
    [103]Henrich E, Weirich F. Pressurized entrained flow gasifiers for biomass[J]. Environmental engineering science,2004,21(1):53-64
    [104]Oehr K. Acid emission reduction[P].5458803,1995
    [105]刘荣厚,牛卫生,张大雷.生物质热化学转换技术[M].北京:化学工业出版社2005
    [106]杨全红,郑经堂,王茂章,等.微孔炭的纳米孔结构和表面微结构[J].材料研究学报,2009,14(2):113-122
    [107]杨坤彬,彭金辉,夏洪应,等.CO2活化制备椰壳基活性炭[J].炭素技术,2010,29(1):20-23
    [108]Benaddi H, Bandosz T J, Jagiello J, et al. Surface functionality and porosity of activated carbons obtained from chemical activation of wood[J]. Carbon,2000,38(5):669-674
    [109]窦智峰,姚伯元,黄广民,等.椰壳渣制备高比表面积活性炭[J].海南大学学报:自然科学版,2008,25(4):383-388
    [110]左宋林,倪传根,姜正灯.磷酸活化法制备棉秆活性炭的研究[J].林业科技开发,2006,19(4):46-47
    [111]Suarez-Garcia F, Martinez-Alonso A, Tascon J. Porous texture of activated carbons prepared by phosphoric acid activation of apple pulp[J]. Carbon,2001,39(7): 1111-1115
    [112]Girgis B S, El-Hendawy A-N A. Porosity development in activated carbons obtained from date pits under chemical activation with phosphoric acid[J]. Microporous and Mesoporous Materials,2002,52(2):105-117
    [113]张利波,彭金辉,张世敏,等.磷酸活化烟草杆制备中孔活性炭的研究[J].化学工业与工程技术,2006,27(2):1-5
    [114]符若文,汤丽鸳.磷酸活化活性炭纤维的生产工艺及应用研究[J].新型炭材料,2001,16(3):6-11
    [115]江恩源,廖钦洪,黄颖,等.混合碱法甘蔗渣基活性炭的制备工艺研究[J].广西科学,2009(2):177-179
    [116]任素霞.稻壳资源的综合利用研究[D].长春:吉林大学,2009
    [117]Shinogi Y, Kanri Y. Pyrolysis of plant, animal and human waste:physical and chemical characterization of the pyrolytic products[J]. Bioresource Technology,2003,90(3): 241-247
    [118]Das P, Ganesh A. Bio-oil from pyrolysis of cashew nut shell-a near fuel[J]. Biomass and Bioenergy,2003,25(1):113-117
    [119]王琦.生物质快速热裂解制取生物油及其后续应用研究[D].杭州:浙江大学,200g
    [120]庄会永,张雁茹,田雅林,等.中国农林生物质工业化收集应用模式的研究[J].中国工程科学,2011,13(2):101-106
    [121]邢爱华,刘罡,王垚,等.生物质资源收集过程成本,能耗及环境影响分析[J].过程工程学报,2008,8(2):305-313
    [122]廖艳芬,王树荣,骆仲泱,等.钙盐催化纤维素快速热裂解机理试验研究[J].太阳能学报,2008(5)
    [123]廖翠萍,颜涌捷,吴创之.生物质中元素分布特征的聚类分析研究[J].煤炭转化,2004,27(1):89-95
    [124]Caballero J A, Font R, Marcilla A. Comparative study of the pyrolysis of almond shells and their fractions, holocellulose and lignin. Product yields and kinetics[J]. Thermochimica Acta,1996,276:57-77
    [125]Ramsden M J, Blake F S R. A kinetic study of the acetylation of cellulose, hemicellulose and lignin components in wood[J]. Wood science and technology,1997, 31(1):45-50
    [126]庄新姝.生物质超低酸水解制取燃料乙醇的研究[D].杭州:浙江大学机械与能源工程学院,2005
    [127]Svenson J, Pettersson J B C, Davidsson K O. Fast pyrolysis of the main components of birch wood[J]. Combustion science and technology,2004,176(5-6):977-990
    [128]Yang H P, Yan R, Chen H P, et al. In-depth investigation of biomass pyrolysis based on three major components:hemicellulose, cellulose and lignin[J]. Energy & fuels,2006, 20(1):388-393
    [129]Wang G, Li W, Li B Q, et al. TG study on pyrolysis of biomass and its three components under syngas[J]. Fuel,2008,87(4):552-558
    [130]Zhang M, Resende F L, Moutsoglou A. Catalytic fast pyrolysis of aspen lignin via Py-GC/MS[J]. Fuel,2014,116:358-369
    [131]Fahmi R, Bridgwater A V, Thain S C, et al. Prediction of Klason lignin and lignin thermal degradation products by Py-GC/MS in a collection of< i> Lolium and< i> Festuca grasses[J]. Journal of Analytical and Applied Pyrolysis,2007,80(1):16-23
    [132]Alsbou E, Helleur R. Whole sample analysis of bio-oils and thermal cracking fractions by Py-GC/MS and TLC-FID[J]. Journal of Analytical and Applied Pyrolysis,2013,101: 222-231
    [133]Aboyade A O, Carrier M, Meyer E L, et al. Slow and pressurized co-pyro!ysis of coal and agricultural residues[J]. Energy conversion and Management,2013,65:198-207
    [134]张斌,武书彬,阴秀丽,等.酸水解木质素的结构及热解产物分析[J].太阳能学报,2011,32(1):19-24
    [135]Adelakun O E, Kudanga T, Green I R, et al. Enzymatic modification of 2, 6-dimethoxyphenol for the synthesis of dimers with high antioxidant capacity[J]. Process Biochemistry,2012,47(12):1926-1932
    [136]Tai A, Sawano T, Yazama F, et al. Evaluation of antioxidant activity of vanillin by using multiple antioxidant assays[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2011,1810(2):170-177
    [137]彭锦星.基于醇类介质的生物质超临界液化转化燃油技术研究[D].杭州:浙江林学院,2008
    [138]Diebold J P. A unified, global model for the pyrolysis of cellulose[J]. Biomass and Bioenergy,1994,7(1):75-85
    [139]Lin Y C, Cho J M, Tompsett G A, et al. Kinetics and mechanism of cellulose pyrolysis[J]. The Journal of Physical Chemistry C,2009,113(46):20097-20107
    [140]王树荣,廖艳芬,谭洪,等.纤维素快速热裂解机理试验研究Ⅱ.机理分析[J].燃料化学学报,2003,31(4):317-321
    [141]Sanders E B, Goldsmith A I, Seeman J I. A model that distinguishes the pyrolysis of D-glucose, D-fructose, and sucrose from that of cellulose. Application to the understanding of cigarette smoke formation[J]. Journal of Analytical and Applied Pyrolysis,2003,66(1):29-50
    [142]刘刚,黄安家,佟万红,等.桑枝的营养功能成分及其综合利用[J].河北农业科学,2008,12(8):114-117
    [143]杨叔蕙.植物纤维化学[M].中国轻工业出版社.2005
    [144]姬登祥,艾宁,王敏,等.热重分析法研究水稻秸秆热裂解特性[J].可再生能源,2011,29(1):41-44
    [145]刘雪梅,蒋剑春,孙康,等.椰壳热解动力学分析[J].安徽农业科学,2012,40(27):13540-13542
    [146]杨晓刚,柴勇利,陈英.松木屑非等温热解动力学研究[J].河南科学,2012,30(8):1024-1028
    [147]Worasuwannarak N, Sonobe T, Tanthapanichakoon W. Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique[J]. Journal of Analytical and Applied Pyrolysis,2007,78(2):265-271
    [148]Rodante F, Vecchio S, Tomassetti M. Kinetic analysis of thermal decomposition for penicillin sodium salts:Model-fitting and model-free methods[J]. Journal of Pharmaceutical and Biomedical Analysis,2002,29(6):1031-1043
    [149]任元林,程博闻,张金树,等.N,N’-二(5,5-二甲基-2-磷杂-2-硫代-1,3-二噁烷-2-基)乙二胺在空气中的热分解动力学研究[J].化学学报,2008,66((9):1123-1128
    [150]胡荣祖,高胜利,赵凤起,等.热分析动力学(第二版)[M].北京:科学出版社.2008.151-155
    [151]Chiaramonti D, Oasmaa A, Solantausta Y. Power generation using fast pyrolysis liquids from biomass[J]. Renewable and Sustainable Energy Reviews,2007,11(6):1056-1086
    [152]Bridgewater A V. Biomass fast pyrolysis[J]. Thermal Science,2004,8(2):21-50
    [153]廖益强.笋壳流化床快速热解制取生物质油的研究[D].福建农林大学,2010
    [154]王琳琳,龙柳锦,陈小鹏,等.油茶壳基中孔活性炭的表征与孔结构研究[J].高校 化学工程学报,2013(2):297-303
    [155]曾玲玲,王琳琳,陈小鹏,等.松脂催化歧化—裂解联产对伞花烃与生物柴油[J].广西大学学报:自然科学版,2010,35(3):384-388
    [156]冼萍,钟莉莹,王孝英.两面针药渣的热解气化利用特性分析[J].可再生能源,2007(1):26-28
    [157]柳善建.玉米秸秆粉在流化床中热裂解规律的试验研究[D].淄博:山东理工大学,2008
    [158]赵琛琛.工业系统流程模拟利器——ASPEN PLUS[J]电站系统工程,2003,19(2):56-58
    [159]贺瑞雪.生物质热解油气化实验与模拟研究[D].华中科技大学,2008
    [160]Oasmaa A, Meier D. Norms and standards for fast pyrolysis liquids:1. Round robin test[J]. Journal of Analytical and Applied Pyrolysis,2005,73(2):323-334
    [161]Sensoz S, Can M. Pyrolysis of pine (Pinus brutia Ten.) chips:1. Effect of pyrolysis temperature and heating rate on the product yields[J]. Energy Sources,2002,24(4): 347-355
    [162]Xiao G, Ni M J, Huang H, et al. Fluidized-bed pyrolysis of waste bamboo[J]. Journal of Zhejiang University SCIENCE A,2007,8(9):1495-1499
    [163]吴汉靓,刘荣厚,邓春健.木屑快速热裂解生物油特性及其红外光谱分析[J].农业工程学报,2009(6):219-223
    [164]廖艳芬,王树荣,马晓茜.纤维素热裂解反应机理及中间产物生成过程模拟研究[J].燃料化学学报,2006,34(2):184-190
    [165]Demirbas A. The influence of temperature on the yields of compounds existing in bio-oils obtained from biomass samples via pyrolysis[J]. Fuel Processing Technology, 2007,88(6):591-597
    [166]Tsai W T, Lee M K, Chang Y M. Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor [J]. Journal of Analytical and Applied Pyrolysis,2006,76(1):230-237
    [167]Cornelissen T, Yperman J, Reggers G, et al. Flash co-pyrolysis of biomass with polylactic acid. Part 1:Influence on bio-oil yield and heating value[J]. Fuel,2008,87(7): 1031-1041
    [168]Bridgwater A V, Toft A J, Brammer J G. A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion[J]. Renewable and Sustainable Energy Reviews,2002,6(3):181-246
    [169]Mohan D, Pittman C U, Steele P H. Pyrolysis of wood/biomass for bio-oil:a critical review[J]. Energy & fuels,2006,20(3):848-889
    [170]蔡腾跃,姬登祥,于凤文,等.生物质在熔盐中的热裂解特性[J].农业工程学报,2010(4):243-247
    [171]Jiang H T, Ai N, Wang M, et al. Experimental study on thermal pyrolysis of biomass in molten salt media[J]. Electrochemistry,2009,77(8):730-735
    [172]刘荣厚,栾敬德.榆木木屑快速热裂解主要工艺参数优化及生物油成分的研究[J].农业工程学报,2008,24(5):187-190
    [173]李博,屠幼英,梅鑫,等.响应面法优化超临界CO一2提取茶籽多糖的工艺研究[J].高校化学工程学报,2010,24(5):897-902
    [174]袁丽红,邵辉,顾永明,等.盾叶薯蓣中水解原位提取薯蓣皂甙元[J].高校化学工程学报,2007,21(3):538-542
    [175]George E P B, G W, J H. Statistics for experiments:An introduction to design, data analysis and model building [M]. New York:John Wiley & Sons.1978
    [176]雅克·范鲁,耶普·克佩耶.生物质燃烧与混合燃烧技术手册[M].北京:化学工业出版社.2008
    [177]郭艳.杨木快速裂解过程机理研究[J].高校化学工程学报,2001,15(5):440-445
    [178]王敏.竹炭生产的现状及应用[J].现代农业科技,2009(3):277-277
    [179]郑志锋,袁洋春,蒋剑春,等.竹炭制备工艺的比较[J].生物质化学工程,2010,44(2):5-8
    [180]袁亚平,包立根,吴泉生.竹炭生产工艺浅述[J].世界竹藤通讯,2004,2(1):36-37
    [181]张文标,王伟龙,邵千均,等.竹炭生产工艺的现状与建议[J].竹子研究汇刊,2003,22(1):8-12
    [182]郏其庚.活性炭的应用[M].上海:华东理工大学出版社.2002
    [183]Lozano-Castello D, Lillo-Rodenas M, Cazorla-Amoros D,等. Preparation of activated carbons from Spanish anthracite:I. Activation by KOH[J]. Carbon,2001,39(5): 741-749
    [184]Ip A W M, Barford J P, McKay G. Production and comparison of high surface area bamboo derived active carbons[J]. Bioresource Technology,2008,99(18):8909-8916
    [185]Maschio G, Koufopanos C, Lucchesi A. Pyrolysis, a promising route for biomass utilization[J]. Bioresource Technology,1992,42(3):219-231
    [186]Bridgwater A V, Cottam M L. Opportunities for biomass pyrolysis liquids production and upgrading[J]. Energy & fuels,1992,6(2):113-120
    [187]杨素文.生物质真空热解液化制生物油及真空化学活化制活性炭研究[D].中南大学,2009
    [188]王栋.生物质热裂解实验研究及热裂解产物利用[D].杭州:浙江大学,2004
    [189]Zuo S L, Gao S Y, Yuan X G, et al. Carbonization mechanism of bamboo (phyllostachys) by means of Fourier Transform Infrared and elemental analysis[J]. Journal of Forestry Research,2003,14(1):75-79

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700