用户名: 密码: 验证码:
手性农药乙氧呋草黄对映体在生物体和环境中的活性及立体选择性行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以手性除草剂乙氧呋草黄为研究对象,以高效液相色谱手性固定相拆分方法为基础,获得了光学纯对映体;利用生测方法对制备的对映体生物活性进行了比较;在此基础上,选择了不同质地的土壤、两种草坪草和动物体为目标,对乙氧呋草黄左右旋对映体的选择性环境行为进行了系统的研究,这是关于该手性化合物对映体生物活性和选择性环境行为的首次报道。
     合成了CDMPC手性固定相并制得手性柱,对手性农药乙氧呋草黄和稻丰散对映体具有很好的识别和拆分能力。在优化的半制备色谱条件下,完成了乙氧呋草黄对映体的拆分、收集和制备,两个组分的化学结构经GC-MS确证,光学性质和流出顺序用圆二色检测器和旋光仪进行测定,获得了光学纯度超过97%的左旋和右旋对映体。
     选择敏感性适中的高梁、黄瓜和小麦,利用生测技术对乙氧呋草黄外消旋体及左右旋对映体的生物活性进行了研究。结果表明,单一左右旋对映体和等量的外消旋处理的高梁和黄瓜鲜重抑制作用差异显著,右旋体活性明显高于左旋体,也明显高于等量的外消旋体。但是对小麦生长的抑制活性两个对映体表现一致。
     草地早熟禾和高羊茅两种草坪草经茎叶喷雾外消旋乙氧呋草黄后,定期采集、处理,分析其体内该手性化合物对映体的选择性降解情况。结果显示,乙氧呋草黄对映体在两种草坪草体内降解趋势基本一致,但降解速度差异显著,存在明显的立体选择性降解现象,左旋体被优先降解,导致体内右旋体过量,最高ER值达到3.0左右。
     以大白兔为试验动物,采用静脉注射外消旋体的给药方式,考察了给药后不同时间点的血药浓度以及脑组织、肝脏和胆汁中左右旋体的残留量。结果表明,在供试大白兔体内选择性现象明显,左旋乙氧呋草黄被优先降解或排泄,给药后血浆中ER值迅速增加;药代动力学分析结果显示,药时曲线符合二室开放模型;左右旋对映体的药代行为差异显著,其中右旋体的总体清除率远远低于左旋体,平均持留时间明显比左旋体长,导致其生物利用率AUC远远大于左旋体。乙氧呋草黄对映体在脑组织中存在与血浆中不同的选择性机制,左旋体的浓度高于右旋体;而在肝脏和胆汁中的选择性与血浆中相同,右旋体的浓度高于左旋体。
     通过向不同类型的土壤中添加外消旋及单一光学纯对映体进行培养,研究了乙氧呋草黄在土壤中的降解动态和选择性降解情况。结果表明乙氧呋草黄在土壤中的消解符合一级动力学规律,其降解速度受土壤有机质含量和质地等特性影响较大。黑暗培养和光照培养条件对乙氧呋草黄对映体的降解趋势和选择性情况无明显差异。左右旋对映体在3~#土壤中的降解速率有明显差异,二者半衰期相差0.95周;添加外消旋体培养6周后ER值达到1.65,表明左旋体被优先降解;同时在该土壤中存在左旋体向右旋体的转化现象;在其他几个土壤中均未有明显的选择性降解或对映体转化现象。
The enantiomeric activity and enantioselective behavior of ethofumesate in organisms and environment were studied based on the HPLC-Chiral Stationary Phase (CSP) technology to provide details of the performance and the fate of its enantiomers. It's the first report focused on the enantiomeric activity and stereoselective degradation of ethofumesate.The CDMPC CSP was synthesized and the chiral column was prepared which showed favorable enantiomeric recognition and separation potency. Resolution and preparation of ethofumesate enantiomers were achieved under the optimal semi-preparation conditions. The chemical structure of two elutes were identified by GC-MS, the optical property and the eluting order were determined by using the Circular Dichroism detector and polarimeter. The optical purity of each enantiomer was more than 97%.The bioactivity of the enantiomers was studied by bioassay with plant materials showing moderate sensitivity. Results indicated that the (+)-enantiomer showed significantly higher activity on cucumber and sorghum fresh weight inhibition than that of the (-)-enantiomer, and also higher than that of the racemate at the same rate. The two enantiomers, however, showed equal inhibition activity on wheat growth.The investigation was taken on involving stereoselective degradation of ethofumesate enantiomers in Kentucky bluegrass and tall fescue after foliar treatment with racemate. The results revealed the same preferential degradation of the (-)-enantiomer in both grass species. This selective style of degradation resulted in residues enriched with (+)-enantiomer in both species. The largest Enantiomeric Ratio (ER) of (+)/(-) was achieved above 3.0 at 5 days after treatment.The enantioselective degradation and pharmacokinetics of ethofumesate enantiomers in rabbits were investigated by a single intravenous (iv) administration at doses of 30 mg kg~-1 of racemate. Plasma concentration-time curves after iv administration were best described by an open two-compartment model. The concentration of the (-)-enantiomer decreased more rapidly than that of the (+)-enantiomer. Significant differences on pharmacokinetic parameters between two enantiomers indicated that the stereoselective behavior occurred in rabbits after iv administration with racemic ethofumesate. Similarly selective style was found in liver and bile, while reversed distribution tendency was observed in rabbit brain tissue with ER value lower than 1.The dissipation dynamic and the enantioselective degradation of ethofumesate in soils were studied by incubation with either racemate or optical pure enantiomers in different agricultural soils. The dissipation dynamic of ethofumesate in soils fitted to the first kinetic's law. The dissipation rate was greatly influenced by organic matter and texture style of each soil, while the light showed no influence on it. Preferential degradation of the (-)-enantiomer was observed in 3* soil, which led to the ER of 1.65 after 6 weeks of incubation with racemic ethofumesate. The stereoselective degradation caused
    significant difference on half-life between two enantiomers in this soil. The appearance of (+)-enantiomer after incubation with single (-)-enantiomer revealed the enantiomeric inversion of (-)-isomer to its antipode. While no obvious stereoselective degradation or enantiomeric inversion were observed in other test soils.
引文
1.林国强,陈耀全,陈新滋等著.手性合成—不对称反应及其应用.北京:科学出版社,2000,3
    2.罗辽复.论生物手性的起源.内蒙古大学学报(自然科学版).1998,29(3):354-365
    3.徐逸楣.光学活性农药开发的现状与展望.农药译丛,1998,20(1):6-16
    4.陈慧.有机磷化合物液相色谱手性分离的研究.南开大学博士论文,2000
    5. Rouhi A. M. Chiral Chemistry: Traditional methods thrive despite numerous hurdles, including tough luck, slow commercialization of catalytic processes. Chemical & Engineering News. 2004, 82:47-62
    6. Alan Williams. Opportunities for chiral agrochemicals. Pestle. Sci., 1996, 46:3-9
    7. Alan Williams. Chirality and agrochemicals, In: Crop Protection Monthly. 2001, 8:10-11
    8. Tombo G. M. R., Bellus D. Chirality and crop protection. Angew. Chem. Int. Ed. Engl., 1991, 30: 1193-1245
    9. Kurihara N., Miyamoto J., Paulson G. D., et al. Chirality in Synthetic Agrochemicals: Bioactivity and Safety Consideration. Pure App. Chem., 1997, 69:2007-2025
    10.杨丽萍,李树正,李煜昶等.三种三唑类杀菌剂对映体生物活性的研究.农药学学报,2002,4:67-70
    11. Nandihalli U. B., Duke M. V., Ashmore J. W., et al. Enantioselectivity of protoporphyrinogen oxidase-inhibiting herbicides. Pestic. Sci., 1994, 40:265-277
    12. Hallahan B. J., Camilleri P., Smith A., et al. Mode of action studies on a chiral diphenyl ether peroxidizing herbicide. Correlation between differential inhibition of protoporphyrinogen Ⅸ oxidase activity and induction of tetrapyrrole accumulation by the enantiomers. Plant physiol., 1992, 100:1211-1216
    13.刘西莉,马安捷,林吉柏等.精甲霜灵与外消旋体甲霜灵对掘氏疫霉菌的抑菌活性比较.农药学学报,2003,5:45-49
    14. Miyazak A., Nakamura T., Marumo S. Stereoselectivity in metabolic sulfoxidation of propaphos and biological activity of chiral prophos sulfoxide. Pestic. Biochem. Physiol., 1989, 33:11-15
    15. Leader H., Casida JE. Resolution and biological activity of the chiral isomers of O-(4-bromo-2-chlorphenyl) O-ehyl S-propyl phosphorothioate (Profenofos insecticide), J. Agric. Food Chem., 1982, 30:546-551
    16. Schmalfu B. J., Matthes B., Knuth K., et al. Inhibition of acyl-CoA elongation by chloroacetamide herbicides in microsomes from leek seedings, Pestic. Biochem. Physiol., 2000, 67:25-35
    17. Omokawa H., Wu J. R., Hatzios K. K. Mechanism of safening action of dymuron and its two monomethyl analogues against bensulfuron-methyl injury to rice (Oryza sativa). Pestic. Biochem. Physiol., 1996, 55:54-63
    18. Omokawa H., Kormai M. Inhibition of Echinochloa crus-galli var. frumentacea seedling root elongationi by chiral 1,3,5-triazines in the dark. Pestic. Sci., 1992, 35:83-86
    19. Omokawa H., Ryoo J. H. Enantioselective response of rice and barnyard millet on root growth inhibition by optically active α-methylbenzyl phenylureas. Pestic. Biochem. Physiol., 2001, 70: 1-6
    20. Nomeir A. A., Dauterman W. C. Studies on the optical isomers of EPN and EPNO. Pestic. Biochem. Physiol., 1979, 10:121-127
    21. Ohkawa H., Mikami N., Kasamatsu K., et al. Stereo-selectivity in toxicity and acetyl Cholin esterase inhibition by the optical isomers of papthion and papoxon. Agric. Biol. Chem., 1976, 40: 1857-1861
    22. Lee P. W., Allahyari R., Fukuto T. R., Studies on the chiral isomers of fonofos and fonofos oxon [organophosphorus insecticide]. Ⅰ. Toxicity and antiesterase activities. Pestic. Biochem. Physiol., 1978, 8:146-157
    23. Casida J. E., Leader H. Resolution and biological activity of the chiral isomers of O-(4-bromo-2-chlorophenyl) O-ethyl S-propyl phosphorothioate (profenofos insecticides). J. Agric. Food Chem. 1982, 30:546-551
    24. Sugavanam B., Diastereoisomers and enantiomers of pacloburazol: their preparation and biological actibity. Pestic. Sci., 1984, 15:296-302
    25. Cartwright D., The synthesis, stability and biological activity of the enantromers of pyridyloxyphenoxy proprionates. Brighton Crop Prot. Con., Weeds, 1989, 2:707-716
    26. Amstrong D. W., Reid G. L. Ⅲ, Hilton M. L., et al. Relevance of enantiomeric separations in environmental science. Environ. Pollut., 1993, 79:51-58
    27. Alan Williams. Opportunities for chiral agrochemicals. Pestic. Sci., 1996, 46:3-9
    28. US Food and Drug Administration, FDA'S policy statement for the development of new stereoisomeric drugs. Chirality, 1992, 4:338-340
    29.陈慧,王琴孙.环糊精类高效液相色谱固定相的研究进展.色谱.1999,17:533-538
    30. Magrans J. O., Alonso-Prados L., Garcia-Baudin J. M. Importance of considering pesticide stereoisomerism——proposal of a scheme to apply Directive 91/414/EEC framework to pesticide active substances manufactured as isomeric mixtures. Chemosphere, 2002, 49:461-469
    31.宋秀杰.北京市农用化学品对生态环境的影响及其污染防治.北京农业科学.2001.6:2-5
    32. Harrier T., Wiberg K., Norstrom R. Enantiomer fractions are preferred to cnantiomer ratios for describing signatures in environmental analysis. Environ. Sci. Technol., 2000, 34:218-220
    33. Faller J., Huhnerfuss H., Konig W. A., et al. Do marine bacteria degrade α-HCH stcreoselectivity?. Environ. Sci. Tcchnol., 1991, 25:676-678
    34. Huhnerfuss H., Faller J., Konig W. A., et al. Gas chromatography separation of the enantiomers of marine pollutants. 4. Fate of hexachlorcyclohexane isomers in the Baltic and North Sea. Environ Sci. Technol., 1992, 26:2127-2133
    35. Ludwig P., Huhnerfuss H., Konig W. A., et al. Gas chromatographic separation of marine pullutents. Part 3. Enantioselective degradation of α-HCH and γ-HCH by marine microorganisms. Mar. Chem., 1992, 38:13-23
    36. Jantunen L. M. M., Bidleman T. F. Organochlorine pesticides and enantiomers of chiral pesticides in Arctic Ocean water. Arch. Environ. Contam. Toxicol., 1998, 35:218-228
    37. Falconer R. L., Bidleman T. F., Gregor D. J. et al. Enantioselective breakdown of α-hexachlorocyclohexane in a small Arctic lake and its watershed. Environ. Sci. Technol., 1995, 29:1297-1302
    38.张智超,戴树桂,朱昌寿等.海口河口水和新港港湾水中α-HCH对映体选择性降解及α,β,γ-HCH浓度.中国环境科学,1998,18:197-201
    39.徐晓白.戴树桂,黄玉瑶主编.典型化学污染物在环境中的变化和生态效应.科学出版社,1998
    40.牟树森,青长乐主编;涂从等编.环境土壤学:农业环境保护专业用.北京:农业出版社,1993
    41. Reist M., Testa B., Carrupt P. A., et al. Racemization, enatiomerization, diastereomerization, and epimerization: their meaning and pharmacological significance. Chirality, 1995, 7:396-400
    42. Muller M. D., Schlabach M., Oehme M. Fast and precise determination of alpha-hexachlorocyclohexane enantiomers in environmental samples using chiral high-resolution gas chromatography. Environ. Sci. Technol., 1992, 26:566-569
    43. Falconer R. L., Bidleman T. F., Szeto S. Y. Chiral pesticides in soils of the Fraser valley, British Columbia. J. Agilc. Food Chem., 1997, 45:1946-1951
    44. Finizio A., Bidleman T. F., Szeto S. Y. Emission of chiral pesticides from an agricultural soil in the Fraser valley, British Columbia. Chemosphere, 1998, 36:345-355
    45. Aigner E. J., Leone A. D., Falconer R. L. Concentrations and enantiomeric ratios of organochlorine pesticides in soils from the U. S. Corn Belt. Environ. Sci. Technol., 1998, 32:1162-1168
    46. Wiberg K., Harner T., Wideman J. L., et al. Chiral analysis of organochllorine pesticides in Alabama soils. Chemosphere, 2001,45: 843-848
    47. Garrison A.W., Schmitt P., Martens D., et al. Enantiomeric selectivity in the environmental degradation of dichlorprop as determined by high-performance capillary electrophoresis. Environ. Sci. Technol., 1996, 30:2449-2455
    48. Lewis D.L., Garrison A.W., Wommack K.E., et al. Influence of environmental changes on degradation of chiral pollutants in soils. Nature, 1999,401: 898-901
    49. Romero E., Matallo M.B., Pena A., et al. Dissipation of racemic mecoprop and dichlorprop and their pure R-enantiomers in three calcareous soils with and without peat addition. Environ. Pollut, 2001,111:209-215
    50. Williams GM., Harrison I., Carlick C.A., et al. Changes in enantiomeric fraction as evidence of natural attenuation of mecoprop in a limestone aquifer. J. Contam. Hydrol. 2003, 64: 253-267
    51. Muller M.D., Buser H.R. Environmental behavior of acetamide pesticide stereoisomers. 2. Stereo-and Enantioselective degradation in sewage sludge and soil. Environ. Sci. Technol., 1995, 29:2031-2037
    52. Buser H.R., Muller M.D., Poiger T., et al. Environmental behaviour of the chiral acetamide pesticide metalaxyl: Enantioselective degradation and chiral stability in soil. Environ. Sci. Technol. 2002,36:221-226
    53. Jordan E.G, Kaufman D.D. Degradation of cis- and trans-permethrin in flooded soil. J. Agric. Food Chem., 1986, 34: 880-884
    54. Lee P.W., Powell W.R., Stearns S.M., et al. Comparative aerobic soil metabolism of fenvalerate isomers. J. Agric. Food Chem., 1987, 35: 384-387
    55. Desiderio C, Polcaro CM., Padiglioni P., et al. Enantiomeric separation of acidic herbicides by capillary electrophoresis using vancomycin as chiral selector. J. Chromatogr. A, 1997, 781: 503-513
    56. 金志刚,张彤,朱怀兰编著.污染物生物降解.华东理工大学出版社,1997
    57. Itoh K. Stereoselcetive degradation of organophosphorus insecticide salithion in upland soils. J. Pestic. Sci., 1991, 16:35-40
    58. Itoh K. Characteristics of microflora degrading insecticide salithion in soil. J. Pestic. Sci., 1991,16: 77-83
    59. Itoh K. Stereoselective metabolism of insecticide salithion by Agrobacterium sp. and Acinetobacter sp. isolated from soil. J. Pestic. Sci., 1991,16: 85-91
    60. Zipper C, Nickel K., Angst W., et al. Complete microbial degradation of both enantiomers of the chiral herbicide mecoprop [(RS)-2-(4-chloro-2-methylphenoxy) propionic acid] in an
     enantioselective manner by Sphingomonas herbicidovorans sp. nov. Appl. Environ. Microbiol., 1996,62:4318-4322
    61. Nickel K., Suter M.J.F., Kohler H.P.E. Involvement of two a-ketoglutarate -dependent dioxygenases in enantioselective degradation of (R) and (S)-mecoprop by Sphingomonas herbicidovorans MH. J. Bacteriol., 1997, 179:6674-6679
    62. Zipper C, Bunk M., Zehnder A.J.B., Enantioselective Uptake and Degradation of the Chiral Herbicide Dichlorprop [(RS)-2-(2,4-Dichlorophenoxy) propanoic acid] by Sphingomonas herbicidovorans MH. J. Bacteriol., 1998, 180: 3368-3374
    63. Park H.D., Ka J. O. Genetic and Phenotypic Diversity of Dichlorprop-Degrading Bacteria Isolated from Soils. J. Microbiol., 2003,3:7-15
    64. Sakata S., Mikami N., Yamada H., Degradation of pyrethroid optical isomers by soil microorganisms. J. Pesticide Sci., 1992, 17: 181-189
    65. Okamoto M., Nakazawa H. Stereoselectivity of abscisic acid-oxygenase in avocado fruits. Bioscience, Biotechnology and Biochemistry. 1993, 57: 1768-1769
    66. Schneiderheinze J.M., Armstrong D.W., Berthod A. Plant and soil enantioselective biodegradation ofracemic phenoxyalkanoic herbicides. Chirality, 1999, 11: 330-337
    67. Martina M.J.I., White J.C., Eitzer B.D., et al. Cycling of weathered chlordane residues in the environment: compositional and chiral profiles in contiguous soil, vegetation, and air compartments. Environmental-ToxicoIogy-and-Chemistry. 2002, 21: 281-288
    68. White J.C., Martina M.J.I., Eitzer B.D., et al. Tracking chlordane compositional and chiral profiles in soil and vegetation. Chemosphere. 2002,47: 639-646
    69. Garrison A.W., Nzengung V.A., Avants J.K., et al. Phytodegradation of p,p'-DDT and the enantiomers of o,p'-DDT. Environ. Sci. Technol., 2000,34: 1663-1670
    70. Kallenbore R., Huhnerfuss H., Konig W.A. Enantioselective metabolism of a-HCH in organs of the eider duck. Angew. Chem. Int. Ed. Engl., 1991,30: 320-321
    71. Wiberg K., Letcher R., Sandau C, Norstrom R., et al. Enantioselective anlysis of organochlorines in the Arctic marine food chain: chiral biomagnification factors and relationships of enantiomeric ratios, chemical residues and biological data. Organohalogen Compd., 1998,35: 371-374
    72. Tanabe S., Kumaran P., Iwata H., Tatsukawa R., et al. Enantiomeric ratios of a-hexachlorocyclohexane in blubber of small cetaceans. Mar. Pollut Bull., 1996, 32: 27-31
    73. Wiberg K., Letcher R.J., Sandau CD., et al. The Enantioselective bioaccumulation of chiral chlordane and a-HCH contaminants in the polar bear food chain. Environ Sci. Technol., 2000, 34: 2668-2674
    74. Iwata H., Tanabe S., Lida T., et al. Enantioselective accumulation of α-hexachlorocyclohexane in northern fur seals and double-crested cormorants: effects of biological and ecological factors in the higher trophic levels. Environ Sci. Technol., 1998,2244-2249
    75. Karlsson H., Oehme M., Skopp S., et al. Enantiomer ratios of chlordane congeners are gender specific in cod (Gajus morhua) from the Barents Sea. Environ. Sci. Technol., 2000,34:2126-2130
    76. Buser H.R., Muller M.D. Enantiomer separation of chlordane components and metabolites using chiral high-resolution gas chromatography and detection by mass spectrometric techniques. Anal. Chem., 1992,64:3168-3175
    77. Pfaffenberger B., Hardt I., Huhnerfuss H., et al. Enantioselectie degradation of a-hexachlorocyclohexane and cycldiene insecticidds in roe-deer liver samples from different regions of Germany. Chemosphere, 1994,29: 1543-1554
    78. Gaughan, L.C., Unai T., Casida J.E. Permethrin metabolism in rats. J. Agric. Food Chem., 1977, 25: 9-17
    79. Mwangala F.S., Sarna L.P., Galloway T.D., et al., Distribution of fenvalerate and permethrin residues on cattle hair following variable application rates of impregnated ear tags. Pestici. Sci., 1993,39:179-184
    80. Casida J.E., Ruzo L.O. Metabolic chemistry of pyrethroid insecticides. Pestic. Sci., 1980, 11:257-269
    81. Kaneko H., Matsuo M., Miyamoto J. Comparative metabolism of stereoisomers of cyphenothrin and phenothrin isomers in rats [Pyrethroid insecticide]. J. Pestic. Sci., 1984,9:237-247
    82. Miyamoto J., Suzuki T., Nakae C. Metabolism of phenothrin or 3-phenoxybenzyl d-trans-chrysanthemumate in mammals. Pestic. Biochem. Physiol., 1974, 4: 438-450
    83. Takamatsu Y., Kaneko H., Abiko J., et al. In vivo and in vitro stereoselective hydrolysis of four chiral isomers of fenvalerate. J. Pestic. Sci., 1987,12: 397-404
    84. Ueji M., Omizawa C, Metabolism of chiral isomers of isofenphos in the rat liver micriosomeal system. J. Pestic. Sci., 1987,12:269-271
    85. Lee P.W., Allahyari R., Fukuto T.R. Studies on the chiral isomers of fonofos and fonofosd oxon [organophosphorus insecticide]. II. In vitro metabolism. Pestic. Biochem. Physiol., 1978, 8: 158-169
    86. Lee P.W., Allahyari R., Fukuto T.R. Studies on the chiral isomers of fonofos and fonofosd oxon [in the house fly, Musca domestica, and white mouse]. III. In vivo metabolism. Pestic. Biochem. Physiol., 1978,9:23-32
    87. Bidleman T.F., Jantunen L.M., Harner T, et al. Chiral pesticides as tracers of air-surface exchange.
     Environ. Pollut., 1998, 102:43-49
    88. Wiberg K., Letcher R., Sandau C., et al. Enantioselective analysis of organochlorines in Arctic marine food chain: chiral biomagnification factors and relationships of enantiomeric ratios, chemical residues and biological data. Organohalogen Compd., 1998, 35:371-374
    89. Bidleman T. F., van-Dijk H. F. G., van-Pul W. A. J., et al. Atmospheric transport and air-surface exchange of pesticides. Water, Air, and Soil Pollut. 1999, 115:115-166
    90. Bucheli T. D., Muller S. R., Voegelin A., et al. Bituminous roof sealing membranes as major source of the herbicide (R,S)-mecoprop in roof runoff waters: potential contamination of groundwater and surface waters. Environ. Sci. Technol., 1998, 32:3465-3471
    91. Ridal J. J., Bidleman T. F., Kerman B. R., et al. Enantiomers of alpha-hexachlorocyclohexane as tracers of air-water exchange in Lake Ontario. Environ. Sci. Technol., 1997, 31: 1940-1945
    92. Jantunen L. M., Bidleman T. F. Air-water gas exchange of hexachlorocyclohexanes (HCHs) and the enantiomers of α-HCH in arctic regions. J. Geophys Res. 1996, 101:28837-28846
    93. Finizio A., Bidleman T. F. and Szeto S. Y., Emission of chiral pesticides from an agricultural soil in the Fraser Valley, British Columbia. Chemosphere, 1998, 36:345-355
    94. Buser H. R., Poiger T., Muller M. D. Changed enantiomer composition of metolachlor in surface water following the introduction of the enantiomerically enriched product to the market. Environ. Sci. Technol., 2000, 34:2690-2696
    95. Hegeman W. J. M., Laane R. W. P. M. Enantiomeric enrichment of chiral pesticides in the environment. Rev. Environ. Contam. Toxicol., 2002, 173:85-116
    96. Kaye B. Chiral drug metabolism; a perspective. Biochem. Soc. Trans., 1991, 19:456-459
    97. Karlsson H., Oehme M. Skopp S., et al. Enantiomer ratios of chlordane congeners are gender specific in cod (Gadus morhua) from the Barents Sea. Environ. Sci. Technol., 2000, 34:2126-2130
    98. Kubota T., Yamamoto C., Okamoto Y. Preparation of chiral stationary phase for HPLC based on immobilization of cellulose 3,5-dimethylphenylcarbamate derivatives on silica gel. Chirality, 2003, 15:77-82
    99.达世禄,徐伟,董亚琼等.手性高效液相色谱固定相.化学通报,1997,2:33-34
    100.周志强,张红雁,于兆文等.高效液相色谱法对外消旋药物的拆分.分析测试技术与仪器,1998,4:1-6
    101. Okamoto Y., Kaida Y. Resolution by high-performace liquid chromatography using polysaccharide carbamates and benzoates as chiral stationary phases, J. Chromatogr. A, 1994, 666:403-419
    102. Guebitz G., Jellenz W., Schoenleber D. High performance liquid chromatographic reslution of the opti-calisomers of D,L-tryptophane, D,L-5-hydroxytryptophan and D,L-dopa on cellulose column. J. High Resol. Chromatogr., 1980,3: 31-32
    103. 邵保海,徐秀珠,吕建德等.纤维素衍生物手性固定相用于高效液相色谱对映体分离.分析化学,2003,31:239-244
    104. Yashima E., Okamoto Y. Chiral discrimination of polysaccharides derivatives. Bull. Chem. Soc. Jpn., 1995, 68: 3289-3307
    105. Kusters E., Loux V., Schmid E. Enatiomeric separation of chiral sulphoxides. J. Chromatogr. A, 1994,666:421-432
    106. Okamato Y., Kawashima M., Hatada K. Chromatographic resolution. XI. Controlled chiral recognition of cellulose triphenylcarbamate derivatives supported on silica gel. J. Chromatogr., 1986,363:173-186
    107. Booth T.D., Wainer I.W., Investigation of the Enantioselective separations of α-alkylarylcarboxylic acids on an amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phase using quantitative structure-enantioselective retention relationships. Identification of a conformationally driven chiral recognition mechanism. J. Chromatogr. A, 1996,737: 157-169
    108. Fukui Y, Ichida A., Shibata T., et al. Optical resolution of racemic compounds on chiral stationary phases of modified cellulose. J. Chromatogr., 1990, 515: 85-90
    109. Yashima E., Yamada M., Kaida Y, et al. Computational studies on chiral discrimination mechanism of cellulose trisphenylcarbamate. J. Chromatogr. A, 1995,694: 347-354
    110. Piras P., Roussel C, Pierrot-Sanders J. Reviewing mobile phases used on Chiralcel OD through an application of data mining tools to CHIRBASE database. J. Chromatogr. A, 2001,906: 443-458
    111. Okamoto Y, Honda S., Hatada K., et al. Chromatographic resolution of racemic compounds containing phosphorus or sulfur atom as chiral center. Bull Chem. Soc. Jpn., 1984, 57: 1681-1682
    112. Kientz C.E., Langenberg J.P., Jong GJ.D., et al. Microcolumn liquid chromatography of the enantiomers of organophosphorus pesticides with thermionic and ultraviolet detection. J. High Resol. Chromatogr., 1991, 14: 460-464
    113. Chilmonczyk Z., Ksycifiska H., Polec I. Application of chiral chromatographic parameters in quantitative structure-activity relationship analysis of homologous malathion derivatives. J. Chromatogr. B, 1998, 720: 65-69
    114. Ellington J.J., Evans J.J., Prickett K.B., et al. High-performance liquid chromatographic separation of the enantiomers of organophosphorus pesticides on polysaccharide chiral stationary phases. J. Chromatogr. A, 2001,928: 145-154
    115. Yang GS., Zhou L., Wei D., et al. Effect of the Structure of Organic Phosphonate Compounds on Chiral Separations on Derivatized Cellulose Chiral Stationary Phase. Chromatographia. 2002, 56:
     143-146
    116. Edwards D. P., Ford M. G. Separation and analysis of the diastereomers and enantiomers of cypermethrin and related compounds. J. Chromatogr. A, 1997, 777:363-369
    117. Lee W., Kim B. H. Liquid chromatographic resolution of pyrethroic acids and their esters on chiral stationary phases. J. High Resol. Chromatogr., 1998, 21: 189-192
    118. Li Z. Y., Zhang Z. C., Zhou Q. L., et al. Stereo-and enantioselective determination of pesticides in soil by using achiral and chiral liquid chromatography in combination with matrix solid-phase dispersion. J. AOAC Int. 2003, 86:521-528
    119. Buser H. R., Muller M. D. Environmental behavior of acetamide pesticide stereoisomers. 1. Stereoand enantioselective determination using chiral high-resolution gas chromatography and chiral high-performance liquid chromatography. Environ. Sci. Technol., 1995, 29:2023-2030
    120. Muller M. D., Poiger T., Buser H. R. Isolation and identification of the metolachlor stereoisomers using high-performance liquid chromatography, polarimetric measurements, and Enantioselective gas chromatography. J. Agric. Food Chem., 2001, 49:42-49
    121.张大同.徐秀珠.蔡小军.何红梅.潘春秀.异丙甲草胺立体异构体在高效液相色谱手性固定相上的分离.分析化学,2004,32:191-194
    122. Polcaro C. M., Berti A., Mannina L., et al. Chiral HPLC resolution of neutral pesticides. J. Liq. Chrom. & Rel. Technol., 2004, 27:49-61
    123.韩小茜,周志强,柳春辉等.制备分离农药甲霜灵对映体的高效液相色谱法.分析测试学报,2002,21:40-42
    124. Spitzer T., Yashima E., Okamoto Y. Enantiomer separation of fungicidal triazolyl alcohols by nomal phase HPLC on polysaccharide-based chiral stationary phases. Chirality, 1999, 11:195-200
    125. Zhou Z. Q., Wang P., Jiang S. R., et al. The preparation of polysaccharide-based chiral stationary phases and the direct separation of five chiral pesticides and related intermediates. J. Liq. Chrom & Rel. Technol., 2003, 26:2873-2880
    126.王鹏,江树人,刘晶等.纤维素-三(3,5-二甲基苯基氨基甲酸酯)对烯唑醇对映体的直接拆分.农药,2004,43:34-35
    127.王鹏,江树人,邱静等.纤维素衍生物手性固定相的制备及对戊唑醇对映体的拆分.色谱,2004.22:181
    128. Wang E, Zhou Z. Q., Jiang S. R., et al. Chiral Resolution of Cypermethrin on Cellulose-tris (3,5-dimethylphenylcarbamate) Chiral Stationary Phase. Chromatographia, 2004, 58:625
    129.侯士聪,王敏,周志强等.涂敷型手性固定相的制备及氯氟草醚乙酯对映体的高效液相色谱分离.色谱,2002,20:537-539
    130.侯士聪,王敏,乔振等.涂敷型手性固定相的制备及对麦草伏甲酯对映体的高效液相色谱分离.应用化学,2003,5:505
    131.侯士聪,王敏,周志强等.苯并咪唑衍生物对映体的高效液相色谱手性分离.农药学学报,2004,4:71-74
    132.侯士聪,周志强,乔振等.杀螨剂尼索朗对映体的高效液相色谱分离.分析化学,2004,32:126
    133. Hou S. C., Zhou Z. Q., Qiao Z., et al. Enantiomer Separation of Tebuconazole and Its Potential Impurities by High Performance Liquid Chromatography Using Cellulose Derivative-Based Chiral Stationary Phase. Chromatographia, 2003, 57:177-180
    134. McDaniel D. M., Snider B. G. Resolution of α-arylacetic acid enantiomers on two chiral stationary phase. J Chromatogr, 1987, 404:123-132
    135. Imran A., Aboul-Enein H. Y. Determination of chiral ratio of o, p-DDT and o, p-DDD pesticides on polysaccharides chiral stationary phases by HPLC under reversed-phase mode. Environ. Toxicol., 2002, 17: 329-333.
    136. Yang L., Liao Y., Wang P., et al. Direct Optical Resolution of Chiral Pesticides by High Performance Liquid Chromatography on Cellulose tris-3, 5-Dimethylphenyl Carbamate Stationary Phase Under Reversed Phase Conditions. J. Liq. Chrom. & Rel. Technol., 2004, 27: 2935-2944
    137. Tomlin C. D. S. eds. A world compendium-The pesticide manual. Thirteenth Edition, BCPC, 2003
    138. Pesticide Action Network North America. PAN Pesticides Database-Pesticide Registration Status: Summary Toxicity Information for Ethofumesate. http://www.pesticideinfo.org/DetailChemReg.isp?RecId=PC33242, 04.9.16
    139. Abulnaja K. O., Tigher C. R., Harwood J. L. Inhibition of fatty acid elongation provides a basis for the action of the herbicide, ehofumesate, on surface wax formation. Phytochemistry, 1992, 31: 1155-1159
    140. Kohler E. A., Branham B. E. Site of uptake, absorption, transiocation, and metabolism of ethofumesate in three turgrass species. Weed Sci., 2002, 50:576-580
    141. McAuliffe D., Appleby A. P. Activity loss of ethofumesate in dry soil by chemical degradation and adsorption. Weed Sci. 1984 32:468-471
    142. Wilson R. G. Response of nine sugerbeet (Beta vulgaris) cultivars to postevergence herbicide applications. Weed Technol., 1999, 13:25
    143. McCarty L. B. Selective control of common bermudagrass in St. Augustine grass. Crop Sci., 1996, 36:494-498
    144. Budd E. G. The control of blackgrass and voluteer wheat in perennial ryegrass grown for seed. Brighton Crop Protection Conference—Weed, 1995, 3:937-942
    145. Stump W. L., Franc G. D., Miller S. D., et al. Azoxystrobin and post emergence herbicide combinations for Rhizoctonia and weed management in sugarbeet. J. Sugar Beet Res. 2002, 39: 37-58
    146.李小敏,蒋爱勤,华万森.除草剂乙氧呋草黄.农药,1999,38:11
    147.米勒·弗朗兹[著],江树人[译].植物药理学——植物保护剂的行为和作用方式.北京:北京农业大学出版社,1988:145-147
    148. Schweizer E. E. Persistence and movement of ethofumesate in soil. Weed Res., 1976, 16:37-42
    149. Peter H. Dernoeden, Tolerance of four Festuca Species to ethofumesate and prodiamine, HortSci., 2000, 35:1170-1173
    150. Duncan D. N., Meggitt W. F., Penner D. The basis for selectivity of root-applied ethofumesat in sugarbeet and three weed species, Weed Sci., 1982, 30: 191-194
    151. Kawahigashi H., Hirose S., Hayashi E., et al. Phytotoxicity and metabolism of ehtofumesate in transgenic rice plants expressing the human CYP2B6 gene. Pestic. Biochem. Physiol., 2002, 74: 139-147
    152. Franzaring J., Kempenaar C., Van der Eerden L. J. M. Effects of vapours of chlorpropham and ethofumesate on wild plant species, Environ. Pollut., 2001, 114:21-28
    153. Benfenati E., Terreni M., Facchini G., et al. Analysis of pesticides and related products by chromatomass spectrometry. J. Anal. Chem., 1996, 51:1091-1094
    154. Charizopoulos E., Papadopoulou M., Euphemia. Occurrence of pesticides in rain of Axios River Basin, Greece. Environ. Sci. Technol., 1999, 33:2363-2368
    155. Molina C., Grasso P., Benfenati Z., et al. Determination and stability of phenmedipham ethfumesate and fenamiphos in groundwater samples using auto mated solid phase extraction cartridge followed by liquid chromatography high flow pneumatically assisted electrospray mass spectrometry. J. Environ. Anal. Chem., 1996, 65:69-82
    156. Benfenati E. Grasso P. Molina C., et al. An interlaboratory analysis on labile pesticides. Toxicol. Environ. Chem., 1998, 65:173-184
    157. Runes H. B., Jenkins J. J., Field J. A. Method for the analysis of triadimefon and ethofumesate from dislodgeable foliar residues on turfgrass by solid-phase extraction and in-vial elution. J. Agric. Food Chem., 1999, 47:3252-3256
    158. Sanchez-Martin M. J., Sanchez-Camazano M. Application of the thin layer chromatography for the study of pesticide mobility in soils. In: Pesticide Soil Interaction. Edited by: Comejo J., Jamet P. 2000, 75-83
    159. Komers K. Reaction of the herbicide ethofumesate with activated sludge. Sci. Pap. Univ. Pardubice, Ser. A, 2000, 6:57-67
    160. Haggar R. J., Passman A. Soil persistence and distribution of ethofumesate applied to autumn-sown perennial ryegrass for Poa annua control. Weed Res. 1981, 21:153-159
    161. Desidefio C., Polcaro C. M., Fanali S., et al. Stereoselective analysis of herbicides by capillary electrophoresis using sulfobutyl ether beta-cyclodextrin as chiral selector. Capillary electrophoresis of pollutants and toxicants. Electrophoresis, 1997, 18:227-234
    162.李小敏,华万森,陆路德.除草剂乙氧呋草黄的合成与表征.南京理工大学学报,2000,24:215-218
    163. Okamoto Y., Aburatani R., Hatada K. Chromatographic chiral resolution. ⅪⅤ. Cellulose tribenzoate derivatives as chiral stationary phases for high-performance liquid chromatography. J. Chromatogr., 1987, 389:95-102
    164.陈寿宏.用碘化钾作相转移催化合成稻丰散的工艺研究[J].农药,2002,41(4):17~18
    165.李钟华.高毒农药品种取代:新品种的开发和技术创新[J].现代农药,2002,6:4~8
    166.徐逸楣.光学活性农药开发的现状与展望(上)[J].农药译丛,1998,20(1):6~16
    167.陈慧,吕宪禹,高如瑜等.正相条件下温度和流速对衍生化环糊精键合手性高效液相色谱固定相立体异构体选择性的影响.高等化学学报.2000,21:233-236
    168.杨晓玲.除草剂乙氧呋草黄对映体土壤中环境行为的研究.中国农业大学硕士论文.2004,5
    169.张志英,盛毅,徐少毅.圆二色技术与应用.现代物理知识,12:23-24
    170.蔡国友,侯玉霞,丁晓岚等.应用圆二色光谱研究交变应力对烟草细胞膜蛋白结构的影响.光子学报.2000,29:289-292
    171.彭小彬,梁世强.手性苏氨酸卟啉锌配合物的圆二色谱.物理化学学报.2001,17:234-237
    172. Harada N., Tamai Y., Takuma Y., et al. Absolute stereochemistry and chiroptical properties of chira tribenzotriptycene and benzotriptycenes, J. Ameri. Chem. Society, 1980, 102(2):501-506
    173. Harada N., Tamai Y., Uda H. Circular dichroic power of chiral triptycenes, J. Ameri. Chem. Society, 1980, 102(2):506-511
    174. Gonnella N. C., Nakanishi K. General method for determining absolute configurations of acyclic allylic alcohols, J. Am. Chem. Soc., 1982, 104:3775-3776
    175. Krohn K., Bagramsari R., Florke U., et al. Dihydroisocoumarins from fungi:isolation, structure elucidation, circular dichroism and biological activity, Phytochemistry, 1997, 45(2):313-320
    176. Weil K., Humpf H., Schwab W., et al. Absolute configuration of 3-hydroxy acids formed by Stenotrophomonas maltophilis: application of multidimensional gas chromatography and circular dichroism spectroscopy. Chirality, 2002, 14:51-58
    177. Caccameses S., Scivoli G., Du Y., et al. Chiral liquid chromatography sepuaration and chiroptical properties of the enantiomers of dimethyl α-hydroxyfamesylphosphonate, a precursor of a farnesyl protein transferarse inhibitor. J. Chromatogr. A, 2002, 966:221-225
    178. Kanazawa Hideko, Tsubayashi A., Nagata Y., et al. Stereospecifec analysis of loxoprofen in plasma by chiral column liquid chromatography with a circular dichroism-based detector. J. Chromatogr. A, 2002, 948:303-308
    179.滕荣伟,沈平,王德祖等.应用核磁共振测定有机化合物绝对构型的方法.波谱学杂志.2002,19:203-223
    180.宁永成编著.有机化合物结构鉴定与有机波谱学(第二版).北京:科学出版社,2002,75-81;447-450
    181.张安将,熊静,叶挺镐等.1-[2-(2,4 二氯苯基)-4-烷基-1,3-二氧戊环-2-基甲基]-1 H-1,2,4-三唑的NMR研究.波谱学杂志.2001,18:257-262
    182.张雅凤,俞尔敏,张雪林等.除草活性化合物筛选方法的初步评价研究.面向21世纪中国农田杂草可持续治理—第六次全国杂草科学学术研讨会论文集.1999,396-401
    183. Gardner D. S., Branham B. E. Mobilioty and dissipation of ethofumesate and halefenozide in turgrass and bare soil. J. Agile. Food Chem., 2001, 49:2894-2898
    184.路平,邱国福,王晓玲等.气-质联用仪法对蔬菜中农药残留量的分析[1].农药,2002,43:11,23
    185.赵爱平,乔世俊,高建力.蔬菜中有机磷农药残留量的毛细管气相色谱分析.甘肃环境研究与检测.1994,7:6-7
    186.陶传江.蔬菜中多种农药残留分析研究.中国农业大学硕士论文.2000
    187.王萍,刘丰茂,南瑞然等.蔬菜中8种有机磷农药残留快速检测方法研究.农药与环境安全国际会议论文集.北京:中国农业大学出版社.2003:250-253
    188. Kato M. J., Chu A., Davin L. B., et al. Biosynthesis of antioxidant lignans in Sesamum indicum seeds. Phytochemistry. 1998, 47:4, 583-591
    189. Beuerle T., Schwab W. Metabolic profile of linoleic acid in stored apples: formation of 13(R)-hydroxy-9(Z), 11(E)-octadecadienoic acid. Lipids. 1999, 34:375-380
    190. Ansarin M., Woolley J. G. The biosynthesis of tropic acid. Part 6. Enantioselective, intact incorporation of (R)-(+)-3-phenyllactic acid into the tropic acid ester alkaloids of Datura. Perkin Transactions. 1995, 4:487-490
    191. Mesnard F., Girard S., Fliniaux O. et al. Chiral specificity of the degradation of nicotine by Nicotiana plumbaginifolia cell suspension cultures. Plant Sci. 2001, 161: 1011-1018
    192. Villa R., Molinari E, Levati M. et al. Stereoselective reduction of ketones by plant cell cultures. Biotechnology Letters. 1998, 20:1105-1108
    193. Akakabe Y., Naoshima Y. Biotransformation of acetophenone with immobilized cells of carrot, tobacco and Gardenia. Phytochemistry. 1994, 35:661-664
    194. Hasinoff B. B., Aoyama R. G. Stereoselective metabolism of dexrazoxane (ICRF-187) and levrazoxane (ICRF-186). Chirality. 1999, 11: 286-290
    195. Zheng H., Covey J. M., Tosca P. J., et al. Chiral high-performance liquid chromatographic analysis of the enantiomers of XK469, a new antiumor agent, in plasma and urine. J. Pharm. Biomed. Anal., 2002, 28:287-294
    196. Tao X., Kadaba P. K., Nnane I. P. Chiral liquid chromatography resolution and stereoselective pharmacokinetic study of the enantiomers of a novel anticonvulsant, N-(r-chlorophenyl)-1-(4-pyridyl)ethylamine. J. Chromatogr. B., 2003, 796:35-44
    197. Zhu C. J., Zhang J. T. Stereoselective pharmacokinetics of clausenamide enantiomers and their major metabolites after single intravenous and oral administration to rats. Chirality. 2003, 15: 668-673
    198. Yamaoka K., Nakagawa T., Uno T. Application of Akaike's information criterion (AIC) in the evaluation of linear pharmacokinetic equations. J. Biochem., 1978, 100:609-618
    199.塔拉里达,默里[著],金有豫,罗兰[译].药理学计算手册:附计算机程序.北京:科学出版社,1985
    200. Cassiano N. M., Cass Q. B., Degani A. L., et al. Determination of the plasma levels of metyrapone and its enantiomeric metyrapol metabolites by direct plasma injection and multidimensional achiral-chiral chromatography. Chirality. 2002, 14:731-735
    201.薛明,阮金秀,张振清等.HPLC法检测盐酸戊乙奎醚R型异构体经小鼠尿排泄的方法学研究.中国临床药理学与治疗学.2003,8:425-427
    202.章立,姚彤炜,曾苏.手性药物对映体的药物代谢动力学.中国现代应用药学杂志.1999,16(2):4-7
    203. Rochat B, Baumann P, Audus K. L. Transport mechanisms for the antidepressant citalopram in brain microvessel endothelium. Brain Res., 1999, 831:229-236
    204. KugelbergFCarlsson B., Ahlner J., et al. Stereoselective single-dose kinetics of citalopram and its metabolites in rats. Chirality. 2003, 15:622-629
    205. Lapka R., Muller N, Payan E., et al. Protein binding and stereoselectivity of nonsteroidal anti-inflammatory drugs. Clin. Pharmacokin., 1993, 25:115-125
    206. Jamali F., Mehvar R., Pasutto F. M. Enantioselective aspects of drug action and disposition. J. Pharmac. Sci., 1989, 78:695-715
    207. Trejtner F., Wsol V., Szotakova B., et al. Stereoselective pharmacokinetics of flobufen in rats. Chirality. 1999, 11:781-786
    208. Masubuchi N., Yamazaki H., Tanaka M. Stereoselective chiral inversion of pantoprazole enantiomers after separate doses to rats. Chirality. 1998, 10:747-753
    209. Itoh T., Maruyama J., Tsuda Y., et al. Stereoselective pharmacokinetics of ibuprofen in rats: effect of enantiomer-enantiomer interaction in plasma protein binding. Chirallity. 1997, 9:354-361
    210.鲍士旦主编.土壤农化分析.北京:中国农业出版社.2000
    211. Li Z. Y., Zhang Z. C., Zhou Q. L., et al. Fast and precise determination of phenthoate and its enantiomeric ratio in soil by the matrix solid-phase dispersion method and liquid chromatography. J. Chromatogr. A, 2002, 977:17-25
    212. Sanchez M. M. J., Gonzaslez P. J. M, Sanchez-Camazano M. Adsorption of ethofumesate by agricultural and natural soils. Weed Res., 1993, 33:479-486
    213. Meijer S N, Halsall C J, Harner T, et al. Organochlorine pesticide residues in archived UK soil. Environ. Sci. Technol., 2001, 35:1989-1995
    214. Vetter W, Bartha R, Stern G. et al. Enantioselective determination of two persistent chlorobornane congeners in sediment from a toxaphene-treated Yukon Lake. Environ. Toxicol. Chem., 1999, 18: 2775-2781
    215.李朝阳.土壤中手性农药对映体选择性环境行为的研究.南开大学博士论文.2003,4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700