用户名: 密码: 验证码:
西天山云杉林遥感生物量模型及其空间分布格局研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林生物量约占全球陆地植被生物量的90%,是森林固碳能力的重要标志,亦是评估森林碳收支的重要参数。森林生物量的大小受光合作用、呼吸作用、死亡、收获等自然和人类活动因素共同影响。因此,森林生物量的变化反映了森林的演替、人类活动、自然干扰(如:林火、病虫害等)、气候变化和大气污染等影响,是量度森林结构和功能变化的重要指标。3S技术的出现和发展,为多维角度和尺度的森林生物量监测研究提供了可能。
     本文利用ETM遥感数据,在遥感及地理信息系统的支持下,综合地学、生态学信息,建立巩留东部林区天山云杉林生物量模型,并分析其空间分布格局。论文的研究内容和成果体现在以下三个方面:
     (1)云杉林遥感植被指数的反演及森林蓄积量/生物量的相关性分析。利用植被遥感原理,反演不同类型多龄级的云杉林植被指数,以此为基础,进行不同植被指数与各龄级云杉林蓄积量/生物量的相关分析,从中筛选相关性最好、显著性最强的植被指数作为云杉林生物量反演的遥感参数和基础变量。
     (2)云杉林生物量遥感模型研究。利用生物量换算因子(BEF, Biomass Expansion Factor)值通过蓄积量换算出各龄级生物量,利用统计回归模型和云杉林生物量反演遥感参数建立云杉林生物量遥感模型,利用不同的云杉林遥感生物量模型对研究区不同龄级的云杉林进行了计算分析并检验了其精度。
     (3)云杉林生物量空间分布格局研究。利用DEM分析和地统计方法提取地形因子及地形特征,从海拔、坡度、坡向三个角度对西天山云杉林生物量的空间格局进行模拟,选取典型龄级开展云杉林生物量的可视区域分析、地形特征提取。通过研究,分析区域范围内近熟、成熟龄云杉林生物量的空间分布特征和分异规律。
     通过研究表明;西天山云杉过熟林生物量最大,平均值达到229.001t/hm~2,其次是近熟林平均值达到146.374t/hm~2,成熟林生物量平均值183.51t/hm~2,中龄林生物量平均值146.374t/hm~2,幼龄林生物量最小,平均值61.889t/hm~2。云杉林生物量多分布在1400-2700m,在坡度25 o -35 o上分布比例最多,其空间分布格局呈现出明显的中亚山地森林特征。
The forest biomass which approximately composes 90% of the global land vegetation biomass is the important symbol of forest solid carbon ability. It is also the important parameter of appraising the forest carbon revenue and expenditure. The magnitude of forest biomass is affected by nature and the humanity activity factors such as photosynthesis ,respiration ,death ,harvests and so on. Therefore , the change of forest biomass reflects the forest succession, the humanity activity, nature molestation (for example: forest fire, the plant disease and so on)climatic change and air pollution, which is the important index to measure the forest structure and the function change. With 3S appearance and development, it provides the possibility in multi-dimensional perspective of the scale of forest biomass monitoring study.
     This article uses the ETM remote sensing data, with the support of remote sensing and geographic information system, it synthetizes the geographic and ecology information, establishes the Tianshan spruce forest biomass model of eastern Gongliu forest region, and analyzes its spatial distribution pattern. This paper's contents and results expresses in the following three aspects :
     (1) Retrieval of spruce forest vegetation index and pertinence analysis of spruce forest between vegetation index and volume/biomass. Using the vegetation remote sensing theory, this paper retrieves vegetation index of different age level spruce forest.On this basis, I analyze the pertinence of spruce forest between different vegetation index and different age grades of Picea Schrenkiana var.tianshanica volume/biomass. The most significant vegetation index is selected from relevance as the parameters and variables of Picea Schrenkiana var.tianshanica forest biomass inversion based remote sensing.
     (2) The spruce forest biomass remote sensing model study. Using Biomass Expansion Factor(BEF)and volume I convert various age level's biomass . Remote sensing parameters are retrieved by using statistical regression models ,forest biomass remote sensing models of Picea Schrenkiana var.tianshanica are established.Use the final model to calculate the biomass of eastern Gongliu forest region and testify its precision.
     (3) The research of spruce forest biomass spatial distribution pattern. Selecting the typical grades of Picea Schrenkiana var.tianshanica, the character of the land including altitude, slope-deflection and the direction of the slope can be extracted uniting DEM analysis and the statistical analysis of the land. The western Tianshan spruce forest biomass spatial pattern can be simulated by altitude, slope-deflection and the direction .It can analyze different age grade's biomass visible region and withdraw the terrain characteristic. Through the research, it can obtains the near ripe and the mature Picea Schrenkiana var.tianshanica forest's biomass spatial distribution characteristic and the diversity rule in the region scope.
     It is showed that excessive mature Picea Schrenkiana var.tianshanica forest's biomass is the largest of those average reaches 229.001t/hm~2,second is near mature Picea Schrenkiana var.tianshanica forest's biomass of those average reaches 146.374t/hm~2, the mature's average reaches 183.51t/hm~2,the middle age's average reaches 146.374t/hm~2,the young age's average reaches 61.889t/hm~2. Picea Schrenkiana var.tianshanica forest's biomass is scattered in 1400-2700m and the slope of 25 o-35 o on the largest proportion, its spatial distribution pattern was evident in the Central Asian mountain forest characteristics.
引文
[1]Keeling Charles D. Climate change and carbon dioxide: An introduction[J].National Academy of Science,1997,94:8273~8274.
    [2]Pieter P.Tans and James W.C.White. THE GLOBAL CARBON CYCLE:In Balance,with a Little Help from the Plants[J].National Academy of Science,1998,281:183~184.
    [3]Watson R T,Verardo D J.Land-use change and forestry[M] Cambridge University Press,2000.
    [4]Dixon R K,Brown S,Houghton RA etal.1994.Carbon pools and flux of global forest ecosystems.Science[J],262:185~190.
    [5]Tans P.P,FungI.Y,Takahaski N.P,etal.Observational constraints on the global atmospheric CO2 budget[J].Science,1990,247:1431~1438.
    [6]Ciais P,Tans P.P,Trolier M,etaI A large northern hemisphere terrestrial C02 sink indicated by the 13C/12C ratio of atmospheric CO2[J].Science,1995,296:1098~1101.
    [7]Tian H,Melillo J.M,Kicklighter D.W,etal.The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the Unite States[J].Te11us,1999,51B:414~452.
    [8]Houghton R.A,Hackler J.L,Lawrence K.T. The U.S. carbon budget:contributions from Land-Use change[J].Science,1999,285:574~578.
    [9]Field C, Fung I.Y.The not-so-big U.S. carbon sink[J].Science,l999,285:544~545.
    [10]Schimel D,Melillo J,Tian H,etal. Contribution of increasing C02 and climate to carbon storage by ecosystems in the United States[J].Science,2000,287:2004~2006.
    [11]Hansen J,Ruedy R,MkiSato,etal.Global surface air temperature in 1995:Return to pre-Pinatubo level[J].Geophysical Research Letter,1996,23:1665~1668.
    [12]Goulden M.I,Wofsy S.C,Harden J.W,etal.Sensitivity of boreal forest carbon balance to soil thaw[J].Science,1998,279:214~217.
    [13]Sellers P.J,Cihlar J,Apps Metal.Charting the Boreal Forest's Role in Global Change,EOS Transactions[R].American Geophysical Union,1991,72(4):33~40.
    [14]GCTE.GCTE Core Research:1993 Annual Report[R].GCTE Office, Canberra, Australia, 1994,135.
    [15]Ebermeyr,E.Die gesamte Lehre der Waldstreu mit Rucksicht auf die chemische statik des Waldbaues [M]1Belin:J1Springer,1876.116.
    [16]Boysen Jensen P.Studier over skovtraernes forhold til lyset Tidsskr[J].F1Skorvaessen,1910,22:11~16.
    [17]Burger H1 Holz,Blattmenge,Zuwachs112 Fichten im Plenterwald Mitteil ,Schweiz, nst1Forttl[J]. Versuchsw, 1952,28:1092~1561
    [18]Kitterge,J.Estimation of amount of foliage of trees and shrubs.[J].J.Forest, 1944, 42:905~912.
    [19] Botkin,D.B.,Woodwell,G1M1Tempel,N1Forest productivity estimated from carbon dioxide uptake[J].Ecology,1970,51:1057~1060.
    [20]潘维俦,田大伦.森林生态系统第一性生产量的测定技术与方法[J].湖南林业科学,1981(2):1~12.
    [21] 胥 辉 . 一 种 生 物 量 模 型 构 建 的 新 方 法 [J]. 西 北 农 林 科 技 大 学 学 报 ( 自 然 科 学版),2001,29(3):35~40.
    [22]佐藤大七郎,堤利夫.陆地植物群落的物质生产[M].北京:科学出版社,1986.21~47.
    [23]王燕,赵士洞.天山云杉林生物量和生产力的研究.[J]应用生态学报.1999,10(4)∶389~391
    [24]Brown S., A .E .Lugo.1984. Biomass of tropical forests: a new estimate based on forest volumes. Science[J], 223:1762~1773.
    [25]Brown S Gillespie A J R,Lugo A E 1989,Biomass estimation methods for tropical forests with application to forest inventory data.Forest Science[J],35: 881~902.
    [26]Schroeder P, Brown S, Mo J et al 1997. Biomass estimation for temperate broadleaf forests of the US using inventory data.Forest Science[J],43:424~434.
    [27]贾开心,郑征,张一平,2006.西双版 纳橡 胶林 生物 量随 海拔 梯度 的变化 .生态学杂志,25(9):1028~1032.
    [28]Fang J Y,Chen AP , Peng CH, et al . 2001. Changes in forest biomass carbon storage in China between 1949 and 1998. Science ,292:2320~2322
    [29]Feng Z_W(冯宗炜),Zhang J_W(张家武),Deng S_J(邓仕坚).1980.Studying in the Phyto mass of Planted Cunninghamia lanceolata Forest .In:Report of Synthesis Inventory in Taoyuan. Henan :Henan Science and Technology Press.(in Chinese)
    [30]Kauppi PE ,Mielikinen K,Kunsela K.1992. Biomass and carbon budget of European forests,1971 to 1990.Science,256:70~74
    [31]陈尔学.合成孔径雷达森林生物量估测研究进展[J].世界林业研究,1999,12(6):18-23.
    [32]郭志华,彭少麟,王伯荪.利用 TM 数据提取粤西地区的森林生物量[J].生态学报,2000,22 (11):1832~1839.
    [33]Chen,L_J,Liu,G_H,Feng,X_F. Estimation of net primary productivity of terrestrial vegetation in China by remote sensing[J].Acta Botanica Sinica ,2001, 43(11):1191~1198.
    [34] 陈 利 军 , 刘 高 焕 , 励 惠 国 . 中 国 植 被 净 第 一 性 生 产 力 遥 感 动 态 监 测 [J]. 遥 感 学报,2002,6(2):129~135.
    [35] Dong J R ,Kaufmann R K,Mynenei R B ,et al.Remote Sensing estimates of boreal and temperate forest woody biomass :carbon pools,sources,and sinks[J] .Remote Sensing of Environment ,2003,84:393~410.
    [36]P. Muukkonen,J. Heiskanen.Estimating biomass for boreal forests using ASTER satellite data combined with standwise forest inventory data.[J] Remote Sensing of Environment,2005,99:434~447
    [37]Thuy Le Toan,Shaun Quegan, Ian Woodward etal. Relating Radar Remote Sensing of Biomass to Modeling of forest carbon budgets.[J]Climatic Change2004. 67:379~402.
    [38]Peter H?gberg, Anders Nordgren, Nina Buchmann el at.2001. Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2. Nature[J], 411(14):789~792.
    [39]吕一河,傅伯杰,2001.生态学中的尺度及尺度转换方法.生态学报,21(12):2096~2105.
    [40]Spencer.RD,Green.M.A,B1ggs.PH.Integrating Eucalypt Forest Inventory and GIS In Western Australia. Photogrammetric Engineering& Remote Sensing1997,63(12):1345~1351
    [41]Friedl.M.A,Davis F.W,Michaelsen1,eta1.Scaling and Uncertainty in the Relationship between the NDVI and Land Surface Biophysical Variables: An Analysis Using a Scene Simulation Model and Data from FIFE.Remote Sensing,1995,54:233~246
    [42]John Thorpe.Aerial Photography and satellite. EOM,1996,5(4):39~41
    [43]张佳华,符涂斌.生物量估测模型中遥感信息与植被光和参数的关系研究.测绘学报,1999.28(2):128~129
    [44]LeeTY, Kaufman YJ. Non-Lambertian Effects on Remote Sensing of Surface Reflectance and Vegetation Index. IEEE Trans Geosci Remote Sensing,1986,GE-24:699~708
    [45]BartolucciA,MaoChang,PaulEAnuta,etal.Atmospheric Effects on Landsat TM Thermal IR Data.IEEE Transactions on Geoscience and Remote Sensing,1988,26(2):171~176
    [46]AnnegretGratzki,SiegfriedAWGersti.Sensitivity of an Atmospheric Correction Algorithm for Non-Lambertian Vegetation.IEEE Transactions on Geoscience and Remote Sensing, 1989, 27(3):326~331
    [47]SonoyoMukai.Atmospheric Correction of Remote Sensing Images of the Ocean Based on Multiple Scattering Calculations.IEEET ransactions on Geoscience and Remote Sensing,1990,28(4):696-702
    [48]BrentHolben,EricVermote,YoramJKaufman,etal.Aerosol Retrieval overland from AVHRR Data—Application for Atmospheric Correction.IEEE Transactions on Geoscience and Remote Sensing,1992,30(2):212~222
    [49]VermoteEF,SaleousNEl,JusticeCO,etal.Atmospheric Correction of Visible to Middle-Infrared EOS-MODIS Data over Land Surfaces:Background,Operational Algorithm and Validation.JournalofGeophysicalResearch,1997,102(D14):131~141
    [50]ThomeK,PalluconiF,TakashimaT,etal.Atmospheric Correction of ASTER.IEEE Transactions on Geoscience and Remote Sensing,1998,36(4):1199~1211
    [51]田庆久,郑兰芬,童庆禧.基于遥感影像的大气辐射校正和反射率反演方法.应用气象学报,1998,9(4):456~461
    [52]HuBaoxin,WolfgangLucht,AlanHStrahler.The Interrelationship of Atmospheric Correction of Reflectance and Surface BRDF Retrieval:A Sensitivity Study.IEEE Transactions on Geoscience and Remote Sensing,1999,37(2):724~738
    [53]WenjingZhao,MassayukiTamura,HidenoriTakahashi.Atmospheric and Spectral Corrections for Estimating Surface Albedo from Satellite DataUsing 6S Code.Remote sensing of Environment,2000,76:202~212
    [54]LiangShunlin,FangHongliang,ChenMingzhen.Atmospheric Correction of Landsat ETM+ Land Surface Imagery PartⅠ:Methods.IEEE Transactions on Geoscience and Remote Sensing,2001,39(11):2490~2498
    [55]NASA.Landsat7 Science Data Users Handbook.http:PPltpwww.gsfc.nasa.gov, 2003
    [56]浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000:52~96
    [57]杨可明,郭达志,陈石浩.高光谱植被遥感数据光谱特征分析[J].计算机工程与应用.2006.31(3):213~222
    [58]胡新博.草地光谱与牧草产量的相关分析[J].草食家畜 1996,4:43~47.
    [59]郭铌.2003.植被指数及其研究进展[J].干旱气象,21(4):71~75.
    [60]Gamon J A,Pe?uelas J and Field C B. 1992. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency[J], Remote Sens. Environ,41:35~44.
    [61]田庆久,闵祥军.1998.植被指数研究进展[J].地球科学进展,13(4):327~333
    [62]韦玉春.基于遥感和数量分析方法的环青海湖地区草地蝗虫发生研究 博士论文[M] 2001.4.
    [63]文军,王介民.一种由卫星遥感资料获得的修正的土壤调整植被指数气象与环境研究[J]1997,2(3);302~309.
    [64] Rossi R E, Mulla D J,etal.Geostatistical tools for modeling and interpreting ecological spatial dependence. Eco-logical Monographs,1992,62(2):277~314.
    [65]王军,傅伯杰.黄土丘陵小流域土壤水分的时空变异特征.地理学报,2000,55(4):428~438
    [66]王军,傅伯杰,邱扬等.黄土高原小流域土壤养分的空间异质性.生态学报,2002,22(8):1174.
    [67]Urban D L, Miller C, Halpin P N and Stephenson N L. Forest gradient response in Sierran landscapes: the physical template[J].Landscape Ecology, 2000, 15(7):603~620.
    [68] Miller J R, Joyce L A, Knight R L and Rudy W. Forest roads and landscape structure in the southern Rocky Mountains [J]. Landscape Ecology, 1996, 11(2):115~127.
    [69]沈泽吴,张新时,金义兴.地形对亚热带山地景观尺度植被格局的梯度分析[J].植物生态学报,2000,24(4):430~435.
    [70]武夷市林业委员会.武夷山市林业志[Z].福州:鹭江出版社.1993.
    [71]Carmel Y and Kadmon R. Effects of grazing and topography on long-term vegetation changes in a Mediterranean ecosystem min Israel[J].Plant Ecology,1999,145(2):243~254.
    [72]付晓,周维.数字高程模型及其在森林资源调查中的应用.广西林业科学,2002.31(11):12~15.
    [73]Fang JY(方精云) ,Chen AP (陈安平) ,Zhao SQ (赵淑清),etal .2002.Estimating biomass carbon of China's forests:Supplementary notes on report published in Science.Acta Plytoecol Sin (植物生态学报),26 :243~249 (in Chinese)
    [74]Olson J,Watts J,Alison L.1983.Carbon in live vegetation of major world ecosystems.Oak Ridge National Laboratory.Tennessee:Oak Ridge.
    [75]Brown SL ,Schroeder P , Kern JS.1999.Spatial distribution of biomass in forests of the eastern USA.For Ecol Man ,123:81~90
    [76]Brown S,Sathaye J,Canell M,etal .1996. Mitigation of carbon e2 mission to the atmosphere by forest management.Com For Rev ,75:80~91
    [77]陈志彪.花岗岩侵蚀山地生态重建及其生态环境效应[D].福州:福建师范大学博士论文,2005.
    [78]罗云云,李瑞雪,屈明.重庆石碗溪小流域坡度和高程对土地利用及经济发展的影响[J].山地学报,2004,22(2):254~258.
    [79]周月梅.基于 GIS 的小流域水土流失自然因子提取—以诏安草子坝小流域为例[J].福建地理,2005,20(2):7~9.
    [80]姚永慧,潘志强,孙英君,等编译.ArcGIS 地统计分析实用指南[M].北京:科学出版社.2002
    [81]陈志强.区域多尺度 LUCC 及空间数据库研究[D].福州:福建师范大学博士论文,2006.
    [82]李哈宾,王政权,王庆成.空间异质性定量研究理论与方法[J].应用生态学报,1998,9(6):651~657
    [83]汤国安,刘学军,闾国年著.数字高程模型及地学分析的原理与方法[M].北京:科学出版社.2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700