用户名: 密码: 验证码:
聚烯烃弹性体与乙烯基单体接枝反应及其接枝产物对SAN树脂增韧作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚烯烃弹性体分子链因没有碳-碳双键或碳-碳双键含量低而具有优异的耐老化性能。用聚烯烃弹性体与乙烯基单体的接枝改性产物对塑料进行共混改性,可制备出耐气候老化黄变性能优异的高抗冲工程塑料,广泛用于制造汽车及其他机动车配件和露天构件,应用前景广阔。聚烯烃弹性体与乙烯基单体接枝共聚的反应行为和反应机理鲜有报道,研究其反应行为和反应机理有助于掌握和控制接枝共聚的反应过程及接枝产物的结构、形态和性质,具有重要的理论意义和实践价值。
     本文以BPO为引发剂分别引发EPDM/St-AN、EPDM/St、EPDM/MMA、EPM/St-AN、PEB/MMA-AN和IIR/MMA-AN的悬浮体系与EPDM/MMA的溶液体系共7个体系在80℃下进行自由基接枝共聚反应,对每个体系以不同聚合反应时间合成了一系列的接枝共聚反应产物,将产物的各组分逐一分离,建立了体系的单体转化率(CR)、平均接枝率(GRa)、接枝效率(GE)、单体接枝转化率(CRg)、单体非接枝转化率(CRf)、橡胶接枝率(GRr)、真实接枝率(GRt)和凝胶率(CPR)与反应时间的关系曲线。用GPC、FTIR和1H-NMR等现代测试分析技术对产物各组分进行表征,为探明各体系的基元反应和反应机理提供了可靠的实验依据。结果表明,各体系在反应初期就发生弹性体/单体的自由基链转移接枝聚合和单体非接枝聚合的竞争反应,并且除IIR/MMA-AN悬浮体系外,其余6个体系的自由基链转移接枝的反应速率都明显高于单体非接枝聚合的反应速率。各体系的自由基链转移接枝反应基本都在反应时间为100min左右停止。建立了弹性体/单体自由基链转移接枝反应行为的蜷曲线团粒子模型,成功地阐释了各体系自由基链转移接枝反应快速进行和停止的机理。
     通过研究体系的平均接枝率GRa随反应时间的延长变化的规律,根据体系的自由基链转移接枝反应停止后,体系的GRa仍然继续提高的事实,分析了反应过程中体系可能发生的接枝基元反应。结果表明,各个体系除在反应初始阶段都发生自由基链转移接枝这一基元反应外,还会发生接枝共聚物的接枝链与游离聚合物“嫁接”和“架桥”交联的接枝基元反应。其中,EPDM/St-AN和EPDM/MMA悬浮体系先发生了“嫁接”反应后发生了“架桥”交联反应,并推导了“嫁接”和“架桥”的化学反应方程式;EPDM/St悬浮体系因St单元的苯环无反应活性而既无“嫁接”反应也无“架桥”交联反应,但存在热引发接枝反应;而其他体系则只有“嫁接”反应而无“架桥”交联反应。
     用GPC分析了接枝共聚反应初期生成的游离聚合物,发现在其谱图上出现两个分子量分布峰,证实低分子量分布峰是表征链增长自由基向弹性体大分子链转移终止形成的低聚物。根据这一发现和自由基链转移接枝反应机理,推导出计算接枝链分子量的普适公式为M g, n=m g M L, n/(m f r),用该公式计算了7个体系的接枝链的数均分子量。结果表明,接枝链的数均分子量显著大于由链增长自由基链转移终止形成的低聚物的数均分子量,而普遍小于由链增长自由基双基终止形成的游离聚合物的数均分子量。
     研究了7个体系的GRr、接枝链的分子量、游离聚合物的分子量和未接枝橡胶的分子量随反应时间的延长而变化的规律,发现在自由基链转移接枝反应停止后,除EPDM/St悬浮体系外,各体系都发生已接枝橡胶和未接枝橡胶大分子断链随机再接生成多“嵌段”共聚物,导致GRr进一步显著提高的反应。推导了断链随机再接形成多“嵌段”共聚物的化学反应方程式。
     研究了产物与SAN树脂共混物的缺口冲击强度与体系的反应行为之间的关系,发现影响产物对SAN树脂增韧效率的主要因素是产物的GRr及其通过“架桥”交联形成的凝胶结构:对于同一体系,GRr较高的产物对SAN树脂具有更高的增韧效率;对于不同体系,含有通过“架桥”交联形成的凝胶结构的产物对SAN树脂具有更高的增韧效率。TEM分析表明,随着合成产物反应时间的延长,其共混物的橡胶相的相畴尺寸逐渐减小,缺口冲击强度逐渐提高;其中具有包藏结构的粒状分散相对共混物的增韧效率最高。SEM分析表明,当共混物冲击断面的基体发生以“冷拉伸”为特征的高度剪切屈服时,其缺口冲击强度达到最高水平。用FTIR和1H-NMR定量分析法研究了游离共聚物和接枝链各自的共组成比随反应时间的延长而发生的变化,为分析产物与SAN树脂的相容性提供了依据。DMA分析表明,接枝共聚物能显著改善橡胶与SAN树脂之间的相容性。熔体流动速率(MFR)测试表明,各体系产物与SAN树脂共混物的MFR随着合成产物反应时间的延长而降低。
     研究了产物的回收方法对产物结构与性能的影响。发现“加入链终止剂且在常温干燥”的产物回收方法有效地避免了残留BPO在产物回收过程中所引发的后续副反应,从而可以更加真实地反映接枝共聚体系的反应行为和反应机理;“不加入链终止剂,在80℃干燥8h”的产物回收方法导致产物的结构与性能发生深刻的变化。
Polyolefin elastomers are endowed with excellent properties of weatherability and agingresistance due to no C=C double bond or low C=C content in their molecular chains, e.g.ethylene propylene diene terpolymer (EPDM), ethylene propylene monomer (EPM),poly(ethene-co-1-butene)(PEB) and isobutylene isoprene rubber (IIR). Graft copolymerssynthesized by grafting these polyolefin elastomers with vinyl monomers can be used ascompatibilizers and toughening agents in polymer blends to prepare high impact strengthengineering plastics of resistance against oxygen, heat, aging and yellow discoloration. Theseplastics are particularly suited for outdoor applications, such as automotive sealing systemsand roofing for buildings. Therefore, the study of the reaction mechanism of graftcopolymerization of polyolefin elastomers/vinyl monomers can not only help us understandthe reaction process of graft copolymerization and the structure and properties of the graftcopolymers, but also guide us through the synthesis of the graft copolymers that can bettersatisfy the requirement.
     In this thesis, seven graft copolymerization systems, including EPDM/St-AN, EPDM/St,EPDM/MMA, EPM/St-AN, PEB/MMA-AN and IIR/MMA-AN in suspension andEPDM/MMA in solution, were carried out by free radical polymerization at80℃usingbenzoyl peroxide (BPO) as initiator. For each system, a sequential reaction products ofdifferent reaction times were synthesized. After the synthesis, each product was separated bySoxhlet extraction to obtain purified components, which were subsequently characterized byGPC, FTIR and1H-NMR analyses. The monomer conversion rate (CR), average graft ratio(GRa), graft efficiency (GE), grafted monomer conversion rate (CRg), non-grafted monomerconversion rate (CRf), rubber graft ratio (GRr), true graft ratio (GRt) and gel rate (CPR) werecalculated and plotted against the reaction time. The dependence of these reaction behaviors onreaction time was systematically investigated. The results showed that the chain transfer graftreaction (i.e.“graft from” reaction) occurred at the same time as the free polymerizationreaction at the beginning of the synthesis and stopped after about100min, and the reactionrate of the former was significantly higher than that of the latter in all systems exceptIIR/MMA-AN. A “curled-coil” model of suspension particle formed by aggregates ofmonomers, initiators, free radicals and macromolecules of the polyolefin elastomers/vinylmonomers graft copolymerization system was established to explain the above-mentionedreaction behaviors.
     Based on the study of the variation of GRawith increasing reaction time and the analysisresult that GRakept rising after the “graft from” reaction stopped, we discovered that therewere still two other potential grafting elementary reactions, which we called the “graft onto”reaction and the “bridge” crosslinking reaction, occurring between the grafted chains of thegraft copolymers and the molecular chains of the free polymers via their reactive side groups.As for EPDM/St-AN and EPDM/MMA in suspension, the “bridge” crosslinking reactionoccurred after the “graft onto” reaction, and both chemical reaction equations of them werederived; however, neither of them but the suspected thermal initiation of St graftpolymerization was found in the EPDM/St suspension system, and in the other systems onlythe “graft onto” reaction was found.
     GPC analysis showed that there was a bimodal molecular weight distribution of the freepolymers formed in the early stage of the reaction process, due to the co-existence of twodistinct molecular populations of low and high molecular weights, which were respectivelyformed by chain transfer termination and bi-radical termination of the free polymeric radicals.According to this discovery and the mechanism of the chain transfer graft reaction, we deriveda universal formula M g, n=m g M L, n/(m f r)to estimate the number-average molecularweight of the grafted chains of every system. The results showed that the number-averagemolecular weight of the grafted chains was much larger than that of the free polymers formedby chain transfer termination of the free polymeric radicals, and was generally smaller than thatof the free polymers formed by bi-radical termination of the free polymeric radicals.
     Based on the study of the effect of reaction time on GRrand the molecular weight of thegrafted chains, the free polymers and the non-grafted rubber, we discovered that after the “graftfrom” reaction stopped, the chain scission reaction of grafted and non-grafted rubbers occurredin all systems except EPDM/St, followed by the random radical-radical combination of theresultant chain segments to form soluble “multi-block” copolymers, leading to a furthersignificant improvement of GRr. Both chemical reaction equations of them were derived.
     The effect of the reaction behaviors on the notched Izod impact strength of the blendsprepared by melt blending of the reaction product and the styrene-acrylonitrile copolymers(SAN resin) was investigated. The results showed that for the same system, GRrplayed adominant role in the toughening effect of the reaction product on the SAN resin; for differentsystems, the reaction product with gel structure formed by “bridge” crosslinking reaction had ahigher toughening effect on the SAN resin. TEM analysis showed that with increasing reactiontime, the domain size of the rubber phase of the blends decreased and the notched Izod impact strength of the blends increased; the dispersed phase of rubber particles which exhibited a“salami” like structure had the highest toughening efficiency on the SAN resin. At the sametime, SEM analysis showed that the toughening mechanism of the blends was high shearyielding with “cold drawing” of the SAN matrix. The co-constitute ratio of the free copolymersand the grafted chains was measured by FTIR and1H-NMR quantitative analyses, respectively,providing experimental proof for analyzing the compatibility of the reaction product and theSAN resin. DMA analysis showed that the graft copolymers in the reaction product couldsignificantly improve the compatibility between the rubber phase and the SAN phase. Meltmass-flow rate (MFR) measurements showed that the MFR of the blends declined withincreasing reaction time.
     The effect of the recovery method of the reaction product on the structure and properties ofthe reaction product was also studied. The results showed that the method, which ended thereaction using p-benzoquinone (PBQ) as terminator and dried the reaction product at roomtemperature, could effectively avoid the ensuing side reactions induced by the residual BPO inthe reaction product during the recovery process, and thus ensure the accuracy of the reactionbehaviors in the study of the reaction mechanisms of the graft copolymerization system.However, the method, which ended the reaction without using any terminator and dried thereaction product at80℃for8hours, resulted in a profound change in the structure andproperties of the reaction product.
引文
[1] Resconi L., Cavallo L., Fait A., et al. Selectivity in propene polymerization withmetallocene catalysts [J]. Chemical Reviews,2000,100(4):1253-1345
    [2] Gibson V.C., Spitzmesser S.K. Advances in non-metallocene olefin polymerizationcatalysis [J]. Chemical Reviews,2003,103(1):283-316
    [3] Chum P.S., Swogger K.W. Olefin polymer technologies-History and recent progress atThe Dow Chemical Company [J]. Progress in Polymer Science,2008,33(8):797-819
    [4] Chung T.C., Janvikul W. Borane-containing polyolefins: synthesis and applications [J].Journal of Organometallic Chemistry,1999,581(1-2):176-187
    [5] Sain M.M., Kokta B.V. Toughened thermoplastic composite. I. Cross-linkable phenolformaldehyde and epoxy resins-coated cellulosic-filled polypropylene composites [J]. Journalof Applied Polymer Science,1993,48(12):2181-2196
    [6] Sathe S.N., Devi S., Rao G.S.S., et al. Relationship between morphology andmechanical properties of binary and compatibilized ternary blends of polypropylene andnylon6[J]. Journal of Applied Polymer Science,1996,61(1):97-107
    [7] Sundardi F. Graft copolymerization of hydrophilic monomers onto irradiatedpolypropylene fibers [J]. Journal of Applied Polymer Science,1978,22(11):3163-3176
    [8] Lei J., Gao J., Zhou R., et al. Photografting of acrylic acid on high density polyethylenepowder in vapour phase [J]. Polymer International,2000,49(11):1492-1495
    [9] Singh R. Surface grafting onto polypropylene-a survey of recent developments [J].Progress in Polymer Science,1992,17(2):251-281
    [10] Jagur-Grokzinski J. Modification of polymers under heterogeneous conditions [J].Progress in Polymer Science,1992,17(3):361-415
    [11]赵德乍.聚乙烯[M].上海:上海科技出版社,1966:88
    [12]何曼君,等.高分子物理[M].上海:复旦大学出版社,1981:259
    [13]孙载坚,周普,刘启澄.接枝共聚合[M].北京:化学工业出版社,1992:4-7
    [14]谢洪泉.弹性体的改性技术-第3章弹性体的接技和离子化改性[J].合成橡胶工业,1990,13(6):442-448
    [15] Gaylord N.G., Mehta R. Peroxide-catalyzed grafting of maleic anhydride onto moltenpolyethylene in the presence of polar organic compounds [J]. Journal of Polymer Science PartA: Polymer Chemistry,1988,26(4):1189-1198
    [16] Li Y., Xie X.M., Guo B.H. Study on styrene-assisted melt free-radical grafting ofmaleic anhydride onto polypropylene [J]. Polymer,2001,42(8):3419-3425
    [17]陈晓丽,李炳海.线性低密度聚乙烯反应挤出接枝马来酸酐的研究[J].塑料.2005,34(6):6-9
    [18]陈晓丽,段良福,刘文鹏,等.聚丙烯接枝马来酸酐的研究[J].塑料助剂,2006,(1):18-22
    [19]丁永红,承民联,何明阳,等.新型引发剂DMDPB在LLDPE熔融接枝MAH中的应用[J].中国塑料,2001,15(10):71-74
    [20] Shi D., Hu G.H., Li R.K.Y. Concept of nano-reactor for the control of the selectivity ofthe free radical grafting of maleic anhydride onto polypropylene in the melt [J]. ChemicalEngineering Science,2006,61(11):3780-3784
    [21] Tan L., Deng J.P., Yang W.T. A facile approach to surface graft vinyl acetate ontopolyolefin articles [J]. Polymers for Advanced Technologies,2004,15(9):523-527
    [22]郑小霞,陈泽芳,郑长义,等.聚乙烯的微波辐射溶液接枝反应的研究[J].弹性体,2000,10(4):14-16
    [23] Dorscht B.M., Tzoganakis C. Reactive extrusion of polypropylen with supercriticalcarbon dioxide: free radical grafting of maleic anhydride [J]. Journal of Applied PolymerScience,2003,87(7):1116-1122
    [24]林岩心,肖凤英.聚丙烯接枝马来酸酐的方法研究[J].引进与咨询,2003,(7):37-38
    [25]于志强,顾辉,张志谦,等.紫外光辐照聚丙烯粉固相接枝及其表征[J].材料科学与工艺,2000,8(1):16-20
    [26] Liu C.S., Wang Q. Solid-phase grafting of hydroxymethyl acrylamide ontopolypropylene through pan milling [J]. Journal of Applied Polymer Science,2000,78(12):2191-2197
    [27]张广平,张翼,戴干策.聚丙烯连续固相接枝马来酸酐[J].塑料工业,2002,30(2):17-19
    [28] Patel A.C., Brahmbhatt R.B., Rao P.V.C., et al. Solid phase grafting of variousmonomers on hydroperoxidized polypropylene [J]. European Polymer Journal,2000,36(11):2477-2484
    [29]杨明莉,任建敏,龙英.水悬浮自搅拌体系中马来酸酐接枝聚丙烯的合成[J].化工学报,2002,53(5):513-516
    [30]程为庄,赵磊,杜强国.聚乙烯悬浮接枝苯乙烯的反应动力学研究[J].高分子材料科学与工程,1999,15(1):33-35
    [31]李海虹,杨党林,黄秀云,等. LLDPE与甲基丙烯酸接枝共聚[J].合成树脂及塑料,2002,19(1):10-13
    [32]孔维峰,魏无际,刘卫东.悬浮法聚乙烯接枝马来酸酐反应的影响因素[J].现代塑料加工应用,2008,20(2):24-27
    [33]杜慷慨,许庆清.丙烯酸悬浮接枝聚丙烯纤维及性能的研究[J].中国塑料,2005,19(7):45-48
    [34] Hu G.H., Li H.X., Feng L.F. A two-step reactive extrusion process for the synthesis ofgraft copolymers with polyamides as grafts [J]. Macromolecules,2002,35(22):8247-8250
    [35] Tao G.L., Gong A.J., Lu J.J., et al. Surface functionalized polypropylene:synthesis,characterization, and adhesion properties [J]. Macromolecules,2001,34(22):7672-7679
    [36]孙树林,徐新宇,杨海东,等.二元乙丙橡胶的环氧官能化及其增韧尼龙6的研究[J].高分子学报,2005,6(3):368-373
    [37]赫玉欣,马建中,张丽,等. EVA-g-PU的制备与表征[J].塑料工业,2008,36(5):9-12
    [38]龚春锁,揣成智. POE熔融挤出接枝MAH的研究[J].塑料制造,2007,(4):80-83
    [39] Huang N.J., Sundberg D.C. Fundamental studies of grafting reactions in free radicalcopolymerization. I. A detailed kinetic model for solution polymerization [J]. Journal ofPolymer Science Part A: Polymer Chemistry,1995,33(15):2533-2549
    [40]朱敏.橡胶化学与物理[M].北京:化学工业出版社,1984:188
    [41] Heinen W., Rosenmoller C.H., Wenzel C.B., et al.13C NMR study of the grafting ofmaleic anhydride onto polyethene, polypropene, and ethene-propene copolymers [J].Macromolecules,1996,29(4):1151-1157
    [42] Machado A.V., Covas J.A., van Duin M. Effect of polyolefin structure on maleicanhydride grafting [J]. Polymer,2001,42(8):3649-3655
    [43] Cimmino S., D’orazio L. Greco R., et al. Morphology-properties relationships in binarypolyamide6/rubber blends: Influence of the addition of a functionalized rubber [J]. PolymerEngineering&Science,1984,24(1):48-56
    [44] Greco R., Maglio G., Musto P., et al. Bulk functionalization of ethylene-propylenecopolymers. II. Influence of the initiator concentration and of the copolymer composition andchain microstructure on the reaction kinetics [J]. Journal of Applied Polymer Science,1989,37(3):777-788
    [45] Ruggeri G., Aglietto M., Petragnani A., et al. Some aspects of polypropylenefunctionalizatlon by free radical reactions [J]. European Polymer Journal,1983,19(5):863-866
    [46] Sheng J., Hu J. Graft polymerization of styrene onto random ethylene-propylene dienemonomer [J]. Journal of Applied Polymer Science,1996,60(9):1499-1503
    [47]商淑瑞.丙烯腈-乙丙三元橡胶-苯乙烯接枝共聚物的制备及性能研究[D].天津:河北工业大学,2002
    [48] Manaresi P., Passalacqua V., Pilati F. Kinetics of graft polymerization of styrene oncis-1,4-polybutadiene [J]. Polymer,1975,16(7):520-526
    [49] Merrett F.M., Wood R.I. Proc. Inst. Rubber Ind.,1956,3,27
    [50] Merrett F.M., Wood R.I. Rubber Chemistry and Technology,1956,29,706
    [51] Tung L.H., Wiley R.M. Journal of Polymer Science Part B: Polymer Physics,1973,11,1413
    [52] Odian G. Principles of Polymerization [M].4th edn. New York: Wiley-Interscience,2004:238
    [53] Zoppe J.O., Habibi Y., Rojas O.J., et al. Poly(N-isopropylacrylamide) brushes graftedfrom cellulose nanocrystals via surface-initiated single-electron transfer living radicalpolymerization [J]. Biomacromolecules,2010,11(10):2683-2691
    [54] Roy D., Guthrie J.T., Perrier S. Graft polymerization: grafting poly(styrene) fromcellulose via reversible addition-fragmentation chain transfer (RAFT) Polymerization [J].Macromolecules,2005,38(25):10363-10372
    [55] Barsbay M., Güven O., Stenzel M.H., et al. Verification of controlled grafting of styrenefrom cellulose via radiation-induced RAFT polymerization [J]. Macromolecules,2007,40(20):7140-7147
    [56] Barsbay M., Güven O., Davis T.P., et al. RAFT-mediated polymerization and graftingof sodium4-styrenesulfonate from cellulose initiated via γ-radiation [J]. Polymer,2009,50(4):973-982
    [57] Lee S.B., Koepsel R.R., Morley S.W., et al. Permanent, nonleaching antibacterialsurfaces.1. Synthesis by atom transfer radical polymerization [J]. Biomacromolecules,2004,5(3):877-882
    [58]刘涛,付学俊,王国成,等.马来酸酐熔融接枝EPDM的研究[J].弹性体,2008,18(2):21-25
    [59]曾治平,王炼石,蔡彤旻,等. EPDM-g-SAN接枝共聚反应的研究[J].橡胶工业,2004,51(4):197-200
    [60]刘伟涛,麦剑章,王炼石,等.悬浮法合成EPDM-g-MAN接枝共聚物及其对SAN树脂的增韧作用[J].弹性体,2009,19(5):6-10
    [61]张胜,王建祺,丁养兵,等.电子束辐照接枝法阻燃EPDM的研究[J].科学通报,1999,44(14):1503-1507
    [62]王梦媚,徐铭韩,邱桂学.马来酸酐熔融接枝二元乙丙橡胶的研究[J].弹性体,2012,22(3):27-31
    [63]张晓民,尹志辉,殷敬华.乙丙共聚物熔融接枝甲基丙烯酸环氧丙醋[J].应用化学,1995,12(5):113-114
    [64]李丽霞,尹志辉,綦玉臣,等.丙烯酸接枝乙丙共聚物的结构[J].应用化学,1996,13(6):87-89
    [65] De Chirico A., Arrighetti S., Bruzzone M. G. p. c. and viscometric investigation ongrafting of styrene-co-acrylonitrile polymer to ethylene propylene elastomer [J]. Polymer,1981,22(4):529-533
    [66]刘青军,王炼石,蔡彤旻,等.悬浮法EPM-g-SAN的合成与表征[J].弹性体,2009,19(1):14-18
    [67]熊凯,王炼石,蔡彤旻,等.悬浮接枝共聚法合成EPM-g-MAN及其对SAN树脂的增韧作用[J].化工新型材料,2010,38(7):74-77
    [68]全大萍,范新刚,王海华.新型乙-丁共聚弹性体/聚丙烯共混体系的结构形态与力学性能[J].高分子材料科学与工程,2001,17(4):105-108
    [69]孙佰平.夏利B型汽车内饰件专用料的研制[J].化学工程,2007,140(5):58-60
    [70]张成贵,董侠,王笃金,等.共聚焦显微镜三维研究HDPE和PEB共混物形态[J].科学通报,2007,52(6):635-639
    [71] Tembhekar S., Maiti M., George J.J., et al. High strength-low hardness thermoplasticelastomers from ethylene-butene copolymers [J]. Rubber Chemistry and Technology,2008,81(1):60-76
    [72] Tsou A.H., Duvdevani I., Datta S. Green strength enhancement in BIIR/Olefincopolymer compounds [J]. Journal of Applied Polymer Science,2006,102(5):4447-4459
    [73] Park K.W., Chowdhury S.R., Park C.C., et al. Effect of dispersion state of organoclayon cellular foam structure and mechanical properties of ethylene vinyl acetatecopolymer/ethylene-1-butene copolymer/organoclay nanocomposite foams [J]. Journal ofApplied Polymer Science,2007,104(6):3879-3885
    [74]熊凯,朱勇平,王炼石,等. PEB-g-MAN的合成与表征[J].高分子材料科学与工程,2010,26(9):8-11
    [75]熊凯,朱勇平,王霞,等. PEB/MMA-AN悬浮接枝共聚反应机理的研究[J].高等学校化学学报,2012,33(1):199-205
    [76]吴敌,王炼石,蔡彤旻,等.悬浮法PEB-g-SAN的合成及其对SAN树脂的增韧作用[J].工程塑料应用,2009,37(10):12-16
    [77]肖浪,王炼石,张志英. PEB/St-AN悬浮接枝共聚反应机理的研究[J].弹性体,2013,23(3):1-8
    [78]吕文康,刘志辉,马素琴.苯乙烯-甲基丙烯酸与少量丁基橡胶接枝共聚反应的研究[J].哈尔滨电工学院学报,1990,13(2):152-166
    [79] Chung T.C., Janvikul W., Bernard R., et al. Butyl rubber graft copolymers: synthesisand characterization [J]. Polymer,1995,36(18):3565-3574
    [80] Haldar S.K., Singha N.K. Grafting of butyl acrylate and methyl methacrylate on butylrubber using electron beam radiation[J]. Journal of Applied Polymer Science,2006,101(3):1340-1346
    [81]化学工业出版社编.中国化工产品大全(上册)[M].北京:化学工业出版社,1998:1100-1102
    [82]张阳. SAN树脂的生产工艺及其用途[J].宁波化工,1996,(Z1):21-23
    [83] Zeng Z.P., Wang L.S., Cai T.M., et al. Synthesis of high rubberstyrene-EPDM-acrylonitrile graft copolymer and its toughening effect on SAN [J]. Journal ofApplied Polymer Science,2004,94(2):416-423
    [84]代惊奇,王炼石,蔡彤旻,等. EPDM/St-An相反转乳液接枝共聚合行为及EPDM-g-SAN对SAN树脂的增韧效应[J].高分子材料科学与工程,2008,24(6):54-57
    [85]刘伟涛,王炼石,蔡彤旻,等. EPDM-g-MAN的合成及AEMS的冲击性能研究[J].工程塑料应用,2009,37(3):14-17
    [86]朱勇平,王炼石,蔡彤旻,等. PEB-g-MAN增韧SAN树脂的力学性能及增韧机理的研究[J].中国塑料,2009,23(10):40-44
    [87]张明耀,徐新峰,张会轩,等.接枝SAN分子量对ABS树脂性能和形态结构的影响[J].吉林工学院学报,2001,22(2):8-12
    [88]黄丹,刘振国,任亮,等. PB-g-SAN接枝共聚物的接枝率对ABS树脂结构与性能的影响[J].高分子材料科学与工程,2010,26(5):50-53
    [89]刘哲,王硕,陈明,等. PB-g-SAN共聚物的接枝层厚度对增韧SAN树脂的影响[J].中国塑料,2013,27(2):56-59
    [90]谭志勇,张明耀,杨海东. PB-g-SAN接枝粉料的含胶量对ABS性能的影响[J].工程塑料应用,2003,31(6):11-14
    [91] Mertz E.H., Claver G.C., Baer M.J. Studies on heterogeneous polymeric systems [J].Journal of Polymer Science,1956,22(101):325-341
    [92] Bucknall C.B., Smith R.R. Stress-whitening in high impact polystyrene [J]. Polymer,1965,6(8):437-446
    [93] Newman S., Strella S. Stress-strain behavior of rubber-reinforced glassy polymers [J].Journal of Applied Polymer Science,1965,9(6):2797-2310
    [94] Bucknall C.B. Toughened Plastics [M]. London: Applied Science Publishers,1977
    [95] Yee A.F., Pearson R.A. Toughening mechanisms in elastomer-modified expoxies. Part1: Mechanical studies [J]. Journal of Materials Science,1986,21(7):2462-2475
    [96] Pearson R.A., Yee A.F. Toughening mechanisms in elastomer-modified expoxies. Part2: Microscopy studies [J]. Journal of Materials Science,1986,21(7):2475-2488
    [97] Wu S.H. Phase structure and adhesion in polymer blends: A criterion for rubbertoughening [J]. Polymer,1985,26(12):1855-1863
    [98] Wu S.H. A generalized criterion for rubber toughening: The critical matrix ligamentthickness [J]. Journal of Applied Polymer Science,1988,35(2):549-561
    [99] Limbert F.J., Paddock C.F. Method of making graft polymers of vinyl monomers ontoethylene/propylene terpolymer in a latex [P]. US:3435096,1969
    [100] Meredith C.L., Barrett R.E., Bishop Sr. W.A. Process for preparing improved plasticcomposition and the resulting products [P]. US:3538190,1970
    [101] Bishop Sr. W.A. Preparation of rubber modified plastics [P]. US:3538192,1970
    [102] Morimoto M., Sanjiki T., Horiike H., et al. Process for production thermoplastic resins[P]. US:3904709,1975
    [103] Morimoto M., Sanjiki T., Horiike H., et al. Process for production binary or ternarygraft-copolymer [P]. US:3984496,1976
    [104] Arrighetti S., Brancaccio A., Cesca S., et al. Method for the preparation of novelthermoplastic materials, and products obtained thereby [P]. US:4145378,1979
    [105] Peascoe W.J. Impact-resistant thermoplastic composition based on graft copolymer [P].US:4202948,1980
    [106] Abe M., Nagai, H., Kamiya A. Process for producing rubber modified thermoplasticresin [P]. US:4490507,1984
    [107] Saeki T., Ikawa K., Kurita S., et al. Thermoplastic resin composition comprisingpolyamide, aromatic vinyl/unsaturated nitrile/rubbery polymer graft copolymer and aromaticvinyl/unsaturated nitrile/α-unsaturated carboxylic acid copolymer [P]. US:4824905,1989
    [108] Newman T.H., Henton D.E., Evans S.A. Thermoplastic blend of polycarbonate,polymethylme thacrylate and AES [P]. US:4880554,1989
    [109] Wefer J.M. Impact resistant polyethylene terephthalate/polycarbonate blends [P]. US:4814381,1989
    [110] Wefer J.M. Impact resistant polyethylene terephthalate/polycarbonate/polyethylenegraft copolymer blends [P]. US:4895899,1990
    [111] Laughner M.K. Molding compositions with acrylonitrile-EPDM-styrene copolymers [P].US:5008330,1991
    [112] Eichenauer H., Pischtschan A., Lindner C. Polymer alloys [P]. US:5274032,1993
    [113] Dai J.Q., Wang L.S., Cai T.M., et al. EPDM/St-An graft copolymerization reactionbehavior by phase inversion emulsion and the toughness effect of EPDM-g-SAN on SANresin [J]. Journal of Applied Polymer Science,2008,107(5):3393-3400
    [114] Sudhakar K., Singh R.P. Investigation of multiphase polymeric systems of poly(vinylchloride)/ethylene-propylene-diene-gp-(styrene-co-acrylonitrile) blends [J]. Journal of VinylTechnology,1992,14(4):218-225
    [115] Pagnoulle C., Jér me R. Reactive compatibilization of SAN/EPDM blends-effect oftype and content of reactive groups randomly attached to SAN [J]. Macromolecules,2001,34(4):965-975
    [116] Turchet R., Felisberti M.I. Compositional characterization of AES-a graft copolymerbased on poly(styrene-co-acrylonitrile) and poly(ethylene-co-propylene-co-diene)[J]. Ciênciae Tecnologia,2006,12(2):158-164
    [117] Laughner M.P., Dekkers M.E.J., Scobbo Jr. J.J., et al. High rubber graft thermoplasticcomposition with improved mechanical properties prepared by melt blending [P]. US:5306771,1994
    [118] Qu X.W., Shang S.R., Liu G.D. Effect of the addition ofacrylonitrile/ethylene-propylene-diene monomer (EPDM)/styrene graft copolymer on themorphology-properties relationships in poly(styrene-co-acrylonitrile)/EPDM rubber blends [J].Journal of Applied Polymer Science,2004,91(3):1685-1697
    [119] Hase N., Shoji I., Okamura Y., et al. Thermoplastic resin compositions with highproduction stability and their moldings with good heat and impact resistance [P]. JP:2006045465,2006
    [120] Hase N., Shoji I., Okamura Y., et al. Thermoplastic resin compositions and theirmoldings with good appearance and sliding properties [P]. JP:2006045466,2006
    [121] Hase N., Shoji I., Okamura Y., et al. Thermoplastic resin compositions and theirmoldings with low color value and good impact resistance [P]. JP:2006045467,2006
    [122] Wang L.S., Zhang D.F., Cai T.M., Zhang A.Q., Zeng X.B. Preparation of(ethylene-propylenediene)-g-(styrene-acrylonitrile) toughening agent comprises mixingethylene-propylenediene, inert gas, initiator, mixed monomer of, dispersants and de-ionizedwater [P]. CN:101050257,2007
    [123] Anita P., Zlata H.M., Jasenka J., et al. Study of structure ofethylene-propylene-diene-graft-polystyrene coplymers on their physical properties [J].Polymer Degradation and Stability,2005,90(2):319-325
    [124] Pantano I.A.G., Brandolin A., Sarmoria C. Mathematical modeling of the graft reactionbetween polystyrene and polyethylene [J]. Polymer Degradation and Stability,2011,96(4):416-425
    [125] Dusek K., Netopilik M., Kratochvil P. Nonuniformities of distributions of molecularweights of grafted polymers [J]. Macromolecules,2012,45(7):3240-3246
    [126] Wang L.L., Dong W., Xu Y.S. Synthesis and characterization of hydroxypropylmethylcellulose and ethyl acrylate graft copolymers [J]. Carbohydrate Polymers,2007,68(4):626-636
    [127]朱嘉乐. EPDM-g-SAN对SAN树脂的增韧作用及溶剂回收与循环利用[D].广州:华南理工大学,2009
    [128] Odian G. Principles of Polymerization [M].4th edn. New York: Wiley-Interscience,2004:754
    [129] Ermakov I.V., Rebrov A.I., Litmanovich A.D., et al. Alkaline hydrolysis ofpolyacrylonitrile,1. Structure of the reaction products [J]. Macromolecular Chemistry andPhysics,2000,201(13):1415-1418
    [130] Kudryavtsev Y.V., Krentsel L.B., Bondarenko G.N., et al. Alkaline hydrolysis ofpolyacrylonitrile,2. On the product swelling [J]. Macromolecular Chemistry and Physics,2000,201(13):1419-1425
    [131] Litmanovich A.D., Plate N.A. Alkaline hydrolysis of polyacrylonitrile. On the reactionmechanism [J]. Macromolecular Chemistry and Physics,2000,201(16):2176-2180
    [132] Vollmert B. Polymer Chemistry [M]. Berlin: Springer,1973:488-561
    [133] Yu W.T., Lin J.Z., Liu X.D., et al. Quantitative characterization of membrane formationprocess of alginate-chitosan microcapsules by GPC [J]. Journal of Membrane Science,2010,346(2):296-301
    [134]清华大学分析化学教研室编.现代仪器分析[M].北京:清华大学出版社,1983,208-213
    [135]代惊奇.相反转乳液法EPDM-g-SAN的合成及其对SAN树脂的增韧作用[D].广州:华南理工大学,2008
    [136]潘祖仁.高分子化学[M].第三版.北京:化学工业出版社,2002:78
    [137]潘祖仁.高分子化学[M].第三版.北京:化学工业出版社,2002:76
    [138]黄文艳,龚海丹,杨宏军,等. ATRP合成线性苯乙烯-丙烯腈共聚物[J].塑料工业,2008,36(10):6-8
    [139]张俐娜,薛奇,莫志深,等.高分子物理近代研究方法[M].武汉:武汉大学出版社,2003:242-256
    [140]付锦锋.接枝改性EPDM与塑料共混物的制备、结构与性能的研究[D].广州:华南理工大学,2009
    [141]刘伟涛. EPDM/MMA-AN接枝反应行为及其接枝物对SAN树脂的增韧作用[D].广州:华南理工大学,2009
    [142] Shaw S., Singh R.P. Studies on impact modification of polystyrene (PS) byethylene-propylene-diene (EPDM) rubber and its graft copolymers. II.PS/EPDM-g-(styrene-co-methylmethacrylate) blends [J]. Journal of Applied Polymer Science,1990,40(5-6):693-699
    [143] Odian G. Principles of Polymerization [M].4th edn. New York: Wiley-Interscience,2004:270
    [144]潘祖仁.自由基聚合[M].北京:化学工业出版社,1983:27-30,92-93,167-175
    [145] Odian G. Principles of Polymerization [M].4th edn. New York: Wiley-Interscience,2004:492
    [146]邢其毅.基础有机化学[M].北京:高等教育出版社.1985:539-541
    [147]邢其毅.基础有机化学[M].北京:高等教育出版社.1985:448
    [148] Odian G. Principles of Polymerization [M].4th edn. New York: Wiley-Interscience,2004:735
    [149]邢其毅.基础有机化学[M].北京:高等教育出版社.1985:470
    [150]潘祖仁.高分子化学[M].第三版.北京:化学工业出版社,2002:31
    [151]刘青军.悬浮法EPM-g-SAN的合成及其对SAN树脂的增韧作用[D].广州:华南理工大学,2009
    [152]朱勇平.悬浮法PEB-g-MAN的合成及其增韧SAN树脂的研究[D].广州:华南理工大学,2009
    [153]邓文乐.聚烯烃弹性体/乙烯基单体自由基接枝共聚反应机理研究[D].广州:华南理工大学,2013
    [154] Min K.W., Ray W.H. On the mathematical modeling of emulsion polymerizationreactor [J]. Journal of Macromolecular Science, Part C: Polymer Reviews,1974,11(2):177-255
    [155]潘祖仁.高分子化学[M].第三版.北京:化学工业出版社,2002:40-41
    [156] Han C. D.,徐僖,吴大诚.聚合物加工流变学[M].北京:科学出版社,1985

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700