用户名: 密码: 验证码:
念青唐古拉早白垩世—早始新世侵入岩年代学、岩石成因及其构造意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拉萨地块作为青藏高一个非常重要的构造-岩浆带,构造-岩浆作用非常复杂。中生代以来,相对于北部和南部明显由洋壳俯冲所形成的弧型岩浆岩来说,拉萨地块中部的火成岩成因及岩浆作用过程认识程度相对较低。本文对拉萨地块中部念青唐古拉早白垩世—早始新世侵入岩年代学、地球化学及岩石成因等方面进行了详细的研究,并与前人的研究进行了对比,获得了如下几点认识:
     1.念青唐古拉山北缘中新世前的侵入岩锆石U-Pb定年结果显示,早白垩世花岗闪长岩为133.20±0.92Ma,早古新世石英闪长岩为62.41±0.53Ma,早始新世辉长闪长岩为49.92±0.24Ma。此外,在早白垩世花岗闪长岩中发现了两颗年龄为2543Ma,2573Ma的锆右,表明了拉萨地块可能存在元古代基底。
     2.早白垩世花岗闪长岩准铝质至弱过铝质,高钾钙碱系列,Mg#平均为40,较高的(87Sr)/(86Sr)i(0.71947-0.72503),较低的εNd(t)(-12.6--12.7),以及较老的亏损地幔模式年龄(约1927Ma),锆石饱和温度最高可达830℃。暗示了岩浆主要来自古老地壳的熔融,与幔源岩浆的底侵作用相关。石英闪长岩低硅、高镁(Mg#平均为50)、富铁、富钙、低碱,准铝质,钙碱系列至钾玄系列,Nb/Ta比值为20,Sr/Y比值为9,暗示了岩浆的成分主要为幔源。均具有活动陆缘钙碱岩系的微量元素分布特征。花岗闪长岩和石英闪长岩具有密切的岩石成因联系,石英闪长岩形成于富集俯冲带组分的地幔熔体在上升过程中混染了一定量壳源物质结晶分异的产物,花岗闪长岩则为底侵作用生产的大量壳源熔体与少量幔源熔体混合并发生一定程度分离结晶后的产物。结合前人的研究成果,推测早白垩世侵入岩与新特提斯洋西段向NE消减有关。
     3.早古新世侵入岩由石英闪长岩和花岗闪长岩组成,为高钾钙碱性系列,准铝质Ⅰ型花岗岩类微量元素一个显著的特征是具有强烈的的轻重稀土分馏(((La/Yb)N为17-36),暗示了岩浆形成地壳深部,以石榴石作为主要残留物。但与同样发生强烈轻重稀土分馏埃达克岩及TTG与早古新世侵入岩主微量元素特征存在显著差异。结合高压变质玄武岩部分熔融实验及构造环境,推测早古新世侵入岩形成于富集俯冲带组分的幔源岩浆底侵下地壳,导致高压下变质基性岩的部分熔融,且源区富集稀土元素矿物。
     4.早始新世中基性杂岩由辉长闪长岩、黑云闪长岩及石英闪长岩组成。具有亚碱性拉斑系列的演化趋势,具有幔源岩浆的主微量元素特征,主要为地幔岩部分熔融的产物。Sr-Nd同位素及微量元素地球示踪研究表明,中基性杂岩为壳幔混源的产物,母岩浆最有可能来自于软流圈地幔;二元混合锶模拟表明,幔源岩浆中壳源物质参与的比例可达8%左右。区域对比研究及动力学背景分析表明,中基性杂岩成因可能与新特提斯洋板片的回旋、断离及软流圈物质的上涌及念青唐古拉山先存断裂的发展并切割岩石圈地幔密切相关。
     5.将念青唐古早白垩世侵入岩与拉萨地块中生代的其他弧型岩浆岩形成年代及时空对比表明,拉萨地块中部在早白垩世存在新特提斯洋向北,班公湖—怒江洋向南的双向俯冲,且俯冲前缘均消减于狮泉河—纳木错-嘉黎蛇绿岩带所代表的洋盆下的软流圈中。
     6.念青唐古拉北缘早白垩世—早始新世侵入岩的空间产状,侵位构造特征,地球化学特征表明了念青唐古拉巨型花岗岩基是沿着早始新世就已存在的NE向断裂侵位。
     7.念青唐古拉地区具有良好的Ag-Pb-Zn热液脉型矿床的成矿前景。
The Lhasa block is one of the most important tectonic magmatic belts of Tibet Plateau, has a very complex tectonic magmatic evolutionary history. Since Mesozoic, people understand less about the petrogenesis and magmatic processs of igneous rocks exposed in the central of Lhasa block, compared with that of igneous rocks exposed in the north and south of Lhasa block. Through detailed study on chronology, geochemistry, and petrogenesis of Early Cretaceous intrusive rocks exposed in Nyainqentanglha area, the central of Lhasa block. and comparing with the former study, the author put forward some ideas as follows:
     1. The zircon LA-MC-ICPMS U-Pb dating for Early Cretaceous granodiorite defines a crystallization age of 133.20±0.92Ma, two the inheritance ages of 2543Ma,2573Ma,respectively, indicating there may exist Archeozoic crust for Early Paleocene a crystallization age of 62.41±0.53Ma, for a Early Eocene a age of 49.92±0.24Ma.
     2. Early Cretaceous granodiorite are metaluminous to weak peraluminous, high-K calc-alkaline series metaluminous to weak peraluminous, high-K calc-alkaline series, have average Mg index of 40, (87Sr/86Sr)i of 0.71947-0.72503,εNd(t)of-12.6--12.7, tDM of about 1927Ma, and the highest magma temperature to reach 830℃calculating by concentration of zirconium in whole-rock and zircon, which indicate the granodioritic magma are mainely originated from partial melting of ancient crust being closely related to underplating of mantle-derived magma. Quartz diorite are poor in Si、alkalinity, rich in Mg、Fe、Ca, metaluminous, calc-alkaline to shsoshonite series, have Nb/Ta ratio of 20, Sr/Y ratio of 9, which indicate quartz -ioritic magma originated from partial melting of mantle. Both granodiorite and quartz diorite show the trace element distribution characteristic as well as calc-alkaline rocks in island arc or active continental margin. Granodiorite and quartz diorite may be derived form the same magmatic processes. Quartz diorite originate from crystallization differentiation of mantle source magma assimilating and contaminating less crust material; while granodiorite originate from crystallization differentiation of massous crust source magma mixing less mantle source magma. Connecting with the predecessors research results, it can be supposed that the petrogenesis may be related to the subducting towards north of Neo-Tethyan.
     3. Early Paleocene intrusive rocks consist of quartz diorite and granodiorite. Both of them are high-K calc-alkaline series, metaluminous granorite. Rare-earth elements analysis for Early Paleocene intrusive rocks showed that heavy and light rare-earth elements high fractionation((La/Yb)N of 17-36), indicating the magmas originating in deep crust, and leaving garnet as residue. There are remarkble distinct between Adakite and TTG series and Early Paleocene intrusive rocks. According to basalt partial melting experiment, presume that Early Paleocene intrusive rocks originate from metabasalt partial melting under high pressure, relating to mantle magmas metasomatised in subduction zone, and source region rich in REE.
     4. Early Eocene intermediate-mafic intrusive complexes consist of gabbro-diorite, biotitediorite, and quartz diorite. They show magmas evolving towards subalkaline oleiiticbasalt series. Gabbro-diorite show the major and trace characteristic of mantle source magamas, so they may originate from partial melting of mantle rocks. Sr and Nd isotope and trace element geochemistry study indicate that intermediate-mafic intrusive complexes originate from crust melt mixing mantle melt, and parent magmas most likely is from asthenosphere mantle. Sr isotope mixing simulation show the percent of crust material in magmas is 8%. Regional correlation study and geodynamics analysis indicate the petrogenesis of Early Paleocene intermediate-mafic intrusive complexes is related to the rolling back and then breaking off of Neo-tethys oceans crust, asthenosphere mantle materials acending along fault cutting lithospheric mantle.
     5. Space-time comparative study on between Nyainqentanglha Early Cretaceous intrusive rocks and Mezoic arch-type igneous rocks exposed in other place in Lhasa block show that at Early Cretaceous Neo-tethys oceans crust subducted towards north of Lhasa block, while Bangonghu-Nujiang oceans crust subducted towards the south,and bothe of their leading edge sinking into asthenosphere mantle under Shiquanhe-Yongzhu-Namucuo-Jiali ocean.
     6. Study on the trend, emplacement strutrue and geochemistry characteristic of The intrusive rocks older than Early Eocene intrusive rocks show that Nyainqentanglha vast batholith emplaced along the fault of NE trend exsiting ahead of Early Eocene
     7. It is expected to find some Ag-Pb-Zn hydrothermal vein deposits in Nyainqentanglha area.
引文
陈智梁.1994.特提斯地质一百年.见:特提斯地质.北京:地质出版社,18:1-19.
    迟清华,鄢明才.2007.应用地球化学元素丰度数据手册.北京:地质出版社,1-148.
    戴塔根,刘汉元.1992.微量元素地球化学及其应用.北京:地质出版社,83-94.
    邓晋福,肖庆辉,苏尚国,刘翠,赵国春,吴宗絮,刘勇.2007.火成岩组合与构造环境:讨论.高校地质学报,13(3):392-402.
    丁林,张进江,周勇,等.1999.青藏高原岩石圈演化的记录:藏北超钾质及钠质火山岩的岩石学与地球化学特征.岩石学报,15(3):408-421.
    董彦辉,许继峰,曾庆高,王强,毛国政,李杰.2006.存在比桑日群弧火山岩更早的新特提洋俯冲记录么?岩石学报,22(3):661-668.
    董国臣,莫宣学,赵志丹,等.2006.冈底斯岩浆带中段岩浆混合作用:来自花岗杂岩的证据.岩石学报,22(4):835-844.
    董国臣,莫宣学,赵志丹,等.2008.西藏冈底斯南带辉长岩及其所反映的壳幔作用信息.岩石学报,24(2):203-210.
    杜利林,耿元生,杨崇辉,等.2006.扬子地台西缘新元古代TTG的厘定及其意义.岩石矿物学杂志,25(4):273-281.
    高永丰,候增谦,魏瑞华,等.2006.冈底斯基性次火山岩地球化学和Sr-Nd-Pb同位素:碰撞后火山作用亏损地幔源区的约束.岩石学报,22(3):547-557.
    耿全如.2007.西藏冈底斯晚古生代火山岩岩石学、地球化学及其大地构造意义.中国地质大学博士论文.1-155.
    韩吟文,马振东,张宏飞,等.2003.地球化学.北京:地质出版社,1-370.
    何利,马润则,宋春彦.2009.西藏措勤晚白垩世侵入岩地球化学特征及构造环境.地质科技情报,28(5):31-39.
    和钟铧,杨德明,郑常青,黄映聪.2006.西藏嘉黎断裂带凯蒙蛇绿岩的年代学、地球化学特征及大地构造意义.岩石学报,22(3):653-660.
    贺日政.2003.青藏高原近南北向裂谷的岩石圈结构及动力学过程.中国地质科学院博士论文,1-27.
    黄俊平,曹圣华,陈振华,等.2006.西藏冈底斯中段晚侏罗—早白垩世花岗岩特征.资源调查与环境,27(4):277-285.
    候增谦,曲晓明,王淑贤,等.2003.西藏高原冈底斯斑岩铜矿带辉钼矿Re.Os年龄:成矿时限与动力学背景应用.中国科学,33:509-618.
    侯增谦,赵志丹,高永丰,杨志明,江万.2006.印度大陆板片前缘撕裂与分段俯冲:来自冈底斯新生代火山-岩浆作用证据.岩石学报,22(4):761-774.
    候增谦,曲晓明,杨竹森,等.2006.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用.矿床地质,25(6):629-651.
    胡道功,吴珍汉,江万,石玉若,叶培盛,刘琦胜.2005.西藏念青唐古拉岩群SHRIMP锆石U-Pb年龄和Nd同位素研究.中国科学(D辑),2005,35(1):29-37.
    纪伟强,吴福元,锺孙霖,刘传周.2009.西藏南部冈底斯岩基花岗岩时代与岩石成因.中国科学,39(7):849-871.
    金成伟,Harris N B W,许荣华.1990.拉萨至格尔木的深成岩,青藏高原地质演化.见中英青藏高原综合地质考察.北京:科学出版社,141-172.
    康志强,许继峰,董彦辉,王保弟.2008.拉萨地块中北部白垩纪则弄群火山岩:Slainajap洋南向俯冲的产物?岩石学报,24(2):303-314.
    康志强,许继峰,王宝弟,董彦辉,王树庆,陈建林.2009.拉萨地块北部白垩纪多尼组火山岩的地球化学:形成的构造环境.地球科学,34(1):90-104.
    康志强,许继峰,陈建林,王保弟.2009.藏南白垩纪桑日群麻木下组埃达克岩的地球化学特征及其成因.地球化学,38(4):334-344.
    李春昱.亚洲大地构造图及说明书.北京:地图出版社,13-28.
    李光岑.1982.中法科学家合作喜马拉雅山地质考察获重要成果.地质论评,28(1):87-89.
    李才,王天武,李惠明,曾庆高.2003.冈底斯地区发现印支期巨斑花岗闪长岩—古冈底斯造山存在证据.地质通报,22(5):364-366.
    刘葵,赵文津,吴珍汉,江万.2005.念青唐古拉山深部构造特征研究.地球学报,26(5):405-410.
    刘荣谟,赵定华.1981.西藏东部中酸性侵入岩同位素年龄讨论.地质论评,27(4):326-332.
    刘琦胜,吴珍汉,胡道功,叶培盛,江万,王彦斌,张汉成.2003.念青唐古拉花岗岩锆石离子探针U-Pb同位素测年.科学通报,48(20):2170-2175.
    刘琦胜,吴珍汉,江万,胡道功,叶培盛.2004.西藏申错侵入岩序列的地质及地球化 学特征.地球学报,25(4):405-410.
    刘琦胜,吴珍汉,叶培胜,胡道功,江万,柯东昂,张汉成.2005.念青唐古拉花岗岩的同位素年龄测定及其地质意义.地质学报,79(3):331-337.
    刘琦胜,江万,简平,叶培盛,吴珍汉,胡道功.2006.宁中白云母二长花岗岩SHRIMP锆石U-Pb年龄及岩石地球化学特征.岩石学报,22(3):643-652.
    刘英俊,曹励明,李兆麟,等.1984.元素地球化学.北京:科学出版社,1-548.
    林景仟.1987.岩浆岩成因导论.北京:地质出版社,1-277.
    罗建宁.1992.巴颜喀拉盆地岩相、相组及其演化.岩相古地理,1-10.
    路凤香,桑隆康.2002.岩石学.北京:地质出版社,1-399.
    刘增乾,徐宪,潘桂堂,等.1990.青藏高原大地构造与形成演化.北京:地质出版社,1-174.
    孟祥金,候增谦,高永丰,等.2003.西藏冈底斯东段斑岩铜钼铅锌成矿系统的发育时限:帮浦铜多金属矿床辉钼矿Re-Os年龄证据.矿床地质,22(3):246-251.
    孟祥金,候增谦,叶培胜,等.2007.西藏冈底斯银多金属矿化带的基本特征与成矿远景分析.矿床地质,26(2):153-162.
    莫宣学,赵志丹,邓晋福,董国臣,周肃,郭铁鹰,张双全,王亮亮.2003.印度—亚洲大陆主碰撞过程的火山作用响岩.地学前缘,10(3):135-148.莫宣学,董国臣,赵志丹,周肃,王亮亮,邱瑞照,张风琴.2005.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息.高校地质学报,11(3):281-290.
    莫宣学,赵志丹,Depaolo D J,等.2006.青藏高原拉萨地块碰撞—后碰撞岩浆作用的三种类型及其对大陆俯冲和成矿作用的启示:Sr-Nd同位素证据.岩石学报,22(4):795-803.
    潘桂堂,陈智梁,李兴振,等.1997.东特提斯地质构造形成演化.北京:地质出版社,1-184.
    潘桂堂,莫宣学,侯增谦,朱弟成,王立全,李光明,赵志丹,耿全如,廖忠礼.2006.冈底斯造山带的时空结构及演化.岩石学报,22(3): 521-533.
    邱家骧.1991.应用岩浆岩岩石学.武汉:中国地质大学出版社,161,401-402.
    邱瑞照.2002.青藏高原西部火成岩与新特提斯构造演化.博士学位论文.中国地质大学(北京),99pp.
    邱瑞照,周肃,常海亮,等.2002.香花岭花岗岩稀土元素演化.现代地质,16(1): 53-58.
    史长义,鄢明才,迟清华.2008.中国花岗岩类化学元素丰度.北京:地质出版社,1-124.
    沈显杰,张文仁,杨淑贞,等.1990.青藏高原南北地体壳幔热结构差异的大地热流证据.中国地质科学院院报,21:203-214.
    王保弟,许继峰,曾庆高,康志强,陈建林,董彦辉.2007.西藏改则地区拉果错蛇绿岩地球化学特征及其成因.岩石学报,23(6):1521-1530.
    王鸿祯,史晓颖,王训练,等.2000.中国层序地层研究.广州:广州科学技术出版社,1-513.
    王立全,潘桂堂,朱弟成,周长勇,袁四化,张万平.2008.西藏冈底斯带石炭纪—二叠纪岛弧造山作用:火山岩和地球化学证据.地质通报,27(9):1509-1534.
    王洁明,雍永源,李永灿.1994.西藏班戈花岗岩成因、构造环境及其含锡性.地质论评,40(2):173-181.
    王中刚,于学元,赵振华,等.1989.稀土元素地球化学.北京:科学出版社,225-246.
    吴福元,李献华,郑永飞,高山.2007.Lu-Hf同位素体系及其应用.岩石学报,23(2):185-220.
    吴元保,郑永飞.2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报,49(16):1589-1604.
    吴珍汉,江万,周继荣,李冀湘.2001.青藏高原腹地典型岩体热历史与构造-地貌演化过程的热年代学分析.地质学报,75(4):468-476.
    吴珍汉,孟宪刚,胡道功,等.2003.中华人民共和国1:25万区域地质调查报告(当雄幅),1-617.
    吴珍汉,胡道功,刘琦胜,叶培盛,吴中海.2006.念青唐古拉花岗岩热演化历史和山脉隆升过程的热年代学分析.地球学报,26(6):505-512.
    吴功建,高锐,余钦范,等.1991.青藏高原“亚东—格尔木地学断面”综合地球物理调查与研究.地球物理学报,34(2):552-561.
    吴功建.1994.全球地学断面(GGT)——以亚东—格尔木地学断面为例.地球物理学进展,9(4):1-3.
    西藏自治区地质矿产局.1993.西藏自治区区域地质志.北京:地质出版社,388-390.
    夏林圻,马中平,李向民,等.2009.青藏高原古新世—始新世早期(65-40Ma)火山岩—同碰撞火山作用的产物.西北地质,42(3):1-25.
    熊绍柏,刘宏兵,于桂生.1998.青藏高原岩石圈结构与构造的人工地震探测研究.潘裕生,孔祥儒,青藏高原岩石圈结构演化和动力学.广州:广东科技出版社,1-35.
    许志琴,杨经绥,李海兵,等.2006.青藏高原与大陆动力学——块体拼合、碰撞造山及高原隆升的深部驱动力.中国地质,33(2):221-238.
    杨进辉,朱美妃,刘伟,等.2003.胶东地区郭家岭花岗闪长岩的地球化学特征及其成因.岩石学报,19(4):692-700.
    杨日红,李才,迟效国,王天武.2003.西藏永珠-纳木错蛇绿岩地球化学特征及其构造环境初探.现代地质,17(1):14-19.
    叶培胜,吴珍汉,胡道功,等.2004.西藏纳木错西岸蛇绿岩的地球化学特征及其形成环境.现代地质,18(2):237-243.
    叶培胜,吴珍汉,胡道功,等.2004.西藏永珠-果芒错蛇绿岩的地球化学特征及其构造意义.现代地质,19(4):508-514.
    岳雅慧,丁林.2006.西藏林周基性岩脉的40Ar/39Ar年代学、地球化学及其成因.岩石学报,22(4):855-866.
    张宏飞,徐旺春,郭建秋,宗克青,蔡宏明,袁洪林.2007.冈底斯印支期造山事件:花岗岩类锆石U-Pb年代学和岩石成因证据.地球科学,32(2):155-166.
    张宏飞,徐旺春,郭建秋,宗克青,蔡宏明,袁洪林.2007.冈底斯南缘变形花岗岩锆石U-Pb年龄和Hf同位素组成:新特提斯洋早侏罗世俯冲作用的证据.岩石学报,23(6):1347-1353.
    张旗,潘国强,李承东,等.2007.花岗岩构造环境问题:关于花岗岩研究的思考之三.岩石学报,23(11):2683-2698.
    张玉清.2009.内蒙古苏尼特左旗八音乌拉二叠纪埃达克质花岗闪长岩类地球化学特征及其地质意义.岩石矿物学杂志,28(4):329-338.
    赵新福,李建威,马昌前,郎银生.2007.北淮阳古碑花岗闪长岩侵位时代及地球化学特征:对大别山中生代构造体制转换的启示.岩石学报,2007,23(6):1392-1402.
    赵文津及INDEPTH项目组.2001.喜马拉雅山及雅鲁藏布江缝合带深部结构与构造研究.北京:地质出版社,63-355.
    赵文津,刘葵,蒋忠惕,吴珍汉,赵逊,史大年,熊嘉育.2004.西藏班公湖—怒江缝 合带—深部地球物理结构给出的启示.地质通报,23(7):623-635.
    赵志丹,莫宣学,罗照华,周肃,董国臣,王亮亮,张凤琴.2003.印度—亚洲俯冲带结构—岩浆作用证据.地学前缘,10(3):149-157.
    郑有业,许荣科,赵甲,平等.2003.藏北东巧蛇绿混杂岩带北侧苍见岛弧的厘定及地质意义.青藏高原及邻区地质与资源环境学院学术讨论会论文摘要汇编
    周剑雄,陈振宇.2007.电子探针下锆石阴极发光的研究.北京:地质出版社,1-109.
    周详,曹佑功.1984.西藏板块构造—建造图及说明书.北京:地质出版社,1-20.
    周文戈,谢鸿森,刘永刚,等.2005.2.0GPa块状斜长角闪岩部分熔融——时间和温度的影响.中国科学D辑,35(4):320-332.
    朱弟成,潘桂堂,莫宣学,王立全,廖忠礼,江新胜,耿全如.2005.特提斯喜马拉雅桑秀组英安岩锆石SHRIMP年龄.科学通报,50(4):375-379.
    朱弟成,潘桂堂,莫宣学,王立全,廖忠礼,赵志丹,董国臣,周长勇.2006.冈底斯中北部晚侏罗世—早白垩世地球动力学环境:火山岩约束.岩石学报,22(3):534-546.
    朱弟成,潘桂堂,王立全,莫宣学,赵志丹,周长勇,廖忠礼,董国臣,袁四化.2008.西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论.地质通报,27(9):1535-1550.
    朱弟成,潘桂堂,王立全,莫宣学,赵志丹,周长勇,廖忠礼,董国臣,袁四化.2008.西藏冈底斯侏罗纪岩浆作用的时空分布及构造环境.地质通报,27(4):458-468.
    朱弟成,莫宣学,赵志丹,等.2008.西藏冈底斯带措勤地区则弄群火山岩锆石U-Pb年代学格架及构造意义.岩石学报,24(3):401-412.
    朱弟成,莫宣学,赵志丹,牛耀龄,潘桂堂,王立全,廖忠礼.2009.西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化:新观点.地学前缘,16(2):1-19.
    朱弟成,莫宣学,王立全,赵志丹,牛耀玲,周长勇,杨岳衡.2009.西藏冈底斯东部察隅高分异I型花岗岩的成因:锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束.中国科学,39(7):833-848.
    朱同兴,庄忠海,周铭魁,潘忠习,冯心涛.2006.喜马拉雅山北坡奥陶纪—古近纪构造古地磁新数据.地质通报,25(1-2):76-82.
    朱杰,刘早学,杜远生,等.2004.拉孜县幅地质调查新成果及主要进展.地质通报,23(5-6):471-474.
    朱杰,刘早学,杜远生,等.2005.西藏雅鲁藏布江缝合带中段中生代放射虫硅质岩成因及其大地构造意义.中国科学D辑:地球科学,35(12):1131-1139.
    Aitchison J C, Badengzhu A, Davis M, et al..2000. Remnants of a Cretaceous intra-oceanic subduction system within the Indus-Yarlung suture (southern Tibet). Earth Planet Sci Lett,183: 231-244.
    Aitchison J C, Abrajevitch A, Ali J R, et al..2002. New insights into the evolution of the Yarlung Tsangpo suture zone, Xizang (Tibet), China. Episodes,25 (2):90-94.
    Allegre C J, Courtillot V, Tapponnier P, et al..1984. Structure and evolution of the Himalaya-Tibet orogenic belt. Natrue, 307:17-22.
    Altherr R, Kunst F H, Langer C, Otto J.1999. Interaction between crustal-derived felsic and mantle-derived mafic magmas in the Oberkirch Pluton (European Variscides, Schwarzwald, Germany). Contrib. Mineral Petrol.,137:304-322.
    Altherr R, Holl A, Hegner E, Langer C, Kreuzer H.2000. High-potassium, calc-alkaline plutonism in the European Variscides:northern Vosges(France) and northern Schwarzwald(Germany). Lithos,50:51-73.
    Armijo R, Tapponnier P, et al..1986. Quaternary extension in southern Tibet:Field observations and tectonic implications. Journal of Geophysical Research,91:13803 - 13872.
    Atherton M P, Petford N.1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature,362:144 - 146.
    Barbarin Bernard.1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos,46:605-626.
    Barazangi M, Ni J.1982. Velocities and propagation characteristic of Pn and Sn beneath the Himalaya arc and Tibetan plateau:Possible evidence for underthrusting of Indian continental lithosphere beneath Tibet. Geology,10:179-185.
    Barker J A, Menzites M A, Thirlwall M F, et al..1997. Petrogenesis of Quaternary intraplate volcanism Sana'a Yenmen:Implication and polybaric melt hybridization. Journal of Petrology, 38:1359-1390.
    Batchelor R A and Bowden P.1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology,48:43-55.
    Beck R A, Burbank D W, Sercombe W J, et al..1995. Stratigraphic evidence for an early collision between northwest India and Asia. Nature,373:55-58.
    Blisniuk P M, Hacker B, Glodny J, et al..2001. Normal faulting in central Tibet since at least 13.5 Myr ago. Nature,412:628-632.
    Brown G C, Thorpe R S, Webb P C.1984. The geochemical characteristics of granitoids in contrasting arcs and comments on magmas sources. J. geol. S oc. London,141:413 -426.
    Bruce M C and Niu Y.2000. Evidence for Palaeozoic magmatism recorded in the Late Neoproterozoic Marlborough ophiolite, New England Fold Belt, central Queenland. Australian Journ. Earth Sci.,47:1065-1076.
    Campbell I H, Griffiths R W.1993. The evolution of mantle's chemical structure. Lithos, 30:389-399.
    Castro A.1987. On granitoid emplacement and related structures. A review. Geologische Rundschau,76 (1):101-124.
    Chu M F, Chung S L, Song B, et al..2006. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of Southern Tibet. Geology,34 (9):745-748.
    Clift P D, Degnan P J, Hannigan R, et al..2000. Sedimentary and geochemical evolution of the Dras forearc basin, Indus suture, Ladakh Himalaya, India. Geological Society of America Bulletin,112 (3):450-466.
    Collins W J, Beams S D, White A J R et al..1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib. Mineral. Petrol.,80:189-200.
    Condie K C.2005. TTGs and adakites:are they both slab melts? Lithos,80:33-44.
    Copeland P, Harrison T M., Pan Y, Kidd W S F, Roden M, Zhang Y Q.1995. Thermal evolution of the Gangdese batholith, southern Tibet:a history of episodic unroofing. Tectonics, 14:223-236.
    Coulon C, Maluski H, Bollinger C, Wang S.1986. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet:39Ar/40Ar dating, petrological characteristics and geodynamical significance. Earth and Planetary Science Letters,79:281-302.
    Decelles P G, Kapp P, Ding L, Gehrels G E.2007. Late Cretaceous to middle Tertiary basin evolution in the central Tibetan plateau:changing environments in response to tectonic portioning, aridification, and regional elevation gain. Geological Society of Americal Bulletin, 119:654-680.
    Defant M J, Drummond M S.1990. Derivation of some modern arc magmas by melting of young subducted ithosphere. Nature,347 (6294):662-665.
    Dewey J F, Shackleton R M., Chang C F, Sun Y Y.1988. The tectonic evolution of the Tibetan plateau. Philosophical transactions of the Royal Society of London (Series A): mathematical and physical. Sciences,327:379-413.
    Ding L, Kapp P, Yin A, Deng W M, Zhong D L.2003. Early Tertiary volcanism in the Qiangtang terrane of centeral Tibet:evidence for a transition from oceanic to continental subduction. Journal of Petrology,44:1833-1865.
    Drummond M S, Defant M J.1990. A model for trondhjemite-tonalite-dacite genesis and crust growth via slab melting:Archean to modern comparisons. J. Geophys. Res.,95 (B13): 21503-21521.
    Fan weiming, Guo feng, Wang yuejun, Zhang ming.2004. Late Mesozoic volcanism in the northern Huaiyang tectono-magmatic belt, central China:partial melts from a lithospheric mantle with subducted continental crust relicts beneath the Dabie orogen? Chemical Geology,209:27-48.
    Flierdt T, Hoernes S, Jung S, Masberg P, Hoffer E, Schaltegger U, Friedrichsen H.2003. Lower crustal melting and the role of open-system processes in the genesis of synorogenic diorite-granite-leucogranite associations:constraints from Sr-Nd-O isotopes from the Bandombaai complex, Namibia. Lithos,67:205-226.
    Faure G.1983. Principles of Isotope Geology. Neow York, John Wiley and Sons.
    Flower M, Russo R, Tamaki K, et al..2001. Mantle contamination and the lzu-Bonin-Mariana(IBM)high-tide mark:Evidence for mantle extrusion caused by Tethyan closure. Tectonophysics,333:9-34.
    Frey F A, Chappell B W, Roy S D.1978. Fractionation of rare-earth elements in the Tuolumne Intrusive Series, Sierra Nevada batholith, California. Geology,6:239-242.
    Frey F A, Green D H, Roy S D.1978. Integrated models of basalt petrogenesis:A study of quartz tholeiites to olivine melilities from south eastern Australia utilizing geochemical and experimental petrological data. Journal of Petrology,19:463-513.
    Gibson S A, Kirkpatrick R J, Emmerman R, et al..1982. The trace element composition of lavas and dykes from 3km vertical section through a lava pile of Eastern Iceland. J. Geophys. Res.,87:6532-6546.
    Green T H, Ringwood A E.1968. Genesis of the cal-alkaline igneous rock suite. Chemical Geology,18:105-162.
    Green D H.1975. Genesis of archean peridotitic magmas and constraints on Archean geothermal gradients and tectonics. Geology,3:15- 18.
    Green T H.1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chemical Geology,120:347-359.
    Gutscher M A, Maury R, Eissen J P, et al..2000. Can slab melting be caused by flat subduction? Geology,28 (6):535-538.
    Guynn J H, Kapp P, Pullen A, et al..2006. Tibetan basement rocks near Amdo reveal "missing"Mesozoic tectonism along the Bangong suture, central Tibet. Geology,34(6):505-508.
    Hanson G N,1980. Rare earth elements in petrogenetic studies of igneous systems. Annu. Rev. Earth Planet. Sci.,8:371-406.
    Harris N B W, Pearce J A, Tindle A G.1986. Geochemical characteristics of collision-zone magmatism. In:Coward M P and Reis A C. eds., Collision Tectonics. Spec.Publ.Grol.Soc.Lond., 19:67-81.
    Harris N B W, Xu R H, Lewis C L, Hawkesworth C J, Zhang Y Q.1988. Isotope geochemistry of the 1985 Tibet Geotraverse, Lhasa to Golmud. Phil. Trans. R. Soc. Lond., A327:263-285.
    Harris N B W. Inger S, XuRH.1990. Cretaceous plutonism in Central Tibet:an example of post-collision magmatism? Journal of Volcanology and Geothermal Research 44:21-32.
    Harris N B W, Inger S, Xu R H.1990. Cretaceous plutonism in Central Tibet:an example of post-collision magmatism? Journal of Volcanology and Geothermal Research,44:21-32.
    Harrison T M, Copeland P, Kidd W S F, Lovera O M.1995. Activation of the Nyainqentanghla Shear Zone:Implications for uplift of the southern Tibetan Plateau. Tectonics, 14(3):658-676.
    Hassanen M A, Elnisr S A, Mohamed F H.1996. Geochemistry and petrogenesis of Pan-African Ⅰ-type granitoids at Gabal Igla Ahmar, eastern desert, Egypt. Journal of African Earth Science,22 (1):29-42.
    Hess P C.1992. Phase equilibria constrints on the origin of ocean floor basalts. In:Morgan J P, Blackman D K and Sinton J M (eds.). Mantle Flow and Melt Generation at Mid-Ocean Ridges. Geophysical Monograph, American Geophysical Union,71:67-102.
    Hergt J M, Chappell B W, Mcculloch M T, et al..1989. Geochemical and isotopic constraints on the origin of the Jurassic dolerites of Tasmania. J of Petrol,30 (4):841-883.
    Hou Z Q, Gao Y F, Qu X M, et al..2004b. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth & Planet. Sci. Lett.,220:139-155.
    Hsu K J, Pan G T, SengorA M C.1995. Tectonic evolution of the Tibetan Plateau:A working hypothesis based on the archipelago model of orogenesis. International Geology Review,37: 473-508.
    Ireland T R, Gibson C M.1998. SHRIMP monazite and zircon geochronology of high-grade metamorphism in New Zealand. J Metamorphic Geol,16:149-167.
    Ji W Q, Wu F Y, Chung S L, et al..2009. Zircon U-Pb geochronology and Hf isotopic constrains on petrogenesis of the Gangdese batholith, southern Tibet. Chem Geol,262:229-245.
    Jin Y, Mcnutt M K, Zhu Y, Isacks B.1996. Mapping the descent of Indian and Eurasian plates beneath the Tibetan Plateau from gravity anomalies. Journal of Geophysical Research, 101(B5):11275-11290.
    Jung S, Hoernes S, Mezger K.2002. Synorogenic melting of mafic lower crust:constraints from geochronology, petrology and Sr, Nd, Pb and O isotope geochemistry of quartz diorites (Damara orogen, Namibia). Contrib Mineral Petrol.,143:551 -566.
    Karacik Z, Tuysuz O.2009. Petrogenesis of the Late Cretaceous Demirkoy Igneous Complex in the NW Turkey:Implications for magma genesis in the Strandja Zone. Lithos, doi:10.1016/j.lithos.2009.09.012.
    Kapp P, Murphy M A, Yin A, Harrison T M, Ding L, Guo J.2003. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics,22:1029; doi: 10.1029/2001TC001332.
    Kapp J L D, Harrison T M, Kapp P, Grove M, Lovera O M, Ding L.2005. Nyainqentanglha Shan:A window into the tectonic, thermal, and geochemical evolution of the Lhasa block, southern Tibet. Journal of Geophysical Research,110, B08413:1-23.
    Kapp P, DeCelles P G, Gehrels G E, Heizler M, Ding L.2007. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. GSA Bulletin,119: 917-932.
    Kay S M, Mpodozis C, Ramos V A, Munizaga F.1991. Magma source variations for mid-late Tertiary magmatic rocks associated with a shallowing subduction zone and a thickening crust in the central Andes (28 to 33°S). In:Harmon R S, Rapela C W (Eds.), Andean Magmatism and its Tectonic Setting. Geol. Soc. Am. Spec. Pap.,265:113-137.
    Keay S, Steele D, Compston W.1999. Identifying granite sources by SHRIMP U-Pb zircon geochronology:An application to the Lachlan foldbelt. Contributions to Mineralogy and Petrology,137:323-341.
    Kearey P, Vine F J.1990. Global Tectonics. London:Blackwell Scientific Publications, 182-184.
    Kelemen P B.1995. Genesis of high Mg# andesites and the continental crust. Contrib. Mineral Petrol.,120:1-19.
    Keppler H.1996. Constraints from partitioning experiments on the composition of subduction zone fluids. Nature,380:237-240.
    Kidd W S F, Pan Y, Chang C, Coward M P, Dewey J F, Gansser A, Molnar P, Shackleton R M, Sun Y.1988. Geological mapping of the 1985 Chinese-British Tibetan (Xizang-Qinghai) Plateau geotraverse route. Phil. T rans. Roy. Soc, London A,327:287-305.
    Kushiro I.1968. Compositions of magmas formed by partial zone melting of the earth upper mantle. Journal of Geophysical Research,73(2):619-634.
    Loiselle M C, Wones D R.1979. Characteristics and origin of anorogenic granites. Geol. Soc. Am. Abs. with Prog.,11,468.
    Mahoney J J, Frei R, Tejada M L G, et al..1998. Tracing the Indian Ocean Mantle Domain Through Time:Isotopic Results from Old West Indian, East Tethyan, and South Pacific Seafloor. Journal of Petrology,39:1285-1306.
    Mason P R D, Downes H, Thirlwall M F, Seghedi I, Szakacs A, Lowryj D, Mattey D.1996. Crustal Assimilation as a Major Petrogenetic Process in the East Carpathian Neogene and Quaternary Continental Margin Arc, Romania. Journal of Petrology,37(4):927-959.
    Martin H.1993. The mechanisms of petrogenesis of the Archaean continental crust comparison with modem processes. Lithos,30:373-388.
    Meedonald R, Rogers N W, Fitton J G, et al..2001. Plume Lithosphere interaction in the generation of the basalts of the Kenya Rift, East Arica. Journal of Petrology,42:877-900.
    Miller C F, McDowell S M and Mapes R W.2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology,31:529-532.
    Mercier J L, Armijo R, et al..1987. Change from Late Tertiary compression to Quaternary extension in southern Tibet during the India-Asia collision. Tectonics,6::275-304.
    Molnar P., Tapponnier P..1975. Cenozoic tectonics of Asia:effects of a continental collision. Science,189:418-426.
    Molnar P., Tapponnier P..1978. Active tectonics of Tibet. Journal of Geophysical Research,83:5361-5375.
    Mo X X, Dong G C, Zhao Z D, Guo T Y, Wang L L, Chen T.2005. Timing of magma mixing in the Gangdese magmatic belt during the India-Asian collision:zircon SHRIMP U-Pb dating. Acta Geologica Sinica,79:66-76.
    Mo X X, Hou Z Q, Niu Y L, et al..2007c. Mantle contributions to crustal thickening during continental collision:evidence from Cenozoic igneous rocks in southern Tibet. Lithos,96:225-242.
    Mo X X, Niu Y L, Dong G C, et al..2008. Contribution of syncollisional felsic magmatism to continental crust growth:A case study of Paleogene Linzizong volcanic succession in southern Tibet. Chemical Geology,250:49-67.
    Pan Y, Kidd W S F.1992. Nyainqentanghla shear zone, A late Miocene extensional detachment in the southern Tibetan Plateau. Geology,20:775-778.
    Pank T.1996. The brine of the Earth. Nature,380:202-203.
    Patriat P, Achache J.1984. India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature,311:615-621.
    Patzelt A, Li H M, Wang J D, et al..1996. Palaeomagnetism of Cretaceous to Tertiary sediments from southern Tibet:Evidence for the extent of the northern margin of India prior to the collision with Eurasia. Tectonophysics,259:259-284.
    Pearce J A, Cann J R.1971. Ophiolite origin investigated by discriminant analysis using Ti, Zr, and Y. Earth Planet Sci. Lett.,12:339-349.
    Pearce J A, Cann J R.1973. Tectonic setting of basic volcanic rocks determined using trace element analysis. Earth Planet Sci. Lett.,19:290-300.
    Pearce J A, Harris N B W, Tindle A G.1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology,25(4):956-983.
    Pearce J A, Thirlwall M F, Ingram G, et al..1992. Isotopic evidence for the origin of Boninites and related rocks drilled in the Izu-Bonin(Ogasawara)forearc, Leg 125. In:Fryer P, Pearce J A, Stokking L(eds.). Proceedings of the Ocean Drilling Program. Scientific Results, 125::237-261.
    Perfit M R, Gust D A, Bench A E, et al..1980. Chemical characteristics of island-arc basalts:Implications for mantle sources. Chem Geol,30:227-256.
    Prouteau G, Scaillet B, Pichavant M, et al..2001. Evidence for mantle metasomatism by hydrous silici melts derived from subducted oceanic crust. Nature,410:197-200.
    Ramos A.1999. Plate tectonic setting of the Andean Cordillera. Episodes,22(3):183-190.
    Rapp R P and Watson E B.1995. Dehydration melting of metabasalt at 8-32 kbar: Implication for continental growth and crust-mantle recycling. J. Petrol.,36:891-931.
    Rapp R P, Watson E B, Miller CF.1991. Partial melting of am-phibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Res,51:1-25.
    Ringwood A E.1974. Petrolocial evolution of island arc system. J. Geol. Soc. London,130: 183-204.
    Ringwood A E.1975. Composition and Petrology of the Earth's Mantle. New York: McGraw-Hill.
    Rollinson H R.1993. Using Geochemical Data:Evaluation, Presentation, Interpretation. New York:Longman Scientific & Technical,1-352.
    Saunders A D, Norry M J, Tarney J.1988. Origin of MORB and Chemically-Depleted Mantle Reservoirs:Trace Element Constraints. Journal of Petrology, Special Lithosphere Issue,415-445.
    Sen C, Dunn T.1994. Dehydration melting of a basalt composition amphibolite at 1.5 and 2.0 GPa:implications for the origin of adakites,120:1-19.
    Shaw A, Downes H, Thirlwall M F.1993. The quartz-diorites of Limousin:Element and isotopic evidence for Devono-Carboniferous subduction in the Hercynian belt of French Massif Central. Chemical Geology,107:1-18.
    Staudigel H, Hart S R.1983. Alteration of basaltic glass:Mechanism and significance for the oceanic crust seawater budget. Geochim. Cosmochim. Acta,47:337-350.
    Sylvester P J.1998. Postcollisional strongly peraluminous granites. Lithos,45:29-44.
    Taylor S R.1969. Trace Element Abundance in AndesiteⅡ.Saipan, Bougainville and Fiji. Contrib. Mineral Petrol.,23:1-26.
    Taylor S R and Kaye M.1969. Genetic signticance of Co, Cr, Ni, SC and V content of andesites. Geochimiea et Cosmochimica Acta,33:275-286.
    Taylor S R.1979. Chemical composition and evolution of the continental crust:the rare earth element evidence, In:Mcelhinny. ed., The Earth, Its Origin, Structure and Evolution London:Academic Press,353-372.
    Tilmann F, Ni J, INDEPTH Ⅲ seismic team.2003. Seismic imaging of the downwelling Indian lithosphere beneath Central Tibet. Science,300:1424-1427.
    Urabe T, Sakagawa M, Kamioka H.1989. Experimentally determined partition coefficients of REE between granitic melt and vapour (abstract). Open-File Report. Geology Survey Japan, 128:1-2.
    Watson E B, Harrison T M.1983. Zircon saturation revisited:temperature and composition effect in a variety of crustal magmas types. Earth and Planetary Science Letters,64:295-304.
    Wendlandt R F, Harrison W J.1979. Rare earth partitioning between immobile carbonate and silicate liquid and CO2 vapor:results and implications for the formation of light rare earth-enriched rocks. Contrib. Mineral Petrol.,69:409-419.
    Wen D R, Liu D Y, Chung S L, et al..2008. Zircon SHRIMP U-Pb ages of the Gangdese batholith and implications for Neotethyan subduction in southern Tibet. Chem Geol,252:191-201.
    Willems H, Zhou Z, Zhang B.1996. Stratigraphy of the Upper Cretaceous and Lower Tertiary strata in the Tethyan Himalayas of Tibet (Tingri area, China). Geological Rundsche,85: 723-754.
    Williamas H, Turner S, Kelley S, et al..2001. Age and composition of dikes in southern Tibet:New constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology,29 (4):339-342.
    Wilson M.1989. Igneous Petrogenesis. London:Unwin Hyman.
    Wolf M.B., Wyllie P.J.,1993. Garnet growth during amphibolite anatexis:implications of a garnetiferous restite. J. Geol.,101:357-373.
    XuRH, Scharer U, Allegre C J,1985. Magmatism and metamorphism in the Lhasa block (Tibet):a geochronological study. Journal of Geology,93:41-57.
    Yin A, Harrison T M.2000. Geologic Evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences,28:211-280.
    Zhu Dicheng, Mo Xuanxue, Niu Yaoling, Zhao Zhidan, Wang Liquan, Liu Yongsheng, Wu Fuyuan.2009. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terran, Tibet. Chemical Geology,268:298-312.
    Zhang Kaijun, Xia Bangdong, Wang Guanmin, Li Yongtie, Ye Hefei.2004. Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China. Geological Society of America Bulletin,116(9):1202-1222.
    Zhu Dicheng, Zhao Zhidan, Pan Guitang, Lee Haoyang, Kang Zhiqiang, Liao Zhongli, Wang Liqiang, Li Guangming, Dong Guochen, Liu Bo.2009. Early Cretaceous subduction-related adakite-like rocks of the Gangdese Belt, southern Tibet:Products of slab melting and subsequent melt-peridotite interaction? Journal of Asian Earth Sciences,34:298-309.
    Zindler A, Hart S.1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences,14:493-571.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700