用户名: 密码: 验证码:
铜配合物催化剂制备及其羰基合成碳酸二甲酯性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳酸二甲酯(Dimethyl Carbonate, DMC)是近来受到高度关注的绿色化工产品,羰基合成DMC原料廉价、工艺简单、无污染,是最有前途的工业化方法。CuCl是该法中具有较好羰化活性的催化剂,但存在稳定性差、腐蚀性强及催化剂分离困难等不足,阻碍了其迅速发展,因此,改善与提高催化剂的性能已成为该工艺研发的热点与关键。CuBr2用作催化剂的特点是稳定性与溶解性好,Br-氧化性低,腐蚀性小,但需要克服Cu(Ⅱ)活性较差的不足。考虑到金属配合物具有独特的晶体结构和配合键特性,本文研究CuBr2配合物的羰化性能,包括配合物的制备及表征、热力学分析与机理探讨、过程模拟等方面。
     首先,根据铜络合能力较强的特点,制备了季铵盐、季鳞盐与CuBr2形成的配合物。具有一定电子效应、空间结构的配体,由于配体上正电荷被屏蔽的程度提高,使得络合到CuBr2中的R4N+(R4P+)与Br-离子键对Br-的修饰,改善CuBr2中Br-的活化度,有利于CO、O2及甲醇的插入,形成活性中间体,提高羰化活性。季铵盐修饰的性能优于季鳞盐,这与氮比磷屏蔽程度大的特性相一致,其中以(C3H7)4NBr的活性为最好。N—甲基咪唑及2,2—联吡啶直接与Cu(Ⅱ)结合,形成稳定的配合物,其羰化活性改善有限。
     其次,通过FTIR、XRD、EA、ICP-AES及XPS分析,(C3H7)4NBr与CuBr2形成的配合物结构有[Cu2Br6]2-,而不是常见的[CuX4]2-,铜的价态没有变化,结构式是[(C3H7)4N]2Cu2Br6。以乙醇为溶剂,配体与CuBr2摩尔比为2:1,在353K下回流1h,干燥得到配合物,制备收率为59.2%。该配合物的活性高于CuBr2,与CuCl相当,甲醇的转化率为27.4%,DMC的选择性为98.3%。
     再者,对反应过程进行的热力学分析,揭示出反应自发进行的趋势明显。同时,依据铜配合物活性中心Cu(Ⅱ)价态不变的特征,提出了反应机理不同于前人的氧化还原历程,而是通过双聚结构[Cu2Br6]2-中链接配体的变化,使得替换或络合到Cu2+周围的甲醇、CO及O2活化分子很容易经过桥联反应得到DMC。在此研究基础上,有目的研究了酸碱环境、脱水剂和第二金属助剂的影响,筛选得到由具有脱水性能的弱碱K2CO3、协同助剂ZnBr2和铜配合物组成的复合催化剂,正交实验得到的优化配方,使得甲醇的转化率提高到44.9%,DMC的选择性达到95.1%。
     最后,针对复合催化剂,研究了工艺条件、催化剂循环及气相连续过程的影响,在温度363~378K、压力2.8~3.5 MPa、时间4~6h下,当催化剂浓度0.31g·mL-1、二甲基乙酰胺溶剂量0.30mL·mL-1时,甲醇的转化率为58.1%,DMC的选择性为93.5%;当原料O2控制在20%以下,气速为15~18L·h-1,CO的选择性为95%。ASPEN全流程模拟了过程的可行性及可靠性,为工业化应用提供了重要的技术依据。
Dimethyl carbonate (DMC) is a green chemical attracted high attention. The carbonylation of methanol to DMC is highly promising for industrial application due to the inexpensive substrates, simple process, and low pollution. The catalyst CuCl is widely used for the liquid phase carbonylation of methanol to DMC; however, the application of CuCl is hindered by the shortcomings of low stability, strong corrosiveness, and difficult separation of reaction mixture. As a result, the improvement of catalytic performance becomes a hot research topic. We choose CuBr2 instead of CuCl as research direction because of the better stability and solubility as well as lower corrosiveness of CuBr2 than CuCl, while the catalytic activity of Cu(II) is relatively low. Taking account of the special crystalline structure and coordination property of metal complexes, we employed transition metal complexes as catalysts and systematically investigated their catalytic performance, which includes the preparation and characterization of complexes, thermodynamics, mechanism, and process simulation.
     Firstly, we choose quaternary ammonium salts and phosphonium salts as ligands to form complexes with CuBr2. Interaction between R4N+ or (R4P+) in ligand and Br" have been changed to enhance the activation degree of Br- in CuBr2, which are favorable for the generation of reaction intermediates and the insertion of CO, O2 and methanol, and subsequently enhance the reaction activity. The effect of ligand quaternary ammonium salts is obvious than phosphonium salts, which is consistent with the shield extent of nitrogen and phosphor atoms. Among them, the ligand (C3H7)4NBr in quaternary ammonium salts showed the best promoting effect. N-methyl-imidazole and 2,2-bipyridine can react with CuBr2 to form stable copper complexes, which is not beneficial to the addition of reactant molecules. Hence, the promotion effects are worse than those of (C3H7)4NBr and (C6H5)4PBr.
     Secondly, on the basis of the results of FTIR, XRD, EA, ICP-AES, and XPS, the structure of copper complexes is [Cu2Br6]2-rather than the common structure [CuX4]2-. The chemical formula of copper complexes is [(C3H7)4N]2Cu2Br6. The optimal preparation conditions were the molar ratio of CuBr2 to (C3H7)4NBr 1:2, ethanol as solvent, the temperature of 353 K, the reaction time of 1~1.5 h, and dried in low-temperature vacuum system. The complexes catalyst can be obtained with the yield of 59.2%. The catalytic performance of the complexes is higher than that of CuBr2, and is almost equivalent to that of CuCl catalyst. Methanol conversion and DMC selectivity are 27.4% and 98.3%, respectively.
     Thirdly, thermodynamic analysis to the process of liquid phase oxidative carbonylation of methanol to DMC was obtained under certain reaction conditions, which reveals that the tendency to spontaneous reaction is evident. The reaction mechanism was also proposed according to the fact that the constant valence state of Cu(II) in the reaction. DMC was produced from the reaction of methanol, CO, and O2 activated by Cu2+through the variation of ligand in [Cu2Br6], rather than via the conventional oxidation-reduction pathway. The effects of acidic or basic environment, dehydration agents, and metal additives were also investigated. The optimal composition of composite catalysts was obtained by orthogonal experiments and consisted of K2CO3, ZnBr2, and copper complexes. Under the optimal conditions, the methanol conversion can reach 44.9% with DMC selectivity of 95.1%.
     Finally, on the catalysis of the complex catalysts, we evaluated the effects of process conditions, recycling of catalysts, and gas continuous process on catalytic activity. Under the conditions of reaction temperature 363~378 K, reaction pressure 2.8-3.5 MPa, reaction time 4-6 h, gas velocity 15~18 L·h-1, total catalysts concentration 0.31 g·mL-1, and solvent dimethylacetamide volume 0.30 mL·mL-1, the methanol conversion and DMC selectivity can reach 58.1% and 93.5%, respectively. When the concentration of raw materials O2 is controlled below 20%, CO selectivity could reach 95%. We investigated the feasibility and reliability of the whole carbonylation process by ASPEN process simulation. The results may provide important technical supports for potential industrial applications.
引文
[1]闵恩泽,吴巍.绿色化学与化工[M].北京:化学工业出版社,2000.
    [2]王延吉,赵新强.绿色催化过程与工艺[M].化学工业出版社,2002.
    [3]Ono Y. Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block[J]. Appl Catal A:Gen,1997,155:133~166.
    [4]Tundo P, Perosa A. Green organic synthesis organic carbonate as methylating agents[J]. Chem Rec, 2002, (2):13~23.
    [5]张雪娇,程永清.化工生产中“绿色原料”—碳酸二甲酯的应用[J].化学工业与工程技术,2005,26(2):40~43.
    [6]段元骐.羰基合成化学[M].北京:化学工业出版社,1996.
    [7]谢克昌,李忠.甲醇及其衍生物[M].北京:化学工业出版社,2002.
    [8]田恒水,张广遇,黄振华.开创明日化学的新的低污染泛用基础化学原料—碳酸二甲酯[J].化工进展,1995,(6):7-14.
    [9]Ono Y. Dimethyl carbonate for environmentally begin reaction[J]. Pure Appl Chem,1996,68: 367~375.
    [10]潘鹤林,田恒水,宋新杰.碳酸二甲酯在有机合成中的应用[J].合成化学,1999,(7):138~144.
    [11]Rivetti F. The role of dimethyl carbonate in the replacement of hazardous chemicals[J]. Surf Chem Catal,2000, (3):497~503.
    [12]王卫,吴耀国,张晓庆.替代光气进行有机合成的绿色化学方法[J].贵州化工,2004,29(5):8-11.
    [13]吴顺元,肖亚平,孙培培,等.略论碳酸二甲酯的绿色[J].化学化工时刊,2003,17(6):11~15.
    [14]魏文德.有机化工原料大全(第二卷)[M].北京:化工工业出版社,1989.
    [15]方云进,肖文德,朱开宏,等.碳酸二甲酯溶剂在溶剂型涂料中的应用研究[J].涂料工业,2000,(1):26~28.
    [16]陆文明,王李军,张荣伟,等.碳酸二甲酯在涂料中的应用[J].涂料技术与文摘,2004,25(5):21~23.
    [17]陆婉珍,龙义成,黎洁等.碳酸二甲酯作为汽油添加剂的评价[J].石油学报,1997,13(3):40~45.
    [18]Pacheco M A, Marshall C L. Reviews of dimethyl carbonate manufacture and its characteristics as a fuel additive [J]. Energy Fuels,1997,11(1):1~29.
    [19]Delledonne D, Rivetti F, Romano U. Developments in the production and application of dimethyl carbonate [J]. Appl Catal A:Gen,2001, (221):241~251.
    [20]王书明,江琦.碳酸二甲酯合成的新进展及应用[J].化工中间体,2002,(13):10~11.
    [21]王建军,朱红军.碳酸二甲酯国内外生产及技术发展概况[J].化学工程师,2003,95(2):41~42.
    [22]Hans Josef B, Heinrich K, Siegfried B. Process for the preparation of dimethyl carbonate[P]. US 4335051,1983.
    [23]Knifton J F. Process for cogeneration of ethylene glycol and dimethyl carbonate[P]. US5214182, 1993.
    [24]刘宗健,蔡哗.酯交换法合成碳酸二甲酯研究进展[J].浙江化工,1999,30(2):18~21.
    [25]刘丽明,张焕仁.碳酸二甲酯的制备方法及关键技术[J].江苏化工,2004,32(2):5-8.
    [26]罗自坚,陈令海.一种联合生产碳酸二甲酯和丙二醇的工艺[P].CN1235865C,2006.
    [27]田恒水,朱云峰,刘纪昌,等.反应精馏酯交换联产碳酸二甲酯和二元醇的方法[P].CN100364956C,2008.
    [28]江琦,赵军,冯景贤.由二氧化碳直接合成碳酸二甲酯[J].天然气化工,2001,26(6):34~37.
    [29]姜斌,王大为,冯炜,等.二氧化碳和甲醇直接合成碳酸二甲酯的技术[J].化工进展,2003,22(1):43~45.
    [30]孔令丽,钟顺和,柳荫.Cu/NiO-Mo03/Si02光催化CO2与CH3OH合成DMC的反应性能[J].催化学报,2005,26(10):917~922.
    [31]常雁红,韩布兴,姜涛,等.一种直接合成碳酸二甲酯的方法[P].CN1234677C,2006.
    [32]赵艳敏,刘绍英,王公应,等.尿素法合成碳酸二甲酯的研究进展[J].化工进展,2004,23(10):1049~1052.
    [33]王延吉,赵新强,邬长城.尿素法合成碳酸二甲酯用金属氧化物催化剂及其制备方法[P],CN1188213C,2005.
    [34]赵新强,张艳,陈英.以脂肪族二元醇为循环剂的尿素醇解合成碳酸二甲酯方法[P].CN1298696C,2007.
    [35]孙予罕,魏伟,赵宁,等.用于由尿素和甲醇合成碳酸二甲酯的催化剂及其制法和应用[P].CN100395019C,2008.
    [36]Romano U, Tesel R, Cipriani G, et al. Method for the preparation of esters of carbonic acid[P]. US 4219391,1980.
    [37]Romano U, Tesel R, Maurl M M, et al. Synthesis of dimethyl carbonate from methanol, carbon monoxide, and oxygen catalyzed by copper compound[J]. Ind Eng Chem Prod Res Dev,1980, (19): 396~403.
    [38]Paret G, Milanese S D, Donati G, et al. Process for producing dimethyl carbonate and apparatus suitable for such purpose[P]. US5536864,1996.
    [39]Bhattachacharya A K. Catalyst for preparation of dimethyl carbonate[P]. US4879266,1989.
    [40]Sato Y, Kagotani M, Yamamoto T, et al. Novel effective poly(2,2'-bipyridine-5,5'-diyl)-CuCl2 catalyst for synthesis of DMC by oxidative carbonylation of methanol [J]. Appl Catal A:Gen,1999, (185):219~226.
    [41]雷希纳J,韦格纳P,布施H·.J,等.对铜催化制备碳酸二甲酯的液体反应物的处理方法[P].CN1058485C,2000.
    [42]李光兴,朱治良,许汉昌,等.甲醇液相氧化羰基合成碳酸二甲酯研究[J].华中理工大学学报,1996,24(3):105~108.
    [43]李光兴,王克洪,向兴源,等.一种液相氧化羰基化合成碳酸二甲酯的新工艺方法[P].CN1081182C,2002.
    [44]Curnutt G L. Process for preparing dihydrocarbyl carbonate using a nitrogen-containing coordination compound supported on actived carbon [P]. US4625044,1986.
    [45]Curnutt. G L. Catalytic vapor phase process for producing dihydrocarbyl carbonates[P]. US5004827, 1991.
    [46]Curnutt G L. Method for reactivating catalysts used in catalytic vapor phase process for producing dihydrocarbyl carbonates[P]. US5132259,1992.
    [47]王延吉,王淑芳,赵新强.一种碳酸二甲酯的制备方法[P].CN1226272C,2005.
    [48]孙予罕,魏伟,王慧,等.一种多相催化合成碳酸二甲酯催化剂及其制法和应用[P].CN100335167C,2007.
    [49]李忠,任军,谢克昌.合成碳酸二甲酯的催化剂及其制备方法[P],CN100391600C,2008.
    [50]Keigo N, Souma Y, Yamarnoto T, et al. Process for continuously producing dimethyl carbonate [P]. US5631396,1997.
    [51]肖文德,江志东,吴良泉,等.一种合成草酸二甲酯并副产碳酸二甲酯的方法[P].CN101190884A,2008.
    [52]孟凡东,李朝恒,王秀珍,等.一种生产碳酸二甲酯的方法[P].CN100491329C,2009.
    [53]屈强好.碳酸二甲酯的市场需求和生产技术进展[J].化工中间体,2005,(6):22~27.
    [54]孙晓牧.碳酸二甲酯的生产现状及发展分析[J].精细与专用化学品,2007,15(6):32~35.
    [55]赵强,孟双明,王俊丽,等.甲醇氧化羰基化合成碳酸二甲酯的研究进展[J].工业催化,2008,16(4):1~5.
    [56]张小兵,李忠,卫有存.甲醇液相氧化羰化合成碳酸二甲酯催化剂研究进展[J].工业催化,2004,12(11):19~23.
    [57]Bhattacharya A K. Fuel Oxygenates:Organic Carbonate Synthesis[J]. Chem Soc Div Fuel Chem,1995, 40(1):119~122.
    [58]向兴源,李光兴,王克洪,等.液相氧化羰化合成碳酸二甲酯的多管循环反应器[P].CN1204644A,1999.
    [59]Sato Y, Kagotani M, Souma Y. Poly(pyridine-2,5-diyl)-CuCl2 catalyst for synthesis of dimethyl carbonate by oxidative carbonylation of methanol:catalytic activity and coorosion Influence[J]. Catal Lett,2000,65:123~126.
    [60]Sato Y, Kagotani M, Souma Y. A new type of support'bipyridine containing aromatic polyamide' to CuCl2 for synthesis of dimethyl carbonate by oxidative carbonylation of methanol[J]. J Mol Catal A: Chem,2000,151:79~85.
    [61]Chin C S, Shin D, Won G, et al. The effects of catalyst composition on the catalytic production of dimethyl carbonate [J]. J Mol Catal A:Chem,2000,160:315~321.
    [62]Raab V, Merz M, Sundermeyer J. Ligand Effects in the Copper Catalyzed Aerobic Oxidative Carbonylation of Methanol to Dimethyl Carbonate [J]. J Mol Catal A:Chem,2001,175:51~63.
    [63]王公应,王越,黄涛.非光气法合成DMC[J].合成化学,1999,7(4):364~368.
    [64]Wang G Y, Huang T, Liu M G, et al. Oxidative carbonylation of methanol to dimethycarbonate over copper complex catalysts[J]. J Nat Gas Chem,2000,9(1):8-17.
    [65]王公应,王越.新型甲醇氧化羰基化合成碳酸二甲酯(DMC)催化剂的研究[J].精细与专用化学品,2000,(20):15~18.
    [66]王公应,王越,黄涛,等.一种甲醇液相氧化羰基化合成碳酸二甲酯催化剂[P].CN1114496C, 2003.
    [67]莫婉玲,李光兴,朱永强.咪唑类化合物-CuCl络合催化剂在甲醇氧化羰基化反应中的催化性能[J].燃料化学学报,2003,31(2):124~127.
    [68]莫婉玲,熊辉,朱永强,等.Schiff碱在甲醇液相氧化羰化反应中的双功能作用[J].石油化工.2003,32(2):89~92.
    [69]Mo W L, Li G X, Zhu Y Q. Studies on catalytic properties of complexes of imidazole derivates with CuCl for oxidative carbonylation of methanol [J]. J Fuel Chem Technol,2003,32(2):124~127.
    [70]Mo W L, Xiong H, Li G X, et al. The catalytic performance and corrosion inhibition of CuCl/Schiff base system in homogeneous oxidative carbonation of methanol [J]. J Mol Catal A:Chem,2006,247: 227~232.
    [71]Mo W L, Liu H T, Li G X, et al. Preparation of CuCl/1,10-phenanthroline immobilized on polystyrene and catalytic performance in carbonation of methanol [J]. Appl Catal A:Gen,2007,333:172~176.
    [72]Jiang T, Han B X, Zhao G Y, et al. Oxidative carbonylation of methanol to dimethyl carbonate in ionic liquid 1-butyl-3-methylidazolium hexafluorophatte[J]. J Chem Res(S),2003, (9):549~551.
    [73]Dong W S, Zhou X S, Xin C S, et al. Ionic liquid as an efficient promoting medium for synthesis of dimethyl carbonate by oxidative carbonylation of methanol[J]. Appl Catal A:Gen,2008,334: 100~105.
    [74]Curnutt G L. Process for preparing dihydrocarbyl carbonate using a nitrogen-containing coordination compound supported on actived carbon[P]. US 4625044,1986.
    [75]Curnutt G L. Method for reactivating catalysts used in catalytic vapor phase process for producing dihydrocarbyl carbonates[P]. US 5132259,1992.
    [76]Tomishige K, Sakaihori T, Sakai S, et al. Dimethyl carbonate synthesis by oxidative carbonylation on activated carbon supported CuCl2 catalysts:Catalytic properties and structural change [J]. Appl Catal A:Gen,1999,181(1):95-102.
    [77]Ma X B, Zhao R Z, Xu G H, et al. Physico-chemical properties of supported Cu catalysts for production of dimethyl carbonate[J]. Catal Today,1996, (30):201~206.
    [78]Ma X B, Li Z H, Wang B W, et al. Effect of Cu catalyst preparation on the oxidative carbonylation of methanol to dimethyl carbonate[J]. React Kinet Catal Lett,2002,76(1):179~187.
    [79]马新宾,李振花,王保伟等.甲醇氧化羰基合成碳酸二甲酯原位红外研究[J].天津大学学报(自然科学与工程技术版),2002,35(4):459~463.
    [80]Han M S, Lee B G, Suh I, et al. Synthesis of dimethyl carbonate by vapor phase oxidative carbonylation of methanol over Cu-based catalysts[J]. J Mol Catal A:Chem,2001,171:225~234.
    [81]Han M S, Lee B G, Ahn B S, et al. Surface properties of CuCl2/AC catalysts with various Cu contents: XRD, SEM, TG/DSC and CO-TPD analyses[J]. Appl Surf Sc,2003,211:76~81.
    [82]Han M S, Lee B G, Ahn B S, et al. The role of copper chloride hydroxides in the oxidative carbonylation of methanol for dimethyl carbonate synthesis[J]. J Mol Catal A:Chem,2003,203: 137~143.
    [83]Wang Y J, Zhao X Q, Yuan B G, et al. Synthesis of dimethyl carbonate by gas□phase oxidative carbonylation of methanol on the supported solid catalyst I. Catalyst preparation and catalytic properties[J]. Appl Catal A:Gen,1998,171:255~260.
    [84]Jiang R X, Wang Y J, Zhao X Q, et al. Characterization of catalyst in the synthesis of dimethyl carbonate by gas-phase oxidative carbonylation of methanol [J]. J Mol Catal A:Chem,2002,185: 159~166.
    [85]Wang Y J, Wang S F, Zhao X Q, et al. The effects of promoters on catalytic properties and deactivation-regeneration of the catalyst in the synthesis of dimethyl carbonate [J]. Appl Catal A:Gen, 2003,238:131-139.
    [86]Yang P, Cao Y, Dai W L, et al. Effect of chemical treatment of activated carbon as a support for promoted dimethyl carbonate synthesis by vapor phase oxidative carbonylation of methanol over Wacker-type catalysts[J]. Appl Catal A:Gen,2003,243:323~331.
    [87]Yang P, Cao Y, Hu J C, et al. Mesoporous bimetallic PdCl2-CuCl2 catalysts for dimethyl carbonate synthesis by vapor phase oxidative carbonylation of methanol[J]. Appl Catal A:Gen,2003,241: 363~373.
    [88]王少成,曹勇,杨平,等.TBAB修饰的负载型Wacker催化剂催化甲醇羰基化合成碳酸二甲酯[J].高等学校化学学报,2002,23(12):2363~2365.
    [89]Cao Y, Yang P, Yao C Z, et al. Impact of preparation strategy on the properties of carbon-supported
    Wacker-type catalysts in vapor-phase dimethyl carbonate synthesis[J]. Appl Catal A:Gen,2004,272: 15~22.
    [90]King S T. Reaction mechanism of oxidative carbonylation of methanol to dimethyl carbonate in Cu-Y zeolite[J]. J Catal,1996,161:530~538.
    [91]King S T. Oxidative carbonylation of methanol to dimethyl carbonate by solid-state ion-exchanged CuY catalysts[J]. Catal Today,1997,33:173~182.
    [92]Li Z, Xie K C, Slade R C T. Studies of the interaction between CuCl and HY zeolite for preparing heterogeneous CuI catalyst[J]. Appl Catal A:Gen,2001,209:107~115.
    [93]Li Z, Xie K C, Slade R C T. High selective catalyst CuCl/MCM-41 for oxidative carbonylation of methanol to dimethyl carbonate[J]. Appl Catal A:Gen,2001,205:85~92.
    [94]李茜,李忠,谢克昌.甲醇气相直接氧化羰基化合成碳酸二甲酯的研究进展[J].石油化工,2004,33(7):677~683.
    [95]Anderson S A, Root T W. Kinetic studies of carbonylation of methanol to dimethyl carbonate over Cu+X zeolite catalyst[J]. J Catal,2003,217:396~405.
    [96]Anderson S A, Root T W. Investigation of the effect of carbon monoxide on the oxidative carbonylation of methanol to dimethyl carbonate over Cu+X and Cu+ZSM-5 zeolites [J]. J Mol Catal A:Chem,2004,220:247~255.
    [97]Zhang Y H, Drake I J, Bell A T. Characterization of Cu-ZSM-5 Prepared by solid-state ion exchange of H-ZSM-5 with CuCl[J]. Chem Mater,2006,18(9):2347~2356.
    [98]Zhang Y H, Drake I J, Briggs D N, et al. Synthesis of dimethyl carbonate and dimethoxy methane over Cu-ZSM-5 [J]. J Catal,2006,244(2):219~229.
    [99]Zhang Y H, Briggs D N, Smit E D, et al. Effects of Zeolite Structure and Composition on the Synthesis of Dimethyl Carbonate by Oxidative Carbonylation of Methanol on Cu-exchanged Y, ZSM-5, and Mordenite[J]. J Catal,2007,251:443~452.
    [100]Zhang Y H, Bell A T. The Mechanism of Dimethyl Carbonate Synthesis on Cu-exchanged Zeolite Y [J].J Catal,2008,255:153~161.
    [101]Richter M, Fait M J G, Eckelt R, et al. Oxidative gas phase carbonylation of methanol to dimethyl carbonate over chloride-free Cu-impregnated zeolite Y catalysts at elevated pressure[J]. Appl Catal B: Environ,2007,73(3-4):269~281.
    [102]Richter M, Fait M J G, Eckelt R, et al. Gas-phase carbonylation of methanol to dimethyl carbonate on chloride free Cu precipitated zeolite Y at normal pressure[J]. J Catal,2007,245(1):11-24.
    [103]Basolo F, Johnson R C.宋银柱,王耕霖译.Coordination chemistry(配位化学)[M].北京:北京大学出版社,1982.
    [104]戴安邦.配位化学,无机化学丛书[M],第十二卷.北京:科学出版社,1987.
    [105]游效曾,孟庆金,韩万书.配位化学进展[M].北京:高等教育出版社,2000.
    [106]大连工学院无机化学教研室.无机化学[M].第二版.北京:人民教育出版社,1982.
    [107]朱文祥.中级无机化学[M].北京:高等教育出版社,2004.
    [108]史可祯.无机化学与分析化学[M].北京:高等教育出版社,2000.
    [109]陈慧兰.高等无机化学[M].北京:高等教育出版社,2005.
    [110]Brookhart M, Timmers D, Tucker J, et al. Enantioselective cyclopropanesynthesis using the chiral carbene complexes role of metal versus ligand chirality in the optical induction[J]. J Am Chem Soc, 1983,105:6721~6723.
    [111]Falbe J. New syntheses with carbon monoxide[M]. New York:Springer Verlag, Berlin, Heidelberg, 1980.
    [112]肖士镜,余赋生.烯烃配位聚合催化剂及聚烯烃[M].北京:北京工业大学出版社,2002.
    [113]曹声春,胡艾希,尹笃林.催化原理及其工业应用技术[M].长沙:湖南大学出版社,2001.
    [114]Paulik F E, Roth J F. Catalysts for the low-pressure carbonylation of methanol to acetic acid[J]. Chem Commum,1968,24:1578~1581.
    [115]加藤顺,小林博川,林田义夫.金革,王冀,张在明,等译.碳—化学工业生产技术[M].北京:化学工业出版社,1988.
    [116]周正明.我国碳—化学中长期科技战略发展规划建议[J].化工生产与技术,2006,13(1):61~65.
    [117]陶偌偈,臧双全,赵阁,等.草酰胺桥联大环二羰四胺铜(Ⅱ)一钴(Ⅱ)异双核配合物的合成、结构、表征和电化学性质[J].应用化学,2002,19(1):459~463.
    [118]Lehmann M, Marcos M, Serrano J L, et al. Rigid chiral building blocks for copper(Ⅱ)-and palladium(II)-containing liquid crystals[J]. Chem Mater,2001,13(1):4374~4381.
    [119]Pate B D, Choi S M, Ulrike W Z, et al. Structure and magnetic alignment of metalloporphyrazine columnar aggregates in their mesophases and crystalline phase[J]. Chem Mater,2002,14:1930~1936.
    [120]李付安,于丽,刘宝林,等.乙二胺双缩5-氯水杨醛Schiff碱铜配合物的合成及晶体结构[J].化学研究,2005,16(2):9-11.
    [121]Diana U, Frank W H, Frank H, et al. Syntheses and characterization of two dioxygen-reactive dinuclear macrocyclic schiff-base copper(I) complexes[J]. Inorg Chem,2003,42(5):1430~1436.
    [122]杨瑞娜,王冬梅,李彩云,等.p—二酮双核铜(Ⅰ)配合物的合成与结构[J].无机化学学报,2001,17(2):209~214.
    [123]高连周,王颖,张廉奉.一价铜化合物[Cu(Ph3P)2(NO3)]的合成[J].河南科学,2000,18(3):244~247.
    [124]金斗满,杨瑞娜,王冬梅.含双二苯基膦甲烷双核I配合物的合成及性质[J].无机化学学报,2000,16(2):335~340.
    [125]Nicole S P, Jessica M C, Karalee A P, et al. Hydrothermal syntheses, structures, and properties of [Cu3Cl2CN(pyrazine)] and copper(I) halide pyrazine polymers[J]. Inorg Chem,2001,40(1):29~35.
    [126]Xile H, Ingrid C R, M. Karsten. Copper complexes of nitrogen-anchored tripodal N-heterocycliccarb-eneligands[J]. J Am Chem Soc,2003,125(3):12237~12245.
    [127]杨瑞娜,胡晓院,段征,等.混合价态铜(I,II)配合物的合成与结构[J].无机化学学报,1999,15(6):697~708.
    [128]Mats H M, Geometry O R U. Reduction potential, and reorganization energy of the binuclear Cu a site, studied by density functional theory[J]. J Am Chem,2001,123:7866~7876.
    [129]刘晓红,由宏军.烯烃催化氧化反应的研究进展[J].当代化工,2004,33(3):146~149
    [130]白丽娟,雷福厚,莫丽君,等.歧化松香胺Schiff碱—铜配合物催化苯乙烯氧化反应的研究[J].林产化学与工业,2007,27:99~104.
    [131]王荣民,王建人,郝成君,等.氨基酸希夫碱铜配合物的合成及催化烯烃氧化性能[J].西北师范大学学报,1999,35(4):83~85.
    [132]王哗峰.Sonogashira反应研究的最新进展[J].有机化学,2005,25(1):8-24.
    [133]Sonogashira K J. Development of Pd □ Cu catalyzed cross-coupling of terminal acetylens with sp2-carbon halides[J]. Organomet Chem,2002,653:46~49.
    [134]Passanella D, Lesma G, Deleo M J, et al. Convenient synthesis of methyl indol-2-ylpropiolate[J]. J Chem Soc,1999,1:2669~2670.
    [135]Ma D, Liu F. CuI-catalyzed coupling reaction of aryl halides with terminal alkynes in the absence of palladium and phosphine[J]. Chem Commun,2004,1934~1935.
    [136]陈彤,付真金,祝良芳,等.苯直接羟基化合成苯酚的研究进展[J].石油化工,2003,32(6):530~534.
    [137]Stockmann M, Konietzni F, Notheis J U, et al. Seletive oxidation of benzene to phend in the liquid phase with amorphous microporous mixed oxides[J]. Appl Catal A,2001,208(1-2):343~358.
    [138]He J, Xu W P, Evans D G, et al. Role of pore size and surperties of Ti-MCM-41 catalysts in the hydroxylation of aromatics in the liquid phase[J]. Microporous Mesoporous Mater,2001,44~45: 581~586.
    [139]苗延青,张宇浩,吴亚,等.EDTA双酰胺Cu(Ⅱ)配合物的合成与催化性能研究[J].应用化工,2006,35(2):121~124.
    [140]Xiao F S, Sun J M, Meng X J, et al. A novel catalyst of copper hydroxyphosphate with high activity in wet oxidation of aromatics[J]. Appl Catal A,2001,207(1-2):267~271.
    [141]刘定华,赵贤广,王海善,等.MXnLm体系催化合成碳酸二甲酯[J].化学工业与工程技术,1998,19(2):6-8.
    [142]杨洋,刘晓勤,刘定华,等.铜基络合催化剂液相羰基合成碳酸二甲酯[J].过程工程学报,2007,7(3):476~482.
    [143]李春浩,卢佩章编.分析化学丛书(第三卷第二册):气相色谱法[M].北京:科学出版社,1993.
    [144]李光兴,许汉昌,陈兵,等.合成碳酸二甲酯气相色谱分析[J].湖北化工.1995,(4):56~58.
    [145]王华,许红云,吴砚会,等.甲醇氧化羰化制碳酸二甲酯产物气相色谱分析[J].天然气化工,2002,27(4):50~52.
    [146]莫婉玲,熊辉,黄荣生,等.甲醇液相氧化羰化合成碳酸二甲酯的色谱分析[J].江西科学,2003,21(1):15~17.
    [147]胡军成.液相法合成碳酸二甲酯的催化研究[D].上海:复旦大学,2003.
    [148]姜瑞霞.甲醇气相氧化羰催化合成碳酸二甲酯的研究[D].天津:河北工业大学,1999.
    [149]熊辉,纪元,朱大建,等.色谱法同时测定羰化反应尾气中的O2、CO、CO2[J].分析试验室,2005,24(1):85~87.
    [150]徐寿昌,有机化学[M].北京:高等教育出版社,1982.
    [151]邢其毅,裴伟伟,徐瑞秋,等.基础有机化学[M].第三版,北京:高等教育出版社,1982.
    [152]龙翔云,龙剑英,汪凤珍.十二烷基磺酸铜(Ⅱ)配合物的电子顺磁共振谱及红外光谱和电子结构[M].化学研究与应用,1999,11(5):501~505.
    [153]Massey A G. Comprehensive inorganic chemistry[M]. Vol 3, Oxford:Pergamon Press,1973.
    [154]Gill N S, Taylor F B. Tetrahalo complexes of dipositive metals in the first transition series[J]. Inorg Syn,1967,9:136~142.
    [155]Cotton FA,Wilkinson G.北京师范大学译.高等无机化学[M].北京:人民教育出版社,1980.
    [156]Wells A F. Structural inorganic chemistry[M]. Oxford:Clarendon Press,1984.
    [157]萧文锦,钟兴厚,袁启华.无机化学丛书[M].第六卷,北京:科学出版社,1998.
    [158]Scott B, Willett R D. A copper(Ⅱ) bromide dimer system exhibiting piezochromic and thermochromic properties:The crystal structure and electronic spectroscopy of the two room temperature phases of bis(tetrapropylammonium) hexabromodicuprate(II)[J]. J Am Chem Soc,1991, 113(14):5253~5258.
    [159]Wu B, Yang P J, Huang X J, et al. Synthesis and crystal stuctures of copper(Ⅱ) and dpp complexes [Cu(dpp)Br2] and [Cu(dpp)2][CuBr2][J]. Z Anorg Allg Chem,2006,632:684~688.
    [160]NIST. X-ray photoelectron spectroscopy database [EB/OL](http://srdata.nist.gov/gateway/gateway).
    [161]黄正兵,江琦.碱性催化剂上由CO2合成有机碳酸酯的研究进展[J].工业进展,2004,12(5):35~39.
    [162]陈贻盾,聂宗武,许松岩,等.含氮杂环铜络合物在醇类氧化羰基化反应中的催化活性[J].催化学报,1985,6(2):155~162.
    [163]王文举,高广刚,许林.链状铜配合物[Cu(biPy)2Cl]2-2H2O水热合成[J].东北师范大学学报,2005,37(2):137~140.
    [164]朱自强,徐汛.化工热力学[M],第二版,北京:化学工业出版社,1992.
    [165]Prausnitz J M, Lichtenthalar R N, De Azevedo E G.陆小华,刘洪来译.Molecular Thermodynmics of Fluid-Phase Equilibrial:流体相平衡的分子热力学)[M].第三版,北京:化学工业出版社,2006.
    [166]许越.化学反应动力学[M].北京:化学工业出版社,2005.
    [167]More J W, Pearson R G.孙承谔,王之朴译.Kinetics and Mechanism:a Study of Homogereous Chemical Reactions(化学动力学和历程)[M].北京:科学出版社,1987.
    [168]尹平.一氧化碳偶联制草酸二甲酯及碳酸二甲酯体系的热力学分析[J].天然气化工,1987,12(5):6-12.
    [169]朱治良,李光兴,许汉昌,等.甲醇氧化羰基合成碳酸二甲酯热力学数据计算[J].化学工程师,1996,53(2):26~27.
    [170]赵天生,韩怡卓,孙予罕.甲醇和CO2合成碳酸二甲酯体系的热力学分析[J].天然气化工,1998,23(5):52~55.
    [171]李忠,周丽,谢克昌.甲醇气相氧化羰化合成碳酸二甲酯的热力学探讨[J].天然气化工,2003,28(1):45~49.
    [172]黄荣生,莫婉林,李光兴.氧化羰基化法合成碳酸甲乙酯热力学及催化性能的研究[J].燃料化学学报,2004,32(2):]29~133.
    [173]房鼎业,曹发海,刘殿华,等.CuCl2/C催化剂上甲醇氧化羰化合成碳酸二甲酯的本征动力学[J].高校化学工程学报,1997,11:212~216.
    [174]Fang D Y, Cao F H. Intrinsic kinetics of direct oxidative carbonylation of vapour phase methanol to dimethyl carbonate over Cu-based catalysts[J]. Chem Eng J,2000,78:237~241.
    [175]莫婉玲,熊辉,李光兴,等.甲醇液相氧化羰化合成碳酸二甲酯动力学研究[J].华中科技大学学报(自然科学版),2002,30(6):111~113.
    [176]Lin H Y, Yang B L, Sun J J, et al. Kinetics studies for the synthesis of dimethyl carbonate from urea and methanol[J]. Chem Eng J,2004, (103):21~27.
    [177]时钧,汪家鼎,余国琮,等.化学工程手册(上)[M].第二版,北京:化学工业出版社,1996.
    [178]国家医药管理局上海医药设计院编.化工工艺设计手册(下)[M].第二版,北京:化学工业出版社,1994.
    [179]程能林.溶剂手册[M].第二版,北京:化学工业出版社,1994.
    [180]Saegusa T, Tsuda T, Isayma K, et al. Carbonate Formation by the Reaction of Cupric Methoxide and Carbon Monoxide[J]. Tetrahedron Lett,1968, (7):831~833.
    [181]刘鹏,郑建华.分子氧选择性氧化醇类的研究进展[J].化学研究与应用,2003:15(3):311-316.
    [182]何仁.配位催化与金属有机化学[M].北京:化学工业出版社,2002.
    [183]魏运洋,李建.化学反应机理导论[M].北京:科学出版社,2004.
    [184]金斗满,朱文祥.配位化学研究方法[M].北京:科学出版社,1996.
    [185]戴安邦.无机化学丛书[M],第六卷.北京:科学出版社,1995.
    [186]张祥麟.配合物化学[M].北京:高等教育出版社,1991.
    [187]黄家璧,奚祖威.Cu(Ⅱ)络合物分子氧体系对醇类的催化氧化[J].催化学报,1989,10(3):326~330.
    [188]韩世清,奚祖威,黄家璧.双齿铜(Ⅱ)络合物催化作用下分子氧对醇类的选择性氧化[J].分子催化,1991,12(4):286~292.
    [189]唐黎华,张成芳,陈玲君.碳酸二甲酯水解反应的研究[J].华东理工大学学报,1998,24(2):243~246.
    [190]马正飞,翔殷.数学计算方法与软件的工程应用[M].北京:化学工业出版社,2002.
    [191]华强,刘定华,马正飞,等.催化水合法合成乙二醇工艺条件的分析与优化[J].化学反应工程与工艺,2003,19(1):62~68.
    [192]邬长城,赵新强,王延吉.尿素醇解法催化合成碳酸二甲酯连续反应工艺研究[J].石油化工,2004,33(6):508~511.
    [193]赵福元,李德徽.连续法碳酸二甲酯生产装置运行总结[J].氯碱工业,2007,(7):31-32.
    [194]Luo H P, Xiao W D, Zhu K H. Isobaric vapor-liquid equilibria of alkyl carbonates with alcohols[J]. Fluid Phase Equilib,2000,175:91~105.
    [195]梅支舵,殷芳喜.加压分离甲醇与碳酸二甲酯共沸物的新技术研究[J].安徽化工,2001,(1):2-3.
    [196]李春山,张香平,张锁江,等.加压—常压精馏分离甲醇—碳酸二甲酯的相平衡和流程模拟[J].过程工程学报,2003,3(5):453~458.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700