用户名: 密码: 验证码:
高钙低品位钒渣焙烧—浸出反应过程机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钒是一种重要的战略物资,广泛应用于钢铁工业、航空航天工业及化学工业等领域。近年来,随着钢铁工业的发展,普通铁矿石的供应量日趋紧张,为了应对日益严峻的形势,同时充分利用攀西地区钒钛磁铁矿,某钢厂成功开发了钒钛磁铁矿小高炉冶炼技术,钒钛磁铁矿配加量达30%以上,产出的铁水中钒含量达到0.15%以上。为了回收铁水中这部分钒,采用转炉双联提钒工艺,得到的钒渣中V_2O_5含量小于10%,CaO含量大于5%,与普通钒渣(含12-25% V_2O_5、0.7-2.5%CaO)相比,该钒渣具较高的钙、较低的钒等特点。对于这种特殊的钒渣,目前没有较好的处理方法。本课题采用钠化焙烧-水浸与钙化焙烧-碳酸钠浸出技术从高钙低品位钒渣中提钒,探索其可行性并对氧化焙烧过程与浸出过程进行了详细的研究,为工业提钒提供理论指导。
     首先对高钙低品位钒渣的物相组成及元素的点、面、线分布进行了研究。结果表明:高钙低品位钒渣由尖晶石相、橄榄石相和辉石相组成。尖晶石呈连结状或分散状,其颗粒大小一般为20-30μm。在尖晶石中元素的含量从高到低依次是:铁、钒、钛、氧、铬、锰、铝;在尖晶石中心部分钒和铬的含量较高,而尖晶石外层钛、锰、铁和铝的含量较高;在橄榄石中元素的含量从高到低依次是:氧、硅、铁、锰;在辉石相中元素的含量从高到低依次是:硅、氧、钙、铁、铝、钛。
     采用碳酸钠为添加剂,对钒渣钠化氧化焙烧-水浸过程进行了研究,考察了氧化焙烧过程与浸出过程对钒浸出的影响、钒渣氧化焙烧过程物相变化、钠化焙烧渣浸出过程物相变化、钒酸钠的形成机理等。结果表明:①钠化焙烧-水浸提钒的最佳条件:碳酸钠加入量为18%,焙烧温度为700℃,焙烧时间为150min;浸出温度为90℃,浸出时间为30min和浸出液固比为5:1mL/g。在此优化条件下,钒浸出率可达89.5%以上,浸出液中主要杂质为Si、P和Cr。②钒渣钠化氧化过程与焙烧渣水浸过程物相变化。1)在碳酸钠加入量为18%时,钒渣的氧化温度范围为273℃至700℃;橄榄石相与尖晶石相分别在500℃和600℃分解完全;大部分水溶性钒酸钠在500℃与600℃之间形成;当焙烧温度在700℃以上时,钒酸钠富集相明显可见。当焙烧温度过高时,样品出现烧结,钒被玻璃相包裹。2)在水浸过程中,除了钠盐在水浸中溶解外,浸出残渣的主要物相与焙烧渣基本一样;而焙烧渣中钒酸钙与磷酸钠或硅酸钠反应转化为可溶性的钒酸钠,同时可除去浸出液中的杂质硅和磷。③钒酸钠的形成机理。三氧化二钒与碳酸钠反应时,在200℃到400℃之间首先生成钒氧化物VO_m (1.5     采用氧化钙为添加剂,对钒渣钙化氧化焙烧-碳酸钠浸出过程进行了研究,考察了氧化焙烧过程与浸出过程对钒浸出的影响、钒渣氧化焙烧过程物相变化及氧化动力学、氧化钙含量对钒渣氧化过程及焙烧渣碳酸钠浸出过程的影响、钒酸钙的形成机理、钙化焙烧渣浸出过程物相变化及浸出过程动力学等。结果表明:①钙化焙烧-碳酸钠浸出提钒的最佳条件:焙烧温度为850℃,焙烧时间为60min;碳酸钠浓度为160g/L,浸出温度为95℃,浸出时间为150min,浸出液固比为10:1mL/g和搅拌速度为400r/min。在此优化条件下,钒的浸出率达90%以上,浸出液中主要杂质为Si和P。②钒渣氧化焙烧过程物相变化及氧化动力学。1)钒渣的氧化温度范围为300℃到900℃,橄榄石和尖晶石分别在500℃和800℃分解完全,在850℃以上钒的富集相形成,当焙烧温度达到1000℃时,样品被烧结。2)钒渣的氧化过程可以用未反应收缩核模型来描述,在氧化过程中受内扩散控制,初始阶段(0-10min)反应的表观活化能为126.6kJ/mol。③氧化钙含量对钒渣氧化过程及焙烧渣碳酸钠浸出过程的影响。1)氧化钙含量从6.39%变化到36.39%的样品中均形成了钒的富集相;随着样品中氧化钙含量的增加,焙烧渣中主要物相Fe_2O_3、Fe_2TiO_5和SiO_2相应的衍射峰强度逐渐减弱;当样品中氧化钙含量为21.39%时,CaFe_2O_4和CaTiO_3的衍射峰出现。2)在碳酸钠浸出过程中,焙烧渣中的钒被转化为可溶性的钠盐进入溶液中,同时生成碳酸钙,且碳酸钙的衍射峰强度随着氧化钙含量的增加而增强;而其他主要物相基本不变。④钒酸钙的形成机理。当三氧化二钒与碳酸钙反应时,钒酸钙的形成主要取决于起始原料中V_2O_3和CaCO_3的比例和焙烧温度。在400℃时,部分钒被转化为钒青铜Ca_(0.17)V_2O_5。在500℃时V_2O_3氧化成V_2O_5。在600℃时,当V_2O_3:CaCO_3为1:1时,主要产物为Ca(VO_3)_2;当V_2O_3:CaCO_3为1:2时,主要产物为Ca(VO_3)_2和CaV_2O_7;当V_2O_3:CaCO_3为1:3时,主要产物为CaV_2O_7。当温度进一步升高,Ca(VO_3)_2会转化为Ca_2V_2O_7,进而转化为Ca_3(VO_4)_2。⑤钙化焙烧渣碳酸钠浸出过程可用未反应收缩核模型来描述,在浸出过程中受扩散控制,反应的表观活化能为51.75kJ/mol。
Vanadium is defined as an important strategic material which is widely used in many fields such as steel industry, aerospace industry and chemical industry, etc. In recent years, with the rapid development of iron and steel industry, the ordinary iron ore resources have been decreased. In order to deal with the increasingly serious situation and make full use of vanadium titano-magnetite ore in Panxi region in China, the small blast furnace for smelting of vanadium titano-magnetite ore has successfully developed, more than 30% of vanadium titano-magnetite ore is added in normal iron ore during blast furnace process. In such case, the vanadium content in hot metal reaches above 0.15%. In order to recover the vanadium from the hot metal, the duplex process was used, and then the vanadium in hot metal was selectively oxidized into slag. The V_2O_5 content in vanadium slag otbained is less than 10% while CaO content is more than 5%. Compared with the normal metaurgical slag (12-25% V_2O_5, 0.7-2.5%CaO), the vanadium slag in this study contains lower V and higher Ca content. At present, there is no a better way to extract vanadium from the special vandium slag. In this paper, the feasibility of sodium salt roasting-water leaching and calcium salt roasting-soda leaching for extraction of vanadium from high calcium low-grade vanadium slag were investigated, and the oxidation process and leaching process were studied in detail. The comprehensive evaluation results could provide a theoretical direction for vanadium extraction in industrial production.
     At first, mineralogical composition and the spot, surface and line analysis of element in vanadium slag were investigated. The results show that high calcium low-grade vanadium slag is composed of spinel phases, olivine phases and pyroxene phases. The spinel presents connection and dispersion state and its particle size is usually 20-30μm. The descending order of element content in spinel phase is iron, vanadium, titianium, oxygen, chromium, manganese, aluminium. The content of vanadium and chromium in center part of spinel phase is higher while the content of titanium, manganese, iron and aluminium in outer part of spinel is higher. The descending order of element content in olivine phase is oxygen, silicon, iron, manganese. The descending order of element content in pyroxene phase is silicon, oxygen, calcium, iron, aluminium, titianium.
     Oxidation process and water leaching process were investigated using Na_2CO_3 as additive. The effect of oxidation process and leaching process on leaching efficiency of vanadium, phase transition of vanadium slag in oxidation process and roasted samples in water leaching, and formation of sodium vanadates were studied, etc. The results show that①The optimum process parameters for vanadium extraction are follows: addition of 18% Na_2CO_3, roasting temperature of 700℃, roasting time of 150min; leaching temperature of 90℃, leaching time of 30min and liquid to solid ratio of 5:1mL/g. Under the optimum conditions, the leaching efficiency reaches above 89.5%. The main impuritie are Si, P and Cr in the leach liquor.②Phase transition of vanadium slag in oxidation process and roasted samples in water leaching. 1)Slag sample with 18% Na_2CO_3 is oxidized in the temperature range from 273℃to 700℃. Olivine phases and spinel phases are completely decomposed at 500℃and 600℃, respectively. Most of water-soluble sodium vanadates are formed between 500℃and 600℃. When roasting temperature reaches above 700℃, the vanadium-rich phases of sodium vanadates can be obviously observed. However, at temperatures above 800℃, the samples are sintered. Most of vanadium is enwrapped by glassy phase compounds. 2) The major mineral matters of leach residues are hardly changed except that sodium salts dissolve in water; the calcium vanadates in roasted samples are transformed into sodium vanadates by reacting with Na_3PO_4 or Na_2SiO_3 during water leaching, at the same time, the Si and P in the liquor can be removed.③Formation mechanism of sodium vanadates. When V2O3 reacts with Na_2CO_3, vanadium oxides VOm (1.5     Oxidation process and soda leaching process were investigated using CaO as additive. The effect of oxidation process and leaching process on leaching rate of vanadium, phase transition and kinetics of vanadium slag in oxidation roasting process, effect of CaO content on oxidation of vanadium slag in roasting process and roasted sapmles in soda leaching, formation mechanism of calcium vanadates and phase transition and kinetics of roasted samples in soda leaching were studied. The results show that①The optimum process parameters for vanadium extraction are follows: roasting temperature of 850℃, roasting time of 60min, Na_2CO_3 concentration of 160g/L, leaching temperature of 95℃, leaching time of 150min, liquid to solid ratio of 10:1 mL/g and stirring speed of 400r/min. Under the optimum conditions, the leaching rate of vanadium reaches above 90%. The main impurities are Si and P in the leach liquor.②Phase transition and kinetics of vanadium slag in oxidation roasting process. 1)The vanadium slag is oxidized from 300℃to 900℃. The olivine phases and spinel phases in vanadium slag are completely decomposed at 500℃and 800℃, respectively. The vanadium-rich phases are formed above 850℃. When roasting temperature is 1000℃, the samples are sintered. 2) Oxidation process of vanadium slag can be described by the unreacted shrinking core model and is controlled by internal diffusion. The apparent activation energy is 126.6kJ/mol in the initial stage (0-10min).③Effect of CaO content on oxidation of vanadium slag in roasting process and roasted sapmles in soda leaching. The vanadium-rich phases are formed when CaO content is varied from 6.39 to 36.39% in slag sample. The intensity of diffraction peaks of major phases Fe_2O_3, Fe_2TiO_5 and SiO2 in roasted samples decreases with the increase of CaO content. The diffraction peaks of CaFe_2O_4 and CaTiO_3 appear when CaO content in salg sample is 21.39%. 2) During soda leaching, the calcium vanadates in roasted samples is transformed to soluble sodium salt, at the same time, the CaCO_3 is produced and its relative intensity of diffraction peak increases with the increase of CaO content; the other major phases in samples are hardly changed.④Formation mechanism of calcium vanadates. When V_2O_3 reacts with CaCO_3, formation of calcium vanadate is dependent on the molar ratio of the starting materials and calcination temperature. Partial vanadium is transformed into vanadium bronze Ca0.17V_2O_5 at 400℃. The V_2O_3 is oxidized to V_2O_5 at 500℃. At 600℃, when the molar ratio of V_2O_3 and CaCO_3 is 1:1, the main product Ca(VO_3)_2 is formed; when the molar ratio of V_2O_3 and CaCO_3 is 1:2, the main products Ca(VO_3)_2 and CaV_2O_7 are formed; when the molar ratio of V_2O_3 and CaCO_3 is 1:3, the main product CaV_2O_7 is formed. With increasing calcination temperature, Ca(VO_3)_2 is transformed into Ca_2V_2O_7 or even Ca_3(VO_4)_2.⑤Soda leaching process of roasted samples can be described by the unreacted shrinking core model and is controlled by internal diffusion; the apparent activation energy is 51.75kJ/mol.
引文
[1]《有色金属提取冶金手册》编辑委员会.稀有高熔点金属(下)[M].北京:冶金工业出版社, 1999, 276-350.
    [2]杨守志.钒冶金[M].北京:冶金工业出版社, 2010.
    [3]黄道鑫.提钒炼钢[M].北京:冶金工业出版社, 2000.
    [4]廖世明,柏谈论.国外钒冶金[M].北京:冶金工业出版社, 1985.
    [5]任学佑.金属钒的应用现状及市场前景[J].世界有色金属, 2004, 2: 34-36.
    [6] L. Perron. The vanadium industry: a review [A]. Canada: Vanadium, Geology, Processing and Applications, Proceedings of the International Symposium on Vanadium. Conference of Metallurgists, 2002. 17-27.
    [7]谭若斌.国内外钒资源的开发利用[J].钒钛, 1994, 5: 4-11.
    [8]锡淦,雷鹰,胡克俊,等.国外钒的应用概况[J].世界有色金属, 2000, 2: 13-21.
    [9]任学佑.稀有金属钒的应用现状及市场前景[J].稀有金属, 2003, 27(6): 809-812.
    [10]包申旭,张一敏,刘涛,等.全球钒的生产、消费及市场分析[J].中国矿业, 2009, 18(7): 12-15.
    [11] H. Reichman Steven, E. Kosin John, F Meyerink James. Titanium-aluminum-vanadium alloys and products made using such alloys [P]. United States, US6053993, 2000.
    [12]文喆.国内外钒资源与钒产品的市场前景分析[J].世界有色金属, 2001, 11: 7-8.
    [13]刘大凡,李晓磊,郭西凤,等.全钒氧化还原液流电池的发展现状[J].无机盐工业, 2010, 42 (8): 4-6.
    [14] C. E. Heyliger, A.G. Tahiliani, J. H. McNeill. Effect of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats[J]. Science, 1985, 227: 1474- 1477.
    [15]张玲,李青,夏作理,等.钒的医学应用研究进展[J].中国药物和临床, 2006, 6(11): 843-845.
    [16]刘世友.钒的应用与展望[J].稀有金属与硬质合金, 2000, 141(2): 58-61
    [17] R. R. Moskalyk, A. M. Alfantatazi. Processing of vanadium: a review [J]. Minerals Engineering, 2003, 16(9): 793-805.
    [18]段炼,田庆华,郭学益.我国钒资源的生产及应用研究进展[J].湖南有色金属, 2006, 22(6): 17-20.
    [19]漆明鉴.从石煤中提钒现状及前景[J ].湿法冶金, 1999, 72(4): 1-10.
    [20]宾智勇.石煤提钒研究进展与五氧化二钒的市场状况[J].湖南有色金属, 2006, 22(1): 16-20.
    [21]美国USGS官方网[EB/OL]. http://www.usgs.gov/
    [22]美国战略矿物公司官方网[EB/OL]. http://www.stratcor.com/
    [23]中国铁合金在线网[EB/OL].http://www.cnfeol.com
    [24]徐国胤,刘福臻.从高钙含钒钢渣提取五氧化二钒[J].铁合金, 1980, 1: 8-13.
    [25]钱强.高钙含钒转炉钢渣提钒工艺进展[J].中国资源综合利用, 2009, 27(6): 15-17.
    [26]杨素波.含钒转炉钢渣中钒的提取与回收[J].钢铁, 2005,40(4): 40-41.
    [27]董元篪,武杏荣,余亮,等.含钒钢渣中钒再资源化的基础研究[J].中国工程科学, 2007, 9(1): 63-68.
    [28]叶国华,童雄,路璐.含钒钢渣的选矿预处理及其对后续浸出的影响[J].中国有色金属学报, 2010, 20(11): 2234-2238.
    [29]王永双,李国良.我国石煤提钒及综合利用综述[J].钒钛, 1993, 4: 21-31.
    [30]邹晓勇,欧阳玉祝,彭清静,等.含钒石煤无盐焙烧酸浸生产五氧化二钒工艺的研究[J].化学世界, 2001, 3: 117-1191.
    [31]张中豪.钙化焙烧冶炼V2O5新工艺研究[J ].新技术新工艺, 1999, 3: 23 -241.
    [32]郑祥明,田学达,张小云等.湿法提取石煤中钒的新工艺研究[J].湘潭大学自然科学学报. 2003, 25(3): 43-45.
    [33]鲁兆伶.用酸法从石煤中提取五氧化二钒的试验研究与工业实践[J].湿法冶金. 2002, 21(4): 175-183.
    [34]杨静翎,金鑫.酸浸法提钒新工艺的研究[J].北京化工大学学报. 2007, 34(3): 254-257.
    [35]陈铁军,邱冠周,朱德庆.循环氧化法石煤提钒新工艺试验研究[J].煤炭学报, 2008, 33(4): 454-458.
    [36]魏昶,李存兄,樊刚,等.石煤湿法强化提钒新工艺[J].中国有色金属学报, 2008, 18s(1): 80-83.
    [37] M. Y. Wang, L. S. Xiao, X. W. Wang, et al. Leaching of vanadium from stone coal with sulfuric acid[J]. Rare metals, 2009, 28(1):1-4.
    [38] M.T.Li, C. Wei, G. Fan, et al. Extraction of vanadium from black shale using pressure acid leaching[J]. Hydrometallurgy, 2009, 98(9):308-313.
    [39]钱强.石煤钒矿提取五氧化二钒的技术现状.中国资源综合利用[J].中国资源综合利用, 2008, 126(3): 13-14.
    [40]陆岷,张一敏,刘涛,等.石煤提钒钠化焙烧中烧结现象的研究[J].稀有金属, 2009, 33(6): 894-897.
    [41]徐劫.废催化剂中稀有金属钼、钒回收工艺评述[J].嘉兴学院学报, 2005, 17(3): 66-69.
    [42] A. Ognyanova, A. T. Ozturk, I. De Michelis, et al. Metal extraction from spent sulfuric acid catalyst through alkaline and acidic leaching[J]. Hydrometallurgy, 2009, 100(12): 20-29.
    [43] L. J. Lozano, D. Juan. Leaching of vanadium from spent sulphuric acid catalysts[J]. Minerals Engineering, 2001, 14(5): 543-546.
    [44] D. Mishra, G. R. Chaudhury, D. J. Kim, et al. Recovery of metal values from spent petroleum catalyst using leaching-solvent extraction technique[J]. Hydrometallurgy, 2010, 101(2):35-40.
    [45]刘公召,隋智通.从HDS废催化剂中提取钒和钼的研究[J].矿产综合利用, 2002(2): 39- 41.
    [46] Y. A. El-Nadi, N. S. Awwad, A. A. Nayl. A comparative study of vanadium extraction by Aliquat-336 from acidic and alkaline media with application to spent catalyst[J]. International Journal of Mineral Processing, 2009, 90(8): 115-120.
    [47]王淑芳,马成兵,袁应斌.从重油加氢脱硫废催化剂中回收钼和钒的研究[J].中国钼业, 2007, 26(6): 24-26.
    [48] Y. H. Shao, Q. M. Feng, Y. Chen, et al. Studies on recovery of vanadium from desilication residue obtained from processing of a spent catalyst[J]. Hydrometallurgy, 2009, 96 (3): 166-170.
    [49]蒋馥华,张萍.用天然碱浸法从废钒催化剂中回收五氧化二钒的试验[J].硫酸工业, 2000,4: 28-30.
    [50]陈兴龙,肖连生等.从废石油催化剂中回收钒和钼的试验研究[J].矿冶工程, 2004, (3): 47-49.
    [51]许碧琼.从废钒触媒中回收钒氧化物[J].化工进展,2002, 21(3): 200-202.
    [52]宋克祥,占先进,李培佑.从含钒石油废触媒中提取钒、钼的工艺研究[J].湿法冶金, 2008, 27(2): 106-112.
    [53]孙锦宜,刘惠青.废催化剂回收利用[M].化学工业出版社, 2001.
    [54]张中豪,王彦恒.硅质钒矿氧化钙化焙烧提钒新工艺[J].化学世界, 2000, (6): 290-292.
    [55]宾智勇.钒矿石无盐焙烧提取五氧化二钒试验[J].钢铁钒钛, 2006, 27(1):21-26.
    [56]刘安华,李辽沙,余亮.含钒固废提钒技术及展望[J].金属矿石. 2003, 328(10): 61-64.
    [57] L. S. Li, J. H. Yang, T. P. Lou ,et al. Study on The Oxidation of Ti-Bearing Slag. Sixth International Conference on MoltenSlags, Fluxes, and Sults, in Stockholm Helsinki J un 12-16, 2000 ( Electronic Press).
    [58]李浩然,冯雅丽.微生物冶金的新进展.冶金信息导刊, 1999 (3) : 29-33.
    [59]龚文琪,魏鹏,雷绍民.微生物技术与21世纪矿产资源开发.中国非金属矿工业导刊, 2000, 5: 25- 28.
    [60]邱定蕃.清洁高效的提取冶金-矿浆电解.中国工程科学, 1999, 1: 67-72.
    [61]杨绍利.钒钛材料[M].北京:冶金工业出版社, 2007.
    [62] P. R. Taylor, S. A. Shuey, E. E. Vidal, et al. Extractive metallurgy of vanadium containingtitaniferous magnetite ores: a review [J]. Minerals & Metallurgical Processing, 2006, 23(2): 80-86.
    [63]王金超.钙对钒渣提钒的影响[J].四川有色金属, 2004, (4): 27-29.
    [64]陈东辉.钒渣化学形成理论研究[J].钒钛, 1993, 4: 31-39.
    [65]青雪梅,谢兵,李丹柯,等.铁水中钒氧化及尖晶石形成的研究[J].过程工程学报, 2009, 9: 122-125.
    [66] J. Diao, B. Xie, C. Q. Ji, et al. Growth of spinel crystals in vanadium slag and their characterization[J]. Crystal Research Technology, 2009, 44 (7): 707-712.
    [67] J. Diao, B. Xie, C. Q. Ji. Mineralogical characterization of vanadium slag under different conditions[J]. Ironmaking and Steelmaking, 2009, 36(6) :476-480.
    [68]董文生,王心葵,彭少逸.尖晶石的性质、制备及在催化中的应用[J].石油化工高等学校学报, 1996, 9(4) :10-15.
    [69]波良可夫著,饶渡崎译.钒冶金原理[M].北京:冶金工业部图书编辑室, 1962.
    [70]曾广策,朱云海,叶德隆.晶体光学及光性矿物学[M].武汉:中国地质大学出版社, 2006.
    [71]陈东辉.钒渣质量的系统评价[J].河北冶金, 1993, 1:19-23.
    [72]钒渣YB/T008-2006[S].中华人民共和国发展与改革委员会, 2007, 1-5.
    [73]冯光熙,何君秋,黄祥玉,等.高钙含钒炉渣碳酸化提钒之研究[J].成都科技大学学报, 1979, 1: 1-18.
    [74] L.Yu, Y. C. Dong, G. Z. Ye, et al. Concentrating of vanadium oxide in vanadium rich phase (s) by addition of SiO2 in converter slag. Ironmaking and Steelmaking. 2007, 34(2): 131-137.
    [75] G. Gabra, I. Malinsky. A comparative study of the extraction of vanadium from titaniferous magnetite and slag[A]. In: Processing symposium, Extractive Metallurgy of Refractory Metals[C], 110th AIME Annu. Meet, Chicago, Illinois, 1981.
    [76] D. S. Bradbury. The production of vanadium pentoxide[A]. Canada: Vanadium, Geology, Processing and Applications, Proceedings of the International Symposium on Vanadium. Conference of Metallurgists, 2002. 115-130.
    [77]王金超,陈厚生,李瑰生,等.攀钢转炉钒渣生产V2O5工艺研究[J].钢铁钒钛, 1998, 19(4): 41-46.
    [78]彭毅,谢屯良,周宗权,等.高钙高磷低品位钒渣制取V2O5的研究[J].铁合金, 2007, 195(4): 18-23.
    [79]边悟.高硅低钒钒渣提取五氧化二钒的研究[J].铁合金, 2008, 200(3): 5-8.
    [80]邱士星,刘先松,周丹,等.钒渣提取五氧化二钒的研究[J].无机盐工业, 2010, 42(4): 46.
    [81]李宏,周荣章,王万军,等.一种处理钒渣提取五氧化二钒的方法[P].中国, CN1082617, 1994.
    [82] V. A. Kozlov, A. E. Demidov. Chemical principles of a technology for making pure vanadium pentoxide[J]. Metallurgist, 2000, 44(8):428-433
    [83]温守东,丁玉兴.影响钒渣焙烧转化率的因素探讨[J].承德石油高等专科学校学报, 1999, 1(4): 9-12.
    [84]付自碧,邓杰博,张林,等.一种从钠化焙烧熟料中提钒的方法[P].中国, ZL 200910176895.3, 2009.
    [85]史玲,王娟,谢建宏.钠化法提钒工艺条件的研究[J].矿冶工程, 2008, 28(1): 58-61.
    [86]陈鉴,何晋,秋林京,等.钒及钒冶金[M].攀枝花资源综合利用办公室, 1983.
    [87] N. P. Slotvinsky-sidak, V. I. Potapov, L.E. Kolpakov, et al. A method of recovering vanadium values from a vanadium- containing material, US Patent, 1394024, 1973.
    [88]邹晓勇,彭清静,欧阳玉祝,等.高硅低钙钒矿的钙化焙烧过程[J].过程工程学报, 2001, 1 (2) : 189-192.
    [89]陈厚生.钒渣石灰焙烧法提取V2O5工艺研究[J].钢铁钒钛, 1992(6):1-9.
    [90]彭毅,朱胜友,谢屯良,等.一种钙化焙烧钒渣的方法[P].中国, CN101161831A. 2008.
    [91]董振华,李瑞军,刘丁郡,等.高钙焙烧提取五氧化二钒的工艺[P].中国, CN101323914A. 2008.
    [92]张中豪.钙化焙烧冶炼V2O5新工艺研究[J]. 1999, 3: 23-24.
    [93]蒋馥华,张萍,何其荣.钙化焙烧法从石煤中提取五氧化二钒[J].湖北化工, 1992, 1: 20-22.
    [94]张德芳.无污染提钒工艺试验研究[J].湖南有色金属, 2005, 21(6): 16-17.
    [95] L. D. Kurbatova, D. I. Kurbatov, N. I. Medvedeva. Mechanism of extraction of vanadium(V) from sulfuric acid solutions with Di-2- ethylhexylphosphoric acid[J]. Russian Journal of Applied Chemistry, 2004, 77(5): 676-679.
    [96] L. D. Kurbatova, D. I. Kurbatov. Extraction recovery of vanadium from sulfuric acid solution[J]. Russian Journal of Applied Chemistry, 2006, 79 (5): 850-852.
    [97] L. D. Kurbatova, D. I. Kurbatov. Vanadium(V) extraction from sulfuric acid solutions[J]. Russian Journal of Inorganic Chemistry, 2008, 53(7): 1154-1157.
    [98] L. D. Kurbatova, D. I. Kurbatov. Extraction recovery of vanadium from acid sulfate solutions with Di-(2-ethylhexyl) phosphoric acid[J]. Russian Journal of Applied Chemistry, 2010, 83(6): 1093-1095.
    [99] M. Alibrahim, H. Shlewit, S. Alike. Solvent extraction of Vanadium (IV) with di(2-ethylhexyl) phosphoric acid and tributyl phosphate[J]. Chemical Engineering, 2008, 52(1): 29-33.
    [100]戈文荪,何为,彭毅,等.低钒铁水提钒工艺试验研究[A].第七届(2009)中国钢铁年会论文集[C].北京:冶金工业出版社, 2009.
    [101] N. A. Vatolin.钒渣的氧化[M],王长林译.北京:冶金工业出版社, 1982.
    [102]魏庆成.冶金热力学[M].重庆:重庆大学出版社,1996.
    [103]叶大伦,胡建华.使用无机物热力学数据手册[M].北京:冶金工业出版社, 2002.
    [104] I. Barin. Therrnochernical data of pure substances (third edition)[M]. Published jointly by VCH Verlagsgesellschaft mbH (Germany), and VCH Publishers Inc., (New York).
    [105]王海舟.炉渣分析[M].北京:科学出版社, 2006.
    [106] C. K. Gupta. Extractie metallurgy of vanadium.1992.
    [107] G. B. Sadykhov. Oxidation of titanium-vanadium slags with the participation of Na2O and its effect on the behavior of vanadium [J]. Russian metallurgy, 2008 (6): 449-458.
    [108] M. Silitonga, A. P. Prosser. The chemistry of vanadium losses in the alkali-roast process [J]. Proceedings of Australasian Institute of Mining and Metallurgy, 1976, 259(9): 13-18.
    [109] P. P. Stander, C.P.J. Van Vuuren. The high temperature oxidation of FeV2O4[J]. Thermo- chimica Acta, 1990, 157(2): 347-355.
    [110] C. P. J. Van Vuuren, P. P. Stander. The oxidation of FeV2O4 by oxygen in a sodium carbonate omxture[J]. Mineral Engineering, 2001, 14 (7): 803-808.
    [111] V. L. Volkov, N. Kh. Valikanova, A.A. Fotiev. The Interaction of sodium carbonate with vanadium oxides[J]. Russian Journal of Inorganic Chemistry, 1973, 18(12): 1707-1710.
    [112]大连理工大学无机化学教研室.无机化学[M].北京:高等教育出版社. 2001.
    [113] C. P. J. Van Vuuren, P. P. Stander. The oxidation kinetics of FeV2O4 in the range 200- 580℃[J]. Thermochimica Acta, 1995, 254(4): 227-233.
    [114]孙召明,赵中伟.冶金化学动力学研究中应注意的几个问题[J].稀有金属与硬质合金, 2001, 146(9): 27-29.
    [115] C. F. Dickinson, G. R. Heal. Solid-liquid diffusion controlled rate equations[J]. Thermo- chimica Acta, 1999, 340-341 (12): 89-103.
    [116] W. X. Li, Z. Zhao, Z. H. Zhao, et al. Leaching kinetics of calcium vanadate by Na2CO3 solution[J].过程工程学报, 2010, 10 (3): 548-553.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700