用户名: 密码: 验证码:
压电型两自由度惯性冲击式精密驱动器试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用惯性冲击力形成驱动是构造运动机构的一种新方式。而冲击力大多数情况下是通过机械撞击获得的,控制相对较难且容易对机构造成损坏。由于压电元件具有响应速度快、能量转换效率高、结构简单、易于微小型化等优点。因此压电元件是构造惯性冲击式驱动机构的理想动力元件之一。而利用压电元件的快速变形产生惯性冲击力形成驱动的机构称为压电型惯性冲击式驱动器。
     本文以压电双晶片为驱动源,基于惯性冲击运动原理设计并制作了一种两自由度压电型惯性冲击式精密驱动器样机,对其进行了试验测试。
     全文共分五章,内容如下:
    
     绪论
    由于精密工程关键技术超精密定位的需求,压电驱动器得到了大力研究。冲击是振动的一种特殊形式,有其利弊,利用压电元件产生的冲击力构造驱动器也是最近新兴的精密驱动器研究领域。对精密驱动器的主要类型、压电
    
    
    驱动器的特点、类型和典型应用及驱动材料等进行了综述,认为压电材料在实现精密驱动上具有相当大的优势。同时也指出了目前国内外压电型精密驱动存在的问题。简述了国内外在压电惯性冲击方面的研究重点和研究成果。最后概述了本文的主要研究工作内容。
    
     压电陶瓷性能分析与惯性冲击运动原理
    压电驱动的基础是压电效应和逆压电效应。
     衡量压电陶瓷的性能参数主要有介电常数(、弹性常数s、压电常数d、机电耦合系数K、机械品质因数Qm、等,结合所选用的压电材料,本章着重介绍了PZT材料的介电常数矩阵、弹性常数矩阵和压电常数矩阵形式,将应用与有限元分析中。压电材料作为一种具有压电效应的弹性体,在不同的边界条件下,选择不同的自变量,有四组压电方程与之对应。
    压电双晶片采用了压电振子的LE振动模式,是一种输出位移大,可控性好,反应速度快,适合于惯性冲击精密驱动场合的压电元件。结合已有的悬臂梁式压电双晶片理论公式推导出压电晶片和基板尺寸参数对其自由端部位移、刚度和频率的影响趋势,为确定压电双晶片尺寸提供了理论依据。
    惯性冲击运动原理是所设计的压电型两自由度驱动器的原理依据,运用它构思出利用压电双晶片形成直线运动和旋转运动的方法。
    
    三. 惯性冲击式驱动器结构设计与分析
    在分析了试验室前期设计的两种平面内多自由度惯性冲击式驱动器结构的优缺点的基础上,提出新的驱动器结构方案—采用轴孔配合结构,能够
    
    
    实现轴向移动和绕轴心转动两个自由度运动,该结构便于运动导向和驱动力输出。通过试验测试和有限元计算两种方式对驱动器的核心驱动部件压电双晶片振子进行了静力学和动力学分析,得出了压电双晶片尺寸与其性能的一般关系,验证了第二章的理论分析。为了提高测试速度和准确性,编写了压电双晶片静变形、滞环和蠕变自动测试程序,大大方便了压电元器件的测试。分析了摩擦阻力影响和摩擦阻力调整装置的结构形式—柔性铰链,比较了弹簧调节和压电叠堆调节两种方式,以及弹簧选取要求。简要叙述了驱动器机械本体,包括机械底座、移动轴和连接件,在设计过程中应当注意的问题。
    
    四. 惯性冲击式驱动器的试验
    在分析了调节激励频率和调节激励幅值两种调节方式后,得出不同激励频率下压电双晶片振子的位移响应相位和幅值不同,而不同激励幅值作用下的位移响应相位相同,幅值不同,因此决定采用激励幅值调节方式实现驱动器步长和速度的调节。基于幅值调节方式,根据压电双晶片振子对不同频率有效ramp激励响应幅值的关系确定驱动器的驱动频率后,测试了驱动器的直线运动步长,带载能力、速度和旋转运动的步长和带载能力。测试结果为直线运动:最小稳定运动步长0.1μm,移动速度最大可以达到2mm/min,最大载荷能力为50g;旋转运动:最小稳定运动步长6.25μrad,最大载荷为15N·mm。在试验的基础上,提出了驱动器的控制策略。
    
     五. 结论与展望
    
    给出了全文的主要结论,并提出了下一步的深入研究内容。
Inertial impact force is a novel kind of drive force to construct drive mechanism. At most cases, the impact force is produced by machinery rams, so control is more difficult relatively and is easy to damage the mechanism itself. Piezoelectric element has some advantages, such as high respond speed, high energetic conversion efficiency, simple structure and microminiaturization, therefore piezoelectric element becomes a type of powerful element of inertia impact drive mechanism. The drive mechanism, which uses the sharp deformation of piezoelectric element to produce inertia impact force, is called as piezoelectric inertial impact actuator.
     Based on the inertial impact principle, a 2-DOF inertial impact piezoelectric actuator prototype is made with the piezoelectric bimorphs as the drive mechanism and tested by this paper.
     The paper consists of five chapters, given as follows:
    
    Chapter 1 Introduction
     Because of the need of high precise location of precise engineering, piezoelectric actuator is paid more attention. Impact is a special form of vibration and has its advantages and disadvantages, To use impact as drive force is a new drive way. And it is also a new actuator research field to design precise actuator by the piezoelectric impact force. It conclude that piezoelectric material has large advantage over other materials in the precise drive field after reviewing the main types of precise drive, piezoelectric actuator’s main forms, characteristics and
    
    
    representative usage and the driving materials. At the same time, the problem that exits in the piezoelectric precise field at broad and home is put forward. Then a review about the research emphasis and research results of piezoelectric impact drive at broad and home is given. The main research content of the paper is list at last.
    Chapter 2 Piezoelectric performance analysis and the inertial impact drive principle
     The piezoelectric drive fundamental principles are piezoelectric effect and converse piezoelectric effect.
     The factors which influence performance include dielectric constant (、elastic constant s 、piezoelectric constant d 、electromechanically coupled coefficients K、mechanical quality factorQm,etc. With reference to the selected piezoelectric material, the dielectric constant matrix、elastic constant matrix、piezoelectric constant matrix of PZT is put out specially, which will be used in the FEM analysis in the chapter 3. Piezoelectric is a kind of elastic solids, it has four piezoelectric equations with different independent variable at various boundary conditions.
     Piezoelectric bimorph adopt the LE mode of piezoelectric oscillator and is a piezoelectric component with large deformation output, easy-to-control, higher response rapid which suits for the inertial impact precise drive. According to the previous cantilever beam piezoelectric bimorph equations, the trend is concluded that the dimension of piezoelectric wafer and base influence the beam’s free end displacement, the stiffness and frequency of the cantilever beam, which will be taken as the academic gist for designing the piezoelectric bimorph.
     Inertial impact drive principle is the academic base of 2-DOF piezoelectric inertial impact actuator, based on it, the way to utilize the piezoelectric bimorph to drive mechanism linear motion and rotation is given.
    Chapter 3 Inertial impact actuator structure design and analysis
     Based on comparing the planar multi-freedom inertial impact actuators structures designed by our lab, the paper provides a new design-axis vs. hole contact, by which the motion along axis and rotation around the center will be fulfilled and which is convenient for motion orientation and output of drive. By examination and FEM two means, the static and dynamic analysis of the
    
    
    piezoelectric bimorph oscillator is carried out in this paper, and the relation between the dimension of bimorph and the performance of it is got, which proves the conclusion in the chapter 2. In order to improve the test rapid and accuracy, an aut
引文
孙涛,谭久彬,董申, 压电陶瓷微驱动器用于超精定位的技术研究. 压电与声光. 1999; 21(.6):493~497
    陈大任,压电陶瓷微位移驱动器概述:电子元件与材料,1994;13(1):2~7
    徐锡林,压电型微驱动器,上海交通大学学报:1997; 31(.1):67~70
    颜国正,赵国光,余承业. 微小型任意行程电磁冲击式纳米级步距驱动袋置及其控制技术的研究. 仪器仪表学报;1996,17(4):391~396
    Rong Rong et al. Research on The Mechanism and Characteristics of Electromagnetic Micro-actuator.第二届中日机械电子学学术讨论会论文集.1997;91—94.
    尹德芹. 上海交通大学硕士学位论文.
    蔡鹤皋,孙立宁,安辉..压电/电致伸缩微位移器件与应用(下).高技术通讯,1994,(6):37~40
    蔡鹤皋,孙立宁,安辉. 压电/电致伸缩微位移器件与应用(上). 高技术通讯,1994,(5):38~40
    李国荣,陈大任,张 申. 压电陶瓷微致动器在计算机硬盘磁道定位机构中的应用. 应用科学学报. 2000,18(2): 104~108
    徐锡林. 压电型微驱动器. 上海交通大学学报. 1997,31(1):67~70
    陈大任. 压电陶瓷微位移驱动器概述. 电子元件与材料. 1994,17(1):2~7
    上羽贞行,富川义郎著,杨志刚,郑学伦译. 超声波马达理论与应用. 上海:上海科学技术出版社,1998,9~32
    卢全国. 压电型步进式精密驱动器理论与试验研究. 吉林大学硕士学位论文,2003
    刘 泳,万德安. 新型双脚步推式微型进给机构的研究.宇航计测技术,1999;19(2): 11~15
    胡 敏,李 勇,周兆英等. 蠕动式压电/电致伸缩直线电机钳位机构设计. 机械设计. 1998;(8):15~17
    
    李 勇,胡 敏,周兆英,王显军. 提高输出推力的蠕动式微进给定位机构. 压电与声光. 1999; 21(.5):407~410
    吴鹰飞,李 勇,周兆英. 刘钦彦蠕动式X-Y-θ微动工作台的设计实现. 中国机械工程,2001;12(3): 263~265
    李 勇. 蠕动式压电/电致伸缩微进给定位机构的研究进展. 中国机械工程,1999;10(12): 1410~1412
    杨宜民,李传芳,周学才等. 仿生型步进式旋转驱动器及其控制器. 高技术通讯,1995;5(4):24~26
    杨宜民,李传芳,程良伦. 仿生型步进式直线驱动器的研究. 机器人,1994;16(1):37~39
    杨宜民,李传芳,周学才等. 高精度压电旋转驱动器的研制. 机器人,1995;17(6):321~324
    程良伦,杨宜民. 新型精密直线驱动器及其控制器的研究. 计算技术及自动化. 2000;19(1):19~21
    刘 泳,万德安.双脚步进式微型进给机构的研制.中国机械工程,1999;10(8): 856~858
    Inchworm motor, Catalog, Burleigh Instruments Inc. Burleigh Park,Fishers,NY14453 
    Katsushi Furutani, Naotake Mohri, Toshiro Higuchi, “Self-running Type Electrical Discharge Machine Using Impact Drive Mechanism,” Proceedings of Advanced Intelligent Mechatronics AIM'97, Tokyo,Japan,1997
    Automatic Micro Manipulation System and Piezo Impact Drive Mechanism Higuchi Torii, & Yamamoto Laboratory the University of Tokyo .
    刘 华,颜国正,丁国清. 惯性式压电陶瓷驱动器的研究. 压电与声光. 2001,23(4):275~278
    章海军,黄峰. 压电陶瓷冲击驱动机构在微细进给与操作中的应用. 浙江大学学报. 2000;34(5):519~522
    马淑梅,李益民. 压电陶瓷微位移机构系统精密驱动电源的研究. 机构工程师. 1995;3: 3~4
    章海军,黄文浩,林松. 与光学显微镜结合的原子力显微镜及其冲击式微位移机构. 仪器仪表学报. 1996; 17(1):364~367
    
    赵玉清, 薛希纯, 徐 蛟. 扫描隧道显微镜微位移驱动器(爬行器)的研究. 电子显微学报. 1999,18(5): 569~574
    程光明,杨志刚,曾平等.压电式移动机构研究. 压电与声光. 2003,25(2):275~278
    王文伟, 包文清, 胡 翘.冲击式微位移机构的性能测试与分析. 电子显微学报. 1999, 18(1): 132~136
    罗明辉,孙 萍,陈慧宝,孙麟治. 压电冲击式微小管内行走机构。上海大学学报(自然科学版)  1997,3(增刊):130~133
    压电陶瓷.[英] J.范兰德拉特,R.E.塞德林顿,科学出版社,1981.1 4~21
    李尚平,徐永利,苏建华等.驱动器用陶瓷材料与展望.压电与声光,1999,21(6):483-487
    张福学,王丽坤.现代压电学(上册).北京:科学出版社,2001;84~99.
    张福学,王丽坤.现代压电学(中册).北京:科学出版社,2001;128~149.
    林声和,叶至碧,王裕斌. 压电陶瓷. 国防工业出版社,1979,10
    曲远方。功能陶瓷及应用. 化学工业出版社 2003.3 327~333.
    张福学,王丽坤.现代压电学(上册).北京:科学出版社,2001;149~181.
    刘一声. 压电双晶片致动元件的应用. 压电与声光, 1985(1):35~46
    T.Higuchi,Precise Positioning Mechanism Utilizing Rapid Deformations of Plezoelectric Elements,Proceeding of IEEE Micro Electro Mechanical System Workshop, 1990, 203
    Yoshida, Ryuichi, Okamoto, Yasuhiro,Higuchi, Toshiro,etc. Development of smooth impact drive mechanism (SIDM) - proposal of driving mechanism and basic performance。 Journal of the Japan Society for Precision Engineering .1999, 65 (1 ): 111~115
    Binnig G, Rohrer H. Scanning tunneling microscope. Helv Phys Acta, 1982, 55: 726~730.
    Binnig G, Quate CF .Atomic force microscope[J]. Phys Rev Lett, 1986, 56: 930~936.
    Jan G. Smits, Susan I, Dalke and Thomas IL Cooney. The constituent equations of piezoelectric bimorphs . Sensors and Acntators A, 1991, 28 : 41~61
    Wang, Q.M. and Cross, L.E., “Performance Analysis of Piezoelectric Cantilever Bending Actuators,” Ferroelectrics, Vol.215, pp.187~213, 1998
    
    T.Higuchi,Precise Positioning Mechanism Utilizing Rapid Deformations of Plezoelectric Elements,Proceeding of IEEE Micro Electro Mechanical System Workshop, 1990, 203
    陈西平 压电型惯性冲击式运动机构驱动理论和试验研究 吉林大学博士论文 2003 ;89~95.
    吴 京等 信号与系统 国防科技大学出版社 1999年3月;
    温熙森 陈循 编著 机械系统动态分析理论与应用 国防科技大学出版社 1997.11
    黄长艺,严普强主编 机械工程测试技术基础 机械工业出版社 1984.11
    张义民编著 机械振动力学 吉林科学技术出版社 2000.8
    YOKOGAWA AG1200 Arbitrary waveform Generator instruction manual. 1991
    ONO SOKKI Co.,LTD .CF-5210/5220 Multi-purpose FFT analyzer instruction manual
    KEYENSEN LC-2400A High Precision Laser Displacement Meter instruction manual.
    博嘉科技编著. 有限元分析软件—ANSYS融会与贯通. 北京:中国水利水电出版社,2002
    Paros JM and Weisbord L. How to design flexure hinges. Machine design; 1965, (25): 151~156
    王纪武,陈垦,李 嘉 典型柔性铰链的结构参数对其刚度性能影响的研究。机器人,2001.23(1)5157
    Higuchi, Toshiro Furutani, Katsushi Yamagata, Yutaka Kudoh, Improvement of velocity of impact drive mechanism by controlling friction Journal of the Japan Society of Precision Engineering 1992, 58 ( 8): 1327~1332
    T. Higuchi, M. Watanabe, and K. Kudoh, “Precise Positioner Utilizing Rapid Deformations of Piezo Electric Element,” J. Japan Soc. Precision Eng., 54,11, pp. 2107~ 2112, 1988 in Japanese
     K. Furutani, T. Higuchi, Y. Yamagata, and N. Mohri, “Effect of lubrication on Impact Drive Mechanism” precision Engineering. 1998, 22:199~202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700