用户名: 密码: 验证码:
软开关脉冲GMAW焊接电源及弧长稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉冲熔化极气体保护焊(GMAW)工艺具有电流调节范围宽、适于全位置焊、焊缝成型优良等特点,在制造工业生产中逐渐获得广泛应用,然而其对弧焊电源性能提出了更高的要求。软开关弧焊电源正好符合脉冲GMAW焊的需求,当前对全桥软开关弧焊逆变器的建模研究还不系统,为了更好地在设计中优化弧焊电源参数,对软开关弧焊电源系统模型进行分析研究十分必要。通过对全桥移相软开关弧焊逆变电源的模型进行简化,建立了其等效小信号模型,并将峰值电流控制技术与移相软开关技术相互融合,研究了峰值电流控制模式下移相软开关逆变器稳定性问题,分析表明在脉宽调制占空比大于50%的情况下,斜坡补偿是逆变器稳定的必要条件。在此基础上分析了电源的动特性影响因素,并对弧焊电源的外特性边界形成因素进行了分析研究,为电源的研制和控制参数的优化设计提供了理论指导。
     针对脉冲GMAW焊机设计中所存在的问题进行了分析研究,提出了基于DSP+ARM架构的控制电路设计方案,采用模块化的方式对相关电路进行功能设计,并对控制部分的软件功能实现进行了详细分析,建立了可靠的脉冲GMAW焊接电源平台,为进行弧焊过程工艺分析研究奠定了硬件基础。电源性能的测试结果表明所设计的脉冲GMAW焊接电源平台满足实际需求。
     通过对脉冲GMAW焊接系统中各模块的模型分析,基于Matlab/Simulink仿真环境及其扩展工具S函数建立了脉冲GMAW焊接弧焊逆变电源主回路和控制系统的混合仿真模型,仿真模型能够有效地模拟实际弧焊逆变电源-动态电弧负载系统的动态过程特征。基于S函数所建立的脉冲GMAW焊接弧焊逆变电源-电弧系统仿真模型的控制策略能够仿真实际焊接弧长过程动态调节过程。通过引入干扰条件,仿真系统能定量分析脉冲GMAW焊接过程中各物理参数变化机理及影响因素,为实际脉冲GMAW焊逆变电源控制参数设计优化、验证新的弧长控制算法及策略提供了新途径。
     脉冲GMAW焊接熔滴过渡方式对焊接工艺性能、焊缝成形和焊接质量有重要影响,为实现有效、精确控制熔滴过渡的行为,采用一脉一滴熔滴过渡方式是目前最佳的选择。在脉冲GMAW焊接特征参数选择分析的基础上,得出实现脉冲GMAW焊接一脉一滴熔滴过渡的最佳实现是I/I控制方法,即脉冲峰值和脉冲基值期间都采用恒流外特性电源。但由于恒流外特性下,电弧无自身调节作用,无法进行弧焊过程中弧长的调节,为此,提出了基于脉冲周期内环恒流控制外环弧压控制的双闭环控制策略。通过对单个脉冲周期的平均电流电压的模型计算研究发现,基于脉冲周期的双闭环弧长控制策略实现机理是周期平均值外特性自身调节作用,并通过周期平均值外特性上下台阶调节试验验证了理论分析的正确性,为脉冲GMAW焊接方式机器人自动化实现提供了理论基础。
Pulsed gas metal arc welding (GMAW) process has a wide range of current adjustment,suitable for all position welding, weld forming excellent characteristics. It is widely applied inthe manufacture of industrial production. However the performance of arc welding powersupply has put forward higher requirements. Soft switching arc welding power source is inaccord with the demand of pulsed GMAW welding. Now, the full-bridge soft switching arcwelding inverter modeling research is not system. In order to obtain optimal parameters ofsoft switch arc welding power supply in the design process, so it is very necessary to researchthe mode of arc welding power supply system. Based on full bridge soft-switching inverterarc welding power source model simplification, the equivalent small signal model is set up.The peak current control technology and phase-shifted full-bridge soft switching technologyis mutual integration, stability problem of phase inverter with soft switching is researched onthe peak current controlled mode. The analysis shows that slope compensation is necessaryconditions for inverter stability in the case of PWM duty ratio greater than50%. Above all,influence factors of dynamic characteristics for power supply are analyzed, and the boundarycurves of output characteristics for arc welding power supply is analyzed. This provides atheoretical guidance for welding supply development and optimization design of the controlparameters.
     The existing design problems of pulsed GMAW welding machine are analyzed, controlcircuit based on the DSP+ARM topology architecture is proposed. It realized functionanalysis and design of circuit by using modular methods, and the realization of software forcontroller is designed in detail. So a reliable platform for pulsed GMAW welding powersupply is established. It provides a basic hardware foundation for welding process research.Test results of power characteristic performances show that the designed pulsed GMAWwelding power supply can meet the practical needs.
     Through the model analysis of the pulsed GMAW welding system, main circuit andcontrol system simulation model are established based on the Matlab/simulink simulationenvironment and its extension S function establishes for pulsed GMAW welding power supply.The simulation model can effectively simulate the dynamic characteristics of special process for the actual arc welding inverter-dynamic arc load system. Control strategy can simulatethe real process of arc length dynamic adjustment based on simulation model of pulsedGMAW welding inverter and arc load system using S function. By introducing interferencecondition, simulation system can quantitative analysis the physical parameters variationmechanism and influence factors in pulsed GMAW welding process. It provides a new way tooptimize parameters of controller for pulsed GMAW welding inverter, verify new arc lengthcontrol algorithm and strategy.
     It has an important effect for welding technological properties, weld forming andwelding quality with different droplet transfer mode of pulsed GMAW welding. Droplettransition of 'One drop per pulse' is the best choice to achieve effective, precise control ofdroplet transfer behavior. It comes to realize that I/I control method is best method to get 'onedrop per pulse' based on analysis parameters selection of pulsed GMAW welding. Outputcharacteristics of constant current power supply are used during both peak period and baseperiod. Arc has not self regulation with output characteristics of constant current, so arc lengthmust be controlled in the process of arc welding. Double loop control strategy of cycle loopconstant current control and outer loop arc voltage control in one pulse period is proposed.Through average current-voltage model of a single pulse period, it is found that the controlstrategy based on double closed-loop arc length of the pulse period of the cycle average of theoutput characteristics has self-regulation role. Step up and down tests of arc length regulationshow that the theoretical analysis is correct through periodic average output characteristics.This provides a theoretical basis for pulsed GMAW welding robotic automation.
引文
[1] Howard B.Cary.现代焊接技术[M].第六版.陈茂爱.化学工业出版社,2010.3:26
    [2]刚铁.装备制造业与焊接技术[J].焊接,2007,(11):1-5
    [3] Waszink J.H., Piena M.J. Experimental investigation of drop detachment and drop velocityin GMAW[J]. Welding Journal,1986,65(11):289-298
    [4] Kim Y.S.Metal transfer in gas metal arc welding[D]. PhD Thesis MIT,1989
    [5] Subramaniam S., White D.R., Jones J.E., et al. Experimental approach to selection ofpulsing parameters in pulsed GMAW[J]. Welding Jounal,1999,78(5):166-172
    [6] Matsuda F., Ushio M., Tanaka Y., el,a1. Pulsed GMAW: one drop transfer and processparameter[J]. Transactions of Joining and Welding Research Institute,1984,13(2):15-20
    [7] Allum C.J. Welding technology data: pulsed MIG welding[J]. Welding and MetalFabrication,1985,53:24-30
    [8] Ueguri S., Hara K., Konura H. Study of metal transfer in pulsed GMA welding[J].Welding Journal,1985,64(8),242-250
    [9]黄石生.逆变理论与弧焊逆变器[M].北京:机械工业出版社,1995
    [10]赵家瑞.逆变焊接与切割电源[M].北京:机械工业出版社,1996
    [11]李先耀,张人豪.国外逆变焊机的应用情况及我国逆变焊机的发展.电焊机[J].1995,25(4):1-4
    [12] Polock H.. Series-parallel load resonant converter for controlled-current arc weldingpower supply[J]. IEEE Proceedings of Electric Power Applications.1996,143(3):211-218
    [13] Fisher R.A.. A500kHz250W DC/DC converter with multi-Outputs controlled by phaseshifted PWM and magnetic amplifiers[J]. Proceedings of High Frequency PowerConversion,1988,100-110
    [14] Farrington R.W.. A new family of isolated converters that uses the magnetizinginductance of the transformer to achieve zero-voltage switching[J]. IEEE Transactionson Power Electronics,1993,8(2):535-545
    [15] Hamada S.. Analysis and design of a saturable reactor assisted soft switching full bridgeDC-DC converter[J]. IEEE Transactions on Power Electronics,1994,9(3):309-317
    [16] Kutkut N.H.. An improved full-bridge zero-voltage switching PWM converter using atwo-inductor rectifier[J]. IEEE Transactions on Industry Applications,1995,31(1):119-126
    [17] Cho J.G., Sabate J.A., Hua G.C., et al. Zero-voltage and zero-current-switching fullbridge converter for high power applications[J]. IEEE Transactions on Power Electronics,1996,11(4):622-627
    [18] Cho J.G., Rim G.H., Lee F.C.. Zero-voltage and zero-current-switching full bridge PWMconverter with secondary active clamp[C]. IEEE PESC,1996,657-663
    [19] Garabandic D.. Primary saturable conductor for high power zero-voltage switchingDC-DC converter with IGBT's[C]. IEEE Proceeding of APEC,1997:944-947
    [20] Cho Jung-Goo. Novel zero-voltage and zero-current-switching full-bridge PWMconverter using a simple auxiliary circuit[J]. IEEE Transactions on Industry Applications,1999,35(1):15-20
    [21] Keming Chen. A1.6kW,110kHz DC/DC converter optimized for IGBT’s[J]. IEEE Trans.Power Electronics,1993,8(1):918-925
    [22] Soo K. E.. Improved soft-switching PWM FB DC/DC converter for reducing conductionlosses[C]. IEEE PESC,1996,651-657
    [23]白志范,王伟明,蒋志宏,等. LCL型谐振式弧焊电源稳态数学分析[J].焊接学报,2000,21(4):80-83
    [24]陈树君,卢振样,黄鹏飞,殷树言等.双零软开关弧焊逆变电源[J].焊接学报,2003,23(3):1-5
    [25]陈树君,耿正,冯雷等.用饱和电感改善软开关弧焊逆变电源的性能[J].焊接学报,1998,19(6):46-51
    [26] Chen Shujun, Wang Jun, Lu Zhenyang, Yin Shuyan. Soft switching arc welding powersource using output inductor as resonant inductor[J]. China Welding,2002,11(2):109-113
    [27] Jiang Zhihong, Huang Lipei, Zhang Yi. Analysis of a novel phase-shifted soft switchconverter[J]. China Welding,2002,11(1):67-71
    [28]杜贤昌,白志范,邓占峰,等.谐振式软开关弧焊逆变电源[J].焊接学报,2003,24(6):52-56
    [29] Luigi. Malesani, Leopoldo. Rossetto, Paolo.Tenti, et al. Electronic welding withhigh-frequency resonant inverter[J]. IEEE Transactions on Industry Applications,1995,31(1):273-27
    [30]潘际銮.现代弧焊控制[M].北京:机械工业出版社,2000
    [31]王其隆,张九海,张龙.自适应SYNERGIC脉冲MIG/MAG焊微机控制研究[J].焊接,1999,(9):1-5
    [32]郭大勇,殷树言.相移式准谐振弧焊电源的建模与分析[J].焊接学报,1998,19(3):171-175
    [33]方臣富,殷树言,侯润石,等.逆变弧焊电源峰值电流模式双闭环控制系统[J].焊接学报,2005,26(10):14-18
    [34]张卫平,吴兆麟,李洁.开关变换器建模方法综述[J].浙江大学学报(自然科学版),1999,33(2):169-175
    [35]周嘉农,曾小平. DC-DC开关变换器的建模与分析的动态评述[J].华南理工大学学报(自然科学版),2000,28(8):111-116
    [36] Hui Lifang, Zheng Peng, Lawler J. S.. A natural ZVS medium-power bidirectionalDC-DC converter with minimum number of devices[J]. IEEE Transactions on PowerElectronics,2003,39(2):525-536
    [37] Bengt Johansson. DC-DC converters-dynamic model design and experimentalverification[D]. SWEDEN: Lund University,2004
    [38] Burdlo J.M. Martinez A. A unified discrete time state space model for switchingconverters[J]. IEEE Transactions on Power Electronics,1995,10(6):694-707
    [39] Ng S. W., Wong S. C., Lee Y. S. Small signal simulation of switching converters[J]. IEEETransactions on Circuits and systems I: Fundamental Theory and Applications,1999,46(6):731-739
    [40] Arthur F. Witulski, Robert W. Eriekson. Extension of state-space averaging to resonantswitches and beyond[J]. IEEE Transactions on Power Electronics,1990,5(l):98-109
    [41]林波涛,丘水生.一种统一的准谐振开关变换器的等效电路分析法一高频网络平均法[J].电子学报,1995,23(8):71-74
    [42]孙铁成,唐迎春,孙淑凤,等.准谐振变换器的统一建模方法[J].哈尔滨工业大学学报,2001,33(3):353-358
    [43]欧阳长莲. DC-DC开关变换器的建模分析与研究[D].南京:南京航空航天大学,2004
    [44] Vlatko VlatkoviC, Juan A. SabatC, Raymond B. Ridley, et al. Small-signal analysis ofthe phase-shifted PWM converter[J]. IEEE Transactions on Power Electronics,1992,7(1):128~135
    [45]胡绳荪.现代弧焊电源及其控制[M].北京:机械工业出版社,2007
    [46]黄石生.弧焊电源及其数字化控制[M].北京:机械工业出版社,2006
    [47]上山智之,仝红军.微机数控电流波形GMA脉冲焊机的控制方法及焊接性能[J].焊接,2000,(5):33-38
    [48]刘嘉,殷树言,丁京柱.数字化焊机及其特点[J].电焊机,2001,31(6):8-11
    [49]王伟明.逆变式GMA单脉冲和双脉冲焊机数字控制系统研究[D].北京:北京工业大学,2004
    [50] Wu Kaiyuan, Huang Shisheng, Li Xinglin, et al. Digital control of pulsed gas metal arcwelding inverter using TMS320LF2407A[J]. China Welding,2008,17(1):75-80
    [51]吴开源,黄石生,李星林,等.基于数字信号处理器的双丝高速焊数字化协同控制系统[J].机械工程学报,2008,44(9):134-138
    [52]薛家祥,蒙万俊,熊丹枫,等.基于ARM的多功能数字化逆变电源[J].华南理工大学学报(自然科学版),2010,38(5):95-99
    [53]华学明,吴毅雄,焦馥杰,等.以数字信号为及控制的可控硅焊机的数字触发[J].焊接学报,2002,23(2):72-76
    [54]华学明,张勇,吴毅雄,等.数字信号处理器控制的焊接电源研制[J].电焊机,2002,32(10):25-28
    [55]王正中.现代计算机仿真技术及其应用[M].北京:国防工业出版社,1991
    [56]杜乃在.计算机仿真在焊接学科中的应用[J].焊接技术,1999,(1):42-43
    [57]廖家平,刘劲楠.在MATLAB中实现IGBT动态仿真模型[J].武汉理工大学学报,200l,(9):69~71
    [58]朱锦洪,史耀武,雷永平,等.弧焊逆变器控制系统的非线性模型仿真研究[J].西安交通大学学报,2001,35(1):71-74
    [59]张军红,黄石生.熔滴短路过渡动态过程的数学建模与仿真[J].焊接学报,2001,22(4):81-84
    [60]王伟,朱六妹,杜宪昌.弧焊逆变电源变结构控制规律的仿真研究[J].华中科技大学学报,2002,30(11):87-89
    [61]杭争翔,刘桂秋,宋政. C02焊接逆变电源一电弧系统的仿真研究[J],焊接学报,2003,24(1):35-39
    [62]卢振洋,刘嘉,王伟明,等.数字控制弧焊逆变电源系统的MATLAB仿真研究[J].北京工业大学学报,2003,29(3):264-269
    [63]周漪清,黄石生,张红兵.大功率弧焊逆变器主电路的建模与仿真[J].华南理工大学学报,2004,32(8):30-34
    [64] Chio J.H., Lee J.Y., Yoo C.D.. Simulation of dynamic behavior in a GMAW system[J].Welding Journal,2001,80(10):239~245
    [65]韩敬华,单平,胡绳荪,等.基于DSP的脉冲MIG焊数字控制系统的建模与仿真[J].焊接学报,2006,27(6):91-94
    [66]黄石生,蒙永民,薛家祥,等.脉冲MIG焊动态过程的仿真[J].电焊机,2001,31(4):16-18
    [67]王伟明,苏建中,刘嘉,等.基于Matlab/Simulink的全数字控制双脉冲焊建模和仿真研究[J].电焊机,2004,34(4):43-45
    [68]吴文凯,朱志明,张波.仿真在逆变弧焊电源研究中的应用[J].电焊机,1997,27(4):11-13
    [69] Amin M. Synergic pulse MIG welding[J]. Metal Construction,1981
    [70] Amin, M. Ahmed, N. Synergic control in MIG welding.1. Parametric relationships forsteady DC open arc and short circuiting arc operation[J]. Metal Construction,1987,19(1):331-340
    [71]殷树言,刚铁,鲁文哲,等.脉冲MIG(PMIG)焊的发展与现状[J].电焊机,1990,20(6):15-20
    [72]殷树言,李涛.脉冲MIG焊Synergic控制法的由来与发展[J].焊接技术,1990,(05):35-39
    [73]王其隆,张九海,张龙.自适应Synergic脉冲MIG(MAG)焊微机控制研究[J].焊接,1990,(09):1-5
    [74]潘际銮,张人豪,区智明,等.脉冲MIG焊接电弧的闭环控制[J].焊接学报,1985,16(02):91-98
    [75]潘际銮.现代弧焊控制[M].北京:机械工业出版社.2000:63-99
    [76]韩赞东,都东,吴文楷,等.微机控制IGBT逆变式脉冲MIG焊电源的研究[J].电焊机,1998,28(6):11-13
    [77] Ueguri, Shigeo et al. European Patent Application. Application N0.81105288.5
    [78]上山智之,仝红军.微机数控电流波形GMA脉冲焊机的控制方法及焊接性能[J].焊接,2000,(5):33-38
    [79] Thomsen Jesper Sandberg. Advanced Control Methods for Optimization of ArcWelding[D]. Aalborg: Aalborg University,2005
    [80] Zhang Y. M., Liguo E, Walcott B.L. Robust control of pulsed gas metal arc welding[J].ASME Journal of Dynamic Systems, Measurement and Control,2002,124(2):281-289
    [81]黄鹏飞,卢振洋,吕耀辉,等.熔化极脉冲氩弧焊弧长动态调节性能研究[J].机械工程学报,2005,41(1):194-197
    [82] Ohshima K, Abe M, Kubota T. Effect of power source characteristic on stability ofpulsed current transfer-sampled-data control pulsed arc[A]. JWS-I-3
    [83]曾敏,曹彪,黄石生,等.脉冲熔化极气体保护焊的模糊控制[J].机械工程学报,2003,39(11):113-115
    [84]吴开源,黄石生,蒙永民.脉冲MIG焊电弧双模模糊控制[J].控制理论与应用,2006,23(1):74-78
    [85] Vender J. R. Tyler K.L. Moore D.S. Modeling, calibration, and control-theoretic analysisof the gmaw process[C]. In Nonlinear Analysis, Methods and Applications, volume3,.Proc. American Control Conference(ACC),1998:1747-1751
    [86] Naidu S. D. Tyler J. Ozcelik S. Classical control of gas metal arc welding[C]. In Trendsin Welding Research: Proc.5th International Conference,1998:1033-1038
    [87] AbdelRahman M. Feedback linearization control of current and arc length in GMAWsystem[C]. Proc. of the American Control Conference,1998
    [88] Naidu D.S. K.L.Moore, M.A. Abdelrahman. Gas metal arc welding control: Part2-control strategy[M]. Nonlinear Analysis,1999(35):85-93
    [89] Subbaram D. Naidu Selahattin Ozcelik, Kevin L. Application of mimo direct adaptivecontrol to gas metal arc welding[C]. Proc. of the American Control Conference,1998
    [90] Moore K.L. Naidu D. S. Ozcelik S. Modeling, Sensing and Control of Gas Metal ArcWelding[M]. Elsevier,2003
    [91] Walcott B.L. Zhang Y. M. Liguo E. Interval model based control of gas metal arcwelding[C]. Proc. of the American Control Conference,1998
    [92] Walcott B. L. Zhang Y. M. Liguo E. Robust control of pulsed gas metal arc welding[J].Journal of Dynamic Systems, Measurement and Control,2002,124(2):281-89
    [93] Puklavec A. Torvornik B. Golob M. Modelling, simulation and fuzzy control of thegmaw welding process[C]. In15th Triennial World Congress(IFAC),2002
    [94] Johnson J A, Carlson N M, Smartt H B. Process control of GMAW sensoring of metaltransfer mode [J]. Welding Journal,1991,70(4):91-98
    [95]王其隆.弧焊过程质量实时传感与控制[M].北京:机械工业出版社,2000
    [96]李俊岳,杨立军,胡胜钢,等.脉冲MIG焊熔滴过渡光谱信息的研究[J].中国工程科学,2000,2(07):79-86
    [97]柳刚,李俊岳,杨立军,等.熔化极气体保护焊电弧光谱信号脉冲特征的本质[J].焊接学报,2000,21(01):34-36
    [98] Li Junyue, Song Yunlun. Spectral information of arc andwelding automation[J].Weldingin the World,1994,34(9):317-327
    [99]樊丁,石玗,卢立晖,等.脉冲MIG焊过程多信息检测、融合分析及解耦控制[A].2010信息化焊接国际论坛论文集[C],2010
    [100]杨运强,李俊岳,李桓,等.焊接电弧光谱的空间特征及应用研究[J].电焊机,2000,30(12):30-32
    [101]杨立军,李桓,胡胜钢,等.光谱控制的逆变脉冲MIG焊电源及控制系统[J].焊接学报,2001,22(01):41-44
    [102]傅希圣,李烨,王夏冰.熔化极气体保护焊焊丝伸出长度和电弧弧长的稳定性[J].焊接学报,1995,16(2):100-105
    [103]傅希圣,李烨.焊丝熔化率公式研究[J].焊接学报,1995,16(4):226-232
    [104]Lesnewich A.. Control of melting rate and metal transfer in gas-shielded metal arcwelding. part I: control of electrode melting rate[J]. Welding Journal,1958,37(8):343-353
    [105]Allum C.J.. MIG welding: time for reassessment[J]. Metal Construction,1983,15(6):347-353
    [106]TMS320LF2808PWM Full Compare in Asymmetric Mode. Texas Instruments Inc.,2002
    [107]LM3S818Microcontroller Data Sheet, Luminary Micro, Inc.2007
    [108]王诚. Altera FPGA\CPLD设计[M].北京:人民邮电出版社,2005
    [109]尹登科,童彦刚,杨晓峰.计算机仿真技术在数字化焊机电源中的应用[J].电焊机,2008,38(11):59-62
    [110]吴文楷,朱志明,罗小锋,等.自适应恒频短路过渡焊接过程的控制系统[J].焊接学报,1999,20(4):244-249
    [111]安藤弘平,长谷川光雄.焊接电弧现象[M].北京:机械工业出版社,1985
    [112]蒙永民. GMAW-P焊熔滴过渡模糊控制的研究[D].广州:华南理工大学,2001
    [113]王伟明.逆变式GMA单脉冲和双脉冲焊机数字控制系统研究[D].北京:北京工业大学,2004
    [114]宋政. GMAW-P焊接控制系统及熔滴过渡动态数值模拟研究[D].上海:上海交通大学,2006
    [115]李芳. GMAW-P数字电源设计及熔滴过渡特征信号提取与建模仿真[D].上海:上海交通大学,2008
    [116]Praveen P., Yarlagadda P.K.D.V., Kang M.J.. Advancements in pulse gas metal arcwelding[J]. Journal of Materials Processing Technology,2005,164-165:1113-1119
    [117]Palani P.K., Murugan N.. Selection of parameters of pulsed current gas metal arcwelding[J].Journal of Materials Processing Technology,2006,172(1):1-10
    [118]华学明,宋政,李芳,等.脉冲熔化极气体保护焊焊接电源—电弧系统建模与仿真[J].机械工程学报,2010,46(8):78-82
    [119]黄健康,石玗,卢立晖,等.脉冲MIG焊建模仿真分析及弧长控制[J].机械工程学报,2011,47(4):37-41
    [120]Thomen Jesper S.. Advanced control methods for optimization of arc welding[D].Aalborg:Aalborg University,2005
    [121]殷树言.气体保护焊工艺基础[M].北京:机械工业出版社,2007
    [122]张光先.逆变焊机原理与设计[M].北京:机械工业出版社,2008
    [123]李朋. GMAW-P焊熔滴过渡协同控制的研究[D].济南:山东大学,2009
    [124]段彬.全数字化脉冲逆变电源控制策略与应用的研究[D].济南:山东大学,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700